test_models.py 35.7 KB
Newer Older
1
import contextlib
2
3
4
import functools
import operator
import os
5
import pkgutil
6
import platform
7
import sys
8
import warnings
9
from collections import OrderedDict
10
from tempfile import TemporaryDirectory
11
from typing import Any
12
13

import pytest
14
import torch
15
import torch.fx
16
import torch.nn as nn
17
from _utils_internal import get_relative_path
18
from common_utils import cpu_and_gpu, freeze_rng_state, map_nested_tensor_object, needs_cuda, set_rng_seed
19
20
from PIL import Image
from torchvision import models, transforms
21
from torchvision.models import get_model_builder, list_models
22

23

24
ACCEPT = os.getenv("EXPECTTEST_ACCEPT", "0") == "1"
25
SKIP_BIG_MODEL = os.getenv("SKIP_BIG_MODEL", "1") == "1"
26
27


28
def list_model_fns(module):
29
    return [get_model_builder(name) for name in list_models(module)]
30
31


32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
def _get_image(input_shape, real_image, device):
    """This routine loads a real or random image based on `real_image` argument.
    Currently, the real image is utilized for the following list of models:
    - `retinanet_resnet50_fpn`,
    - `retinanet_resnet50_fpn_v2`,
    - `keypointrcnn_resnet50_fpn`,
    - `fasterrcnn_resnet50_fpn`,
    - `fasterrcnn_resnet50_fpn_v2`,
    - `fcos_resnet50_fpn`,
    - `maskrcnn_resnet50_fpn`,
    - `maskrcnn_resnet50_fpn_v2`,
    in `test_classification_model` and `test_detection_mode`.
    To do so, a keyword argument `real_image` was added to the abovelisted models in `_model_params`
    """
    if real_image:
        GRACE_HOPPER = get_relative_path(
            os.path.dirname(os.path.realpath(__file__)), "test", "assets", "encode_jpeg", "grace_hopper_517x606.jpg"
        )
        img = Image.open(GRACE_HOPPER)

        original_width, original_height = img.size

        # make the image square
        img = img.crop((0, 0, original_width, original_width))
        img = img.resize(input_shape[1:3])

        convert_tensor = transforms.ToTensor()
        image = convert_tensor(img)
        assert tuple(image.size()) == input_shape
        return image.to(device=device)

    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    return torch.rand(input_shape).to(device=device)


67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
@pytest.fixture
def disable_weight_loading(mocker):
    """When testing models, the two slowest operations are the downloading of the weights to a file and loading them
    into the model. Unless, you want to test against specific weights, these steps can be disabled without any
    drawbacks.

    Including this fixture into the signature of your test, i.e. `test_foo(disable_weight_loading)`, will recurse
    through all models in `torchvision.models` and will patch all occurrences of the function
    `download_state_dict_from_url` as well as the method `load_state_dict` on all subclasses of `nn.Module` to be
    no-ops.

    .. warning:

        Loaded models are still executable as normal, but will always have random weights. Make sure to not use this
        fixture if you want to compare the model output against reference values.

    """
    starting_point = models
    function_name = "load_state_dict_from_url"
    method_name = "load_state_dict"

    module_names = {info.name for info in pkgutil.walk_packages(starting_point.__path__, f"{starting_point.__name__}.")}
    targets = {f"torchvision._internally_replaced_utils.{function_name}", f"torch.nn.Module.{method_name}"}
    for name in module_names:
        module = sys.modules.get(name)
        if not module:
            continue

        if function_name in module.__dict__:
            targets.add(f"{module.__name__}.{function_name}")

        targets.update(
            {
                f"{module.__name__}.{obj.__name__}.{method_name}"
                for obj in module.__dict__.values()
                if isinstance(obj, type) and issubclass(obj, nn.Module) and method_name in obj.__dict__
            }
        )

    for target in targets:
        # See https://github.com/pytorch/vision/pull/4867#discussion_r743677802 for details
        with contextlib.suppress(AttributeError):
            mocker.patch(target)


112
113
114
115
116
117
def _get_expected_file(name=None):
    # Determine expected file based on environment
    expected_file_base = get_relative_path(os.path.realpath(__file__), "expect")

    # Note: for legacy reasons, the reference file names all had "ModelTest.test_" in their names
    # We hardcode it here to avoid having to re-generate the reference files
118
    expected_file = os.path.join(expected_file_base, "ModelTester.test_" + name)
119
120
121
122
123
124
125
126
127
128
129
130
    expected_file += "_expect.pkl"

    if not ACCEPT and not os.path.exists(expected_file):
        raise RuntimeError(
            f"No expect file exists for {os.path.basename(expected_file)} in {expected_file}; "
            "to accept the current output, re-run the failing test after setting the EXPECTTEST_ACCEPT "
            "env variable. For example: EXPECTTEST_ACCEPT=1 pytest test/test_models.py -k alexnet"
        )

    return expected_file


131
def _assert_expected(output, name, prec=None, atol=None, rtol=None):
132
133
134
135
136
137
138
139
140
141
142
    """Test that a python value matches the recorded contents of a file
    based on a "check" name. The value must be
    pickable with `torch.save`. This file
    is placed in the 'expect' directory in the same directory
    as the test script. You can automatically update the recorded test
    output using an EXPECTTEST_ACCEPT=1 env variable.
    """
    expected_file = _get_expected_file(name)

    if ACCEPT:
        filename = {os.path.basename(expected_file)}
143
        print(f"Accepting updated output for {filename}:\n\n{output}")
144
145
146
147
        torch.save(output, expected_file)
        MAX_PICKLE_SIZE = 50 * 1000  # 50 KB
        binary_size = os.path.getsize(expected_file)
        if binary_size > MAX_PICKLE_SIZE:
148
            raise RuntimeError(f"The output for {filename}, is larger than 50kb - got {binary_size}kb")
149
150
    else:
        expected = torch.load(expected_file)
151
152
        rtol = rtol or prec  # keeping prec param for legacy reason, but could be removed ideally
        atol = atol or prec
153
        torch.testing.assert_close(output, expected, rtol=rtol, atol=atol, check_dtype=False, check_device=False)
154
155


156
def _check_jit_scriptable(nn_module, args, unwrapper=None, eager_out=None):
157
158
    """Check that a nn.Module's results in TorchScript match eager and that it can be exported"""

159
160
161
162
163
164
165
    def get_export_import_copy(m):
        """Save and load a TorchScript model"""
        with TemporaryDirectory() as dir:
            path = os.path.join(dir, "script.pt")
            m.save(path)
            imported = torch.jit.load(path)
        return imported
166
167
168

    sm = torch.jit.script(nn_module)

169
170
    if eager_out is None:
        with torch.no_grad(), freeze_rng_state():
171
            eager_out = nn_module(*args)
172

173
    with torch.no_grad(), freeze_rng_state():
174
175
176
177
178
        script_out = sm(*args)
        if unwrapper:
            script_out = unwrapper(script_out)

    torch.testing.assert_close(eager_out, script_out, atol=1e-4, rtol=1e-4)
179
180
181
182
183
184
185
186

    m_import = get_export_import_copy(sm)
    with torch.no_grad(), freeze_rng_state():
        imported_script_out = m_import(*args)
        if unwrapper:
            imported_script_out = unwrapper(imported_script_out)

    torch.testing.assert_close(script_out, imported_script_out, atol=3e-4, rtol=3e-4)
187
188


189
def _check_fx_compatible(model, inputs, eager_out=None):
190
    model_fx = torch.fx.symbolic_trace(model)
191
192
193
194
    if eager_out is None:
        eager_out = model(inputs)
    fx_out = model_fx(inputs)
    torch.testing.assert_close(eager_out, fx_out)
195
196


197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
def _check_input_backprop(model, inputs):
    if isinstance(inputs, list):
        requires_grad = list()
        for inp in inputs:
            requires_grad.append(inp.requires_grad)
            inp.requires_grad_(True)
    else:
        requires_grad = inputs.requires_grad
        inputs.requires_grad_(True)

    out = model(inputs)

    if isinstance(out, dict):
        out["out"].sum().backward()
    else:
        if isinstance(out[0], dict):
            out[0]["scores"].sum().backward()
        else:
            out[0].sum().backward()

    if isinstance(inputs, list):
        for i, inp in enumerate(inputs):
            assert inputs[i].grad is not None
            inp.requires_grad_(requires_grad[i])
    else:
        assert inputs.grad is not None
        inputs.requires_grad_(requires_grad)


226
227
228
# If 'unwrapper' is provided it will be called with the script model outputs
# before they are compared to the eager model outputs. This is useful if the
# model outputs are different between TorchScript / Eager mode
229
script_model_unwrapper = {
230
231
    "googlenet": lambda x: x.logits,
    "inception_v3": lambda x: x.logits,
232
    "fasterrcnn_resnet50_fpn": lambda x: x[1],
233
    "fasterrcnn_resnet50_fpn_v2": lambda x: x[1],
234
    "fasterrcnn_mobilenet_v3_large_fpn": lambda x: x[1],
235
    "fasterrcnn_mobilenet_v3_large_320_fpn": lambda x: x[1],
236
    "maskrcnn_resnet50_fpn": lambda x: x[1],
237
    "maskrcnn_resnet50_fpn_v2": lambda x: x[1],
238
239
    "keypointrcnn_resnet50_fpn": lambda x: x[1],
    "retinanet_resnet50_fpn": lambda x: x[1],
240
    "retinanet_resnet50_fpn_v2": lambda x: x[1],
241
    "ssd300_vgg16": lambda x: x[1],
242
    "ssdlite320_mobilenet_v3_large": lambda x: x[1],
Hu Ye's avatar
Hu Ye committed
243
    "fcos_resnet50_fpn": lambda x: x[1],
244
}
245
246


247
248
249
250
251
252
253
254
255
256
257
258
259
260
# The following models exhibit flaky numerics under autocast in _test_*_model harnesses.
# This may be caused by the harness environment (e.g. num classes, input initialization
# via torch.rand), and does not prove autocast is unsuitable when training with real data
# (autocast has been used successfully with real data for some of these models).
# TODO:  investigate why autocast numerics are flaky in the harnesses.
#
# For the following models, _test_*_model harnesses skip numerical checks on outputs when
# trying autocast. However, they still try an autocasted forward pass, so they still ensure
# autocast coverage suffices to prevent dtype errors in each model.
autocast_flaky_numerics = (
    "inception_v3",
    "resnet101",
    "resnet152",
    "wide_resnet101_2",
261
262
    "deeplabv3_resnet50",
    "deeplabv3_resnet101",
263
    "deeplabv3_mobilenet_v3_large",
264
265
    "fcn_resnet50",
    "fcn_resnet101",
266
    "lraspp_mobilenet_v3_large",
267
    "maskrcnn_resnet50_fpn",
268
    "maskrcnn_resnet50_fpn_v2",
269
    "keypointrcnn_resnet50_fpn",
270
271
)

272
273
274
# The tests for the following quantized models are flaky possibly due to inconsistent
# rounding errors in different platforms. For this reason the input/output consistency
# tests under test_quantized_classification_model will be skipped for the following models.
275
quantized_flaky_models = ("inception_v3", "resnet50")
276

277

278
279
280
# The following contains configuration parameters for all models which are used by
# the _test_*_model methods.
_model_params = {
281
    "inception_v3": {"input_shape": (1, 3, 299, 299), "init_weights": True},
282
283
284
285
286
287
    "retinanet_resnet50_fpn": {
        "num_classes": 20,
        "score_thresh": 0.01,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
288
        "real_image": True,
289
    },
290
291
292
293
294
295
    "retinanet_resnet50_fpn_v2": {
        "num_classes": 20,
        "score_thresh": 0.01,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
296
        "real_image": True,
297
    },
298
299
300
301
    "keypointrcnn_resnet50_fpn": {
        "num_classes": 2,
        "min_size": 224,
        "max_size": 224,
302
        "box_score_thresh": 0.17,
303
        "input_shape": (3, 224, 224),
304
        "real_image": True,
305
    },
306
307
308
309
310
    "fasterrcnn_resnet50_fpn": {
        "num_classes": 20,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
311
        "real_image": True,
312
    },
313
314
315
316
317
    "fasterrcnn_resnet50_fpn_v2": {
        "num_classes": 20,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
318
        "real_image": True,
319
    },
Hu Ye's avatar
Hu Ye committed
320
321
322
323
324
325
    "fcos_resnet50_fpn": {
        "num_classes": 2,
        "score_thresh": 0.05,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
326
        "real_image": True,
Hu Ye's avatar
Hu Ye committed
327
    },
328
329
330
331
332
    "maskrcnn_resnet50_fpn": {
        "num_classes": 10,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
333
        "real_image": True,
334
    },
335
336
337
338
339
    "maskrcnn_resnet50_fpn_v2": {
        "num_classes": 10,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
340
        "real_image": True,
341
    },
342
343
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "box_score_thresh": 0.02076,
344
    },
345
346
347
348
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "box_score_thresh": 0.02076,
        "rpn_pre_nms_top_n_test": 1000,
        "rpn_post_nms_top_n_test": 1000,
349
    },
350
351
352
353
    "vit_h_14": {
        "image_size": 56,
        "input_shape": (1, 3, 56, 56),
    },
354
355
356
    "mvit_v1_b": {
        "input_shape": (1, 3, 16, 224, 224),
    },
357
358
359
    "mvit_v2_s": {
        "input_shape": (1, 3, 16, 224, 224),
    },
360
361
362
    "s3d": {
        "input_shape": (1, 3, 16, 224, 224),
    },
363
    "googlenet": {"init_weights": True},
364
}
365
366
367
368
369
# speeding up slow models:
slow_models = [
    "convnext_base",
    "convnext_large",
    "resnext101_32x8d",
370
    "resnext101_64x4d",
371
372
373
374
375
376
377
378
379
380
    "wide_resnet101_2",
    "efficientnet_b6",
    "efficientnet_b7",
    "efficientnet_v2_m",
    "efficientnet_v2_l",
    "regnet_y_16gf",
    "regnet_y_32gf",
    "regnet_y_128gf",
    "regnet_x_16gf",
    "regnet_x_32gf",
Joao Gomes's avatar
Joao Gomes committed
381
    "swin_t",
382
383
    "swin_s",
    "swin_b",
Local State's avatar
Local State committed
384
385
386
    "swin_v2_t",
    "swin_v2_s",
    "swin_v2_b",
387
388
389
]
for m in slow_models:
    _model_params[m] = {"input_shape": (1, 3, 64, 64)}
390
391


392
# skip big models to reduce memory usage on CI test. We can exclude combinations of (platform-system, device).
393
skipped_big_models = {
394
395
    "vit_h_14": {("Windows", "cpu"), ("Windows", "cuda")},
    "regnet_y_128gf": {("Windows", "cpu"), ("Windows", "cuda")},
396
397
    "mvit_v1_b": {("Windows", "cuda"), ("Linux", "cuda")},
    "mvit_v2_s": {("Windows", "cuda"), ("Linux", "cuda")},
398
399
}

400
401
402
403
404
405
406
407
408
409
410

def is_skippable(model_name, device):
    if model_name not in skipped_big_models:
        return False

    platform_system = platform.system()
    device_name = str(device).split(":")[0]

    return (platform_system, device_name) in skipped_big_models[model_name]


411
412
413
414
415
416
# The following contains configuration and expected values to be used tests that are model specific
_model_tests_values = {
    "retinanet_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [36, 46, 65, 78, 88, 89],
    },
417
418
419
420
    "retinanet_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [44, 74, 131, 170, 200, 203],
    },
421
422
423
424
425
426
427
428
    "keypointrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [48, 58, 77, 90, 100, 101],
    },
    "fasterrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [30, 40, 59, 72, 82, 83],
    },
429
430
431
432
    "fasterrcnn_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [50, 80, 137, 176, 206, 209],
    },
433
434
435
436
    "maskrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [42, 52, 71, 84, 94, 95],
    },
437
438
439
440
    "maskrcnn_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [66, 96, 153, 192, 222, 225],
    },
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "ssd300_vgg16": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [45, 51, 57, 63, 67, 71],
    },
    "ssdlite320_mobilenet_v3_large": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [96, 99, 138, 200, 239, 257, 266],
    },
Hu Ye's avatar
Hu Ye committed
457
458
459
460
    "fcos_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [54, 64, 83, 96, 106, 107],
    },
461
462
463
}


Anirudh's avatar
Anirudh committed
464
465
466
467
468
469
470
471
472
473
def _make_sliced_model(model, stop_layer):
    layers = OrderedDict()
    for name, layer in model.named_children():
        layers[name] = layer
        if name == stop_layer:
            break
    new_model = torch.nn.Sequential(layers)
    return new_model


474
475
@pytest.mark.parametrize("model_fn", [models.densenet121, models.densenet169, models.densenet201, models.densenet161])
def test_memory_efficient_densenet(model_fn):
Anirudh's avatar
Anirudh committed
476
477
478
    input_shape = (1, 3, 300, 300)
    x = torch.rand(input_shape)

479
    model1 = model_fn(num_classes=50, memory_efficient=True)
Anirudh's avatar
Anirudh committed
480
    params = model1.state_dict()
481
    num_params = sum(x.numel() for x in model1.parameters())
Anirudh's avatar
Anirudh committed
482
483
484
    model1.eval()
    out1 = model1(x)
    out1.sum().backward()
485
    num_grad = sum(x.grad.numel() for x in model1.parameters() if x.grad is not None)
Anirudh's avatar
Anirudh committed
486

487
    model2 = model_fn(num_classes=50, memory_efficient=False)
Anirudh's avatar
Anirudh committed
488
489
490
491
492
493
494
    model2.load_state_dict(params)
    model2.eval()
    out2 = model2(x)

    assert num_params == num_grad
    torch.testing.assert_close(out1, out2, rtol=0.0, atol=1e-5)

495
496
497
    _check_input_backprop(model1, x)
    _check_input_backprop(model2, x)

Anirudh's avatar
Anirudh committed
498

499
500
501
@pytest.mark.parametrize("dilate_layer_2", (True, False))
@pytest.mark.parametrize("dilate_layer_3", (True, False))
@pytest.mark.parametrize("dilate_layer_4", (True, False))
Anirudh's avatar
Anirudh committed
502
503
def test_resnet_dilation(dilate_layer_2, dilate_layer_3, dilate_layer_4):
    # TODO improve tests to also check that each layer has the right dimensionality
504
    model = models.resnet50(replace_stride_with_dilation=(dilate_layer_2, dilate_layer_3, dilate_layer_4))
Anirudh's avatar
Anirudh committed
505
506
507
508
509
510
511
512
513
    model = _make_sliced_model(model, stop_layer="layer4")
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    f = 2 ** sum((dilate_layer_2, dilate_layer_3, dilate_layer_4))
    assert out.shape == (1, 2048, 7 * f, 7 * f)


def test_mobilenet_v2_residual_setting():
514
    model = models.mobilenet_v2(inverted_residual_setting=[[1, 16, 1, 1], [6, 24, 2, 2]])
Anirudh's avatar
Anirudh committed
515
516
517
518
519
520
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    assert out.shape[-1] == 1000


521
522
523
@pytest.mark.parametrize("model_fn", [models.mobilenet_v2, models.mobilenet_v3_large, models.mobilenet_v3_small])
def test_mobilenet_norm_layer(model_fn):
    model = model_fn()
Anirudh's avatar
Anirudh committed
524
525
526
    assert any(isinstance(x, nn.BatchNorm2d) for x in model.modules())

    def get_gn(num_channels):
527
        return nn.GroupNorm(1, num_channels)
Anirudh's avatar
Anirudh committed
528

529
    model = model_fn(norm_layer=get_gn)
530
    assert not (any(isinstance(x, nn.BatchNorm2d) for x in model.modules()))
Anirudh's avatar
Anirudh committed
531
532
533
534
535
    assert any(isinstance(x, nn.GroupNorm) for x in model.modules())


def test_inception_v3_eval():
    kwargs = {}
536
537
538
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
539
540
541
542
543
544
545
    name = "inception_v3"
    model = models.Inception3(**kwargs)
    model.aux_logits = False
    model.AuxLogits = None
    model = model.eval()
    x = torch.rand(1, 3, 299, 299)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
546
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
547
548
549


def test_fasterrcnn_double():
550
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
551
552
553
554
555
556
557
558
559
560
561
    model.double()
    model.eval()
    input_shape = (3, 300, 300)
    x = torch.rand(input_shape, dtype=torch.float64)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x
    assert len(out) == 1
    assert "boxes" in out[0]
    assert "scores" in out[0]
    assert "labels" in out[0]
562
    _check_input_backprop(model, model_input)
Anirudh's avatar
Anirudh committed
563
564
565
566


def test_googlenet_eval():
    kwargs = {}
567
568
569
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
570
571
572
573
574
575
576
577
    name = "googlenet"
    model = models.GoogLeNet(**kwargs)
    model.aux_logits = False
    model.aux1 = None
    model.aux2 = None
    model = model.eval()
    x = torch.rand(1, 3, 224, 224)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
578
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
579
580
581
582
583
584
585
586
587
588


@needs_cuda
def test_fasterrcnn_switch_devices():
    def checkOut(out):
        assert len(out) == 1
        assert "boxes" in out[0]
        assert "scores" in out[0]
        assert "labels" in out[0]

589
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
590
591
592
    model.cuda()
    model.eval()
    input_shape = (3, 300, 300)
593
    x = torch.rand(input_shape, device="cuda")
Anirudh's avatar
Anirudh committed
594
595
596
597
598
599
600
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

    checkOut(out)

    with torch.cuda.amp.autocast():
601
        out = model(model_input)
602

Anirudh's avatar
Anirudh committed
603
    checkOut(out)
604

605
606
    _check_input_backprop(model, model_input)

Anirudh's avatar
Anirudh committed
607
608
609
610
    # now switch to cpu and make sure it works
    model.cpu()
    x = x.cpu()
    out_cpu = model([x])
611

Anirudh's avatar
Anirudh committed
612
    checkOut(out_cpu)
613

614
615
    _check_input_backprop(model, [x])

616

Anirudh's avatar
Anirudh committed
617
def test_generalizedrcnn_transform_repr():
618

Anirudh's avatar
Anirudh committed
619
620
621
    min_size, max_size = 224, 299
    image_mean = [0.485, 0.456, 0.406]
    image_std = [0.229, 0.224, 0.225]
622

623
624
625
    t = models.detection.transform.GeneralizedRCNNTransform(
        min_size=min_size, max_size=max_size, image_mean=image_mean, image_std=image_std
    )
626

Anirudh's avatar
Anirudh committed
627
    # Check integrity of object __repr__ attribute
628
629
    expected_string = "GeneralizedRCNNTransform("
    _indent = "\n    "
630
631
    expected_string += f"{_indent}Normalize(mean={image_mean}, std={image_std})"
    expected_string += f"{_indent}Resize(min_size=({min_size},), max_size={max_size}, "
Anirudh's avatar
Anirudh committed
632
633
    expected_string += "mode='bilinear')\n)"
    assert t.__repr__() == expected_string
634
635


636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
test_vit_conv_stem_configs = [
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=64),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=128),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=1, out_channels=128),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=256),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=1, out_channels=256),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=512),
]


def vitc_b_16(**kwargs: Any):
    return models.VisionTransformer(
        image_size=224,
        patch_size=16,
        num_layers=12,
        num_heads=12,
        hidden_dim=768,
        mlp_dim=3072,
        conv_stem_configs=test_vit_conv_stem_configs,
        **kwargs,
    )


@pytest.mark.parametrize("model_fn", [vitc_b_16])
@pytest.mark.parametrize("dev", cpu_and_gpu())
def test_vitc_models(model_fn, dev):
    test_classification_model(model_fn, dev)


665
@pytest.mark.parametrize("model_fn", list_model_fns(models))
666
@pytest.mark.parametrize("dev", cpu_and_gpu())
667
def test_classification_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
668
669
    set_rng_seed(0)
    defaults = {
670
671
        "num_classes": 50,
        "input_shape": (1, 3, 224, 224),
Anirudh's avatar
Anirudh committed
672
    }
673
    model_name = model_fn.__name__
674
    if SKIP_BIG_MODEL and is_skippable(model_name, dev):
675
        pytest.skip("Skipped to reduce memory usage. Set env var SKIP_BIG_MODEL=0 to enable test for this model")
Anirudh's avatar
Anirudh committed
676
    kwargs = {**defaults, **_model_params.get(model_name, {})}
677
    num_classes = kwargs.get("num_classes")
678
    input_shape = kwargs.pop("input_shape")
679
    real_image = kwargs.pop("real_image", False)
Anirudh's avatar
Anirudh committed
680

681
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
682
    model.eval().to(device=dev)
683
    x = _get_image(input_shape=input_shape, real_image=real_image, device=dev)
Anirudh's avatar
Anirudh committed
684
    out = model(x)
685
    _assert_expected(out.cpu(), model_name, prec=1e-3)
686
    assert out.shape[-1] == num_classes
687
688
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
689

690
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
691
692
693
694
695
696
        with torch.cuda.amp.autocast():
            out = model(x)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                _assert_expected(out.cpu(), model_name, prec=0.1)
            assert out.shape[-1] == 50
697

698
699
    _check_input_backprop(model, x)

700

701
@pytest.mark.parametrize("model_fn", list_model_fns(models.segmentation))
702
@pytest.mark.parametrize("dev", cpu_and_gpu())
703
def test_segmentation_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
704
705
    set_rng_seed(0)
    defaults = {
706
        "num_classes": 10,
707
        "weights_backbone": None,
708
        "input_shape": (1, 3, 32, 32),
Anirudh's avatar
Anirudh committed
709
    }
710
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
711
    kwargs = {**defaults, **_model_params.get(model_name, {})}
712
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
713

714
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
715
716
717
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
718
    out = model(x)
Anirudh's avatar
Anirudh committed
719
720
721
722
723
724
725
726
727
728
729
730
731
732

    def check_out(out):
        prec = 0.01
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(out.cpu(), model_name, prec=prec)
        except AssertionError:
            # Unfortunately some segmentation models are flaky with autocast
            # so instead of validating the probability scores, check that the class
            # predictions match.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
733
734
735
            torch.testing.assert_close(
                out.argmax(dim=1), expected.argmax(dim=1), rtol=prec, atol=prec, check_device=False
            )
Anirudh's avatar
Anirudh committed
736
737
738
739
            return False  # Partial validation performed

        return True  # Full validation performed

740
    full_validation = check_out(out["out"])
Anirudh's avatar
Anirudh committed
741

742
743
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
744

745
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
746
        with torch.cuda.amp.autocast():
747
            out = model(x)
Anirudh's avatar
Anirudh committed
748
749
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
750
                full_validation &= check_out(out["out"])
Anirudh's avatar
Anirudh committed
751
752

    if not full_validation:
753
        msg = (
754
            f"The output of {test_segmentation_model.__name__} could only be partially validated. "
755
756
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
757
            "significant changes to the codebase."
758
        )
Anirudh's avatar
Anirudh committed
759
760
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
761

762
763
    _check_input_backprop(model, x)

764

765
@pytest.mark.parametrize("model_fn", list_model_fns(models.detection))
766
@pytest.mark.parametrize("dev", cpu_and_gpu())
767
def test_detection_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
768
769
    set_rng_seed(0)
    defaults = {
770
        "num_classes": 50,
771
        "weights_backbone": None,
772
        "input_shape": (3, 300, 300),
Anirudh's avatar
Anirudh committed
773
    }
774
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
775
    kwargs = {**defaults, **_model_params.get(model_name, {})}
776
    input_shape = kwargs.pop("input_shape")
777
    real_image = kwargs.pop("real_image", False)
Anirudh's avatar
Anirudh committed
778

779
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
780
    model.eval().to(device=dev)
781
    x = _get_image(input_shape=input_shape, real_image=real_image, device=dev)
Anirudh's avatar
Anirudh committed
782
783
784
785
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

786
    def check_out(out):
Anirudh's avatar
Anirudh committed
787
788
789
        assert len(out) == 1

        def compact(tensor):
790
            tensor = tensor.cpu()
Anirudh's avatar
Anirudh committed
791
792
793
794
795
796
797
798
799
800
801
802
803
804
            size = tensor.size()
            elements_per_sample = functools.reduce(operator.mul, size[1:], 1)
            if elements_per_sample > 30:
                return compute_mean_std(tensor)
            else:
                return subsample_tensor(tensor)

        def subsample_tensor(tensor):
            num_elems = tensor.size(0)
            num_samples = 20
            if num_elems <= num_samples:
                return tensor

            ith_index = num_elems // num_samples
805
            return tensor[ith_index - 1 :: ith_index]
Anirudh's avatar
Anirudh committed
806
807
808
809
810
811
812
813
814

        def compute_mean_std(tensor):
            # can't compute mean of integral tensor
            tensor = tensor.to(torch.double)
            mean = torch.mean(tensor)
            std = torch.std(tensor)
            return {"mean": mean, "std": std}

        output = map_nested_tensor_object(out, tensor_map_fn=compact)
815
        prec = 0.01
Anirudh's avatar
Anirudh committed
816
817
818
819
820
821
822
823
824
825
826
827
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(output, model_name, prec=prec)
        except AssertionError:
            # Unfortunately detection models are flaky due to the unstable sort
            # in NMS. If matching across all outputs fails, use the same approach
            # as in NMSTester.test_nms_cuda to see if this is caused by duplicate
            # scores.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
828
829
830
            torch.testing.assert_close(
                output[0]["scores"], expected[0]["scores"], rtol=prec, atol=prec, check_device=False, check_dtype=False
            )
Anirudh's avatar
Anirudh committed
831
832
833
834
835
836
837
838
839
840

            # Note: Fmassa proposed turning off NMS by adapting the threshold
            # and then using the Hungarian algorithm as in DETR to find the
            # best match between output and expected boxes and eliminate some
            # of the flakiness. Worth exploring.
            return False  # Partial validation performed

        return True  # Full validation performed

    full_validation = check_out(out)
841
    _check_jit_scriptable(model, ([x],), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
Anirudh's avatar
Anirudh committed
842

843
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
844
845
846
847
        with torch.cuda.amp.autocast():
            out = model(model_input)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
848
                full_validation &= check_out(out)
Anirudh's avatar
Anirudh committed
849
850

    if not full_validation:
851
        msg = (
852
            f"The output of {test_detection_model.__name__} could only be partially validated. "
853
854
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
855
            "significant changes to the codebase."
856
        )
Anirudh's avatar
Anirudh committed
857
858
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
859

860
861
    _check_input_backprop(model, model_input)

862

863
@pytest.mark.parametrize("model_fn", list_model_fns(models.detection))
864
def test_detection_model_validation(model_fn):
Anirudh's avatar
Anirudh committed
865
    set_rng_seed(0)
866
    model = model_fn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
867
868
869
870
    input_shape = (3, 300, 300)
    x = [torch.rand(input_shape)]

    # validate that targets are present in training
871
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
872
873
874
        model(x)

    # validate type
875
    targets = [{"boxes": 0.0}]
876
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
877
878
879
880
        model(x, targets=targets)

    # validate boxes shape
    for boxes in (torch.rand((4,)), torch.rand((1, 5))):
881
        targets = [{"boxes": boxes}]
882
        with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
883
884
885
886
            model(x, targets=targets)

    # validate that no degenerate boxes are present
    boxes = torch.tensor([[1, 3, 1, 4], [2, 4, 3, 4]])
887
    targets = [{"boxes": boxes}]
888
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
889
        model(x, targets=targets)
890

891

892
@pytest.mark.parametrize("model_fn", list_model_fns(models.video))
893
@pytest.mark.parametrize("dev", cpu_and_gpu())
894
def test_video_model(model_fn, dev):
895
    set_rng_seed(0)
Anirudh's avatar
Anirudh committed
896
897
    # the default input shape is
    # bs * num_channels * clip_len * h *w
898
899
900
901
    defaults = {
        "input_shape": (1, 3, 4, 112, 112),
        "num_classes": 50,
    }
902
    model_name = model_fn.__name__
903
    if SKIP_BIG_MODEL and is_skippable(model_name, dev):
904
        pytest.skip("Skipped to reduce memory usage. Set env var SKIP_BIG_MODEL=0 to enable test for this model")
905
906
907
    kwargs = {**defaults, **_model_params.get(model_name, {})}
    num_classes = kwargs.get("num_classes")
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
908
    # test both basicblock and Bottleneck
909
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
910
911
912
913
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
914
    _assert_expected(out.cpu(), model_name, prec=1e-5)
915
    assert out.shape[-1] == num_classes
916
917
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
918
    assert out.shape[-1] == num_classes
Anirudh's avatar
Anirudh committed
919

920
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
921
922
        with torch.cuda.amp.autocast():
            out = model(x)
923
924
925
926
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                _assert_expected(out.cpu(), model_name, prec=0.1)
            assert out.shape[-1] == num_classes
927

928
929
    _check_input_backprop(model, x)

930

931
932
933
934
935
936
937
@pytest.mark.skipif(
    not (
        "fbgemm" in torch.backends.quantized.supported_engines
        and "qnnpack" in torch.backends.quantized.supported_engines
    ),
    reason="This Pytorch Build has not been built with fbgemm and qnnpack",
)
938
@pytest.mark.parametrize("model_fn", list_model_fns(models.quantization))
939
def test_quantized_classification_model(model_fn):
940
    set_rng_seed(0)
941
    defaults = {
942
        "num_classes": 5,
943
944
        "input_shape": (1, 3, 224, 224),
        "quantize": True,
945
    }
946
    model_name = model_fn.__name__
947
    kwargs = {**defaults, **_model_params.get(model_name, {})}
948
    input_shape = kwargs.pop("input_shape")
949
950

    # First check if quantize=True provides models that can run with input data
951
    model = model_fn(**kwargs)
952
    model.eval()
953
    x = torch.rand(input_shape)
954
955
956
    out = model(x)

    if model_name not in quantized_flaky_models:
957
        _assert_expected(out.cpu(), model_name + "_quantized", prec=2e-2)
958
        assert out.shape[-1] == 5
959
960
961
962
963
964
965
        _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
        _check_fx_compatible(model, x, eager_out=out)
    else:
        try:
            torch.jit.script(model)
        except Exception as e:
            raise AssertionError("model cannot be scripted.") from e
966

967
    kwargs["quantize"] = False
968
    for eval_mode in [True, False]:
969
        model = model_fn(**kwargs)
970
971
        if eval_mode:
            model.eval()
972
            model.qconfig = torch.ao.quantization.default_qconfig
973
974
        else:
            model.train()
975
            model.qconfig = torch.ao.quantization.default_qat_qconfig
976

977
        model.fuse_model(is_qat=not eval_mode)
978
        if eval_mode:
979
            torch.ao.quantization.prepare(model, inplace=True)
980
        else:
981
            torch.ao.quantization.prepare_qat(model, inplace=True)
982
983
            model.eval()

984
        torch.ao.quantization.convert(model, inplace=True)
985
986


987
@pytest.mark.parametrize("model_fn", list_model_fns(models.detection))
988
def test_detection_model_trainable_backbone_layers(model_fn, disable_weight_loading):
989
    model_name = model_fn.__name__
990
991
992
    max_trainable = _model_tests_values[model_name]["max_trainable"]
    n_trainable_params = []
    for trainable_layers in range(0, max_trainable + 1):
993
        model = model_fn(weights=None, weights_backbone="DEFAULT", trainable_backbone_layers=trainable_layers)
994
995
996
997
998

        n_trainable_params.append(len([p for p in model.parameters() if p.requires_grad]))
    assert n_trainable_params == _model_tests_values[model_name]["n_trn_params_per_layer"]


999
@needs_cuda
1000
@pytest.mark.parametrize("model_fn", list_model_fns(models.optical_flow))
1001
@pytest.mark.parametrize("scripted", (False, True))
1002
def test_raft(model_fn, scripted):
1003
1004
1005
1006
1007
1008
1009
1010
1011

    torch.manual_seed(0)

    # We need very small images, otherwise the pickle size would exceed the 50KB
    # As a resut we need to override the correlation pyramid to not downsample
    # too much, otherwise we would get nan values (effective H and W would be
    # reduced to 1)
    corr_block = models.optical_flow.raft.CorrBlock(num_levels=2, radius=2)

1012
    model = model_fn(corr_block=corr_block).eval().to("cuda")
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
    if scripted:
        model = torch.jit.script(model)

    bs = 1
    img1 = torch.rand(bs, 3, 80, 72).cuda()
    img2 = torch.rand(bs, 3, 80, 72).cuda()

    preds = model(img1, img2)
    flow_pred = preds[-1]
    # Tolerance is fairly high, but there are 2 * H * W outputs to check
    # The .pkl were generated on the AWS cluter, on the CI it looks like the resuts are slightly different
1024
    _assert_expected(flow_pred.cpu(), name=model_fn.__name__, atol=1e-2, rtol=1)
1025
1026


1027
if __name__ == "__main__":
1028
    pytest.main([__file__])