test_models.py 37.8 KB
Newer Older
1
import contextlib
2
3
4
import functools
import operator
import os
5
import pkgutil
6
import platform
7
import sys
8
import warnings
9
from collections import OrderedDict
10
from tempfile import TemporaryDirectory
11
from typing import Any
12
13

import pytest
14
import torch
15
import torch.fx
16
import torch.nn as nn
17
from _utils_internal import get_relative_path
18
from common_utils import cpu_and_gpu, freeze_rng_state, map_nested_tensor_object, needs_cuda, set_rng_seed
19
20
from PIL import Image
from torchvision import models, transforms
21
from torchvision.models import get_model_builder, list_models
22

23

24
ACCEPT = os.getenv("EXPECTTEST_ACCEPT", "0") == "1"
25
SKIP_BIG_MODEL = os.getenv("SKIP_BIG_MODEL", "1") == "1"
26
27


28
def list_model_fns(module):
29
    return [get_model_builder(name) for name in list_models(module)]
30
31


32
def _get_image(input_shape, real_image, device, dtype=None):
33
34
35
36
37
38
39
40
41
42
    """This routine loads a real or random image based on `real_image` argument.
    Currently, the real image is utilized for the following list of models:
    - `retinanet_resnet50_fpn`,
    - `retinanet_resnet50_fpn_v2`,
    - `keypointrcnn_resnet50_fpn`,
    - `fasterrcnn_resnet50_fpn`,
    - `fasterrcnn_resnet50_fpn_v2`,
    - `fcos_resnet50_fpn`,
    - `maskrcnn_resnet50_fpn`,
    - `maskrcnn_resnet50_fpn_v2`,
Aidyn-A's avatar
Aidyn-A committed
43
    in `test_classification_model` and `test_detection_model`.
44
45
46
    To do so, a keyword argument `real_image` was added to the abovelisted models in `_model_params`
    """
    if real_image:
47
48
49
        # TODO: Maybe unify file discovery logic with test_image.py
        GRACE_HOPPER = os.path.join(
            os.path.dirname(os.path.abspath(__file__)), "assets", "encode_jpeg", "grace_hopper_517x606.jpg"
50
        )
51

52
53
54
55
56
57
58
59
60
61
62
        img = Image.open(GRACE_HOPPER)

        original_width, original_height = img.size

        # make the image square
        img = img.crop((0, 0, original_width, original_width))
        img = img.resize(input_shape[1:3])

        convert_tensor = transforms.ToTensor()
        image = convert_tensor(img)
        assert tuple(image.size()) == input_shape
63
        return image.to(device=device, dtype=dtype)
64
65

    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
66
    return torch.rand(input_shape).to(device=device, dtype=dtype)
67
68


69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
@pytest.fixture
def disable_weight_loading(mocker):
    """When testing models, the two slowest operations are the downloading of the weights to a file and loading them
    into the model. Unless, you want to test against specific weights, these steps can be disabled without any
    drawbacks.

    Including this fixture into the signature of your test, i.e. `test_foo(disable_weight_loading)`, will recurse
    through all models in `torchvision.models` and will patch all occurrences of the function
    `download_state_dict_from_url` as well as the method `load_state_dict` on all subclasses of `nn.Module` to be
    no-ops.

    .. warning:

        Loaded models are still executable as normal, but will always have random weights. Make sure to not use this
        fixture if you want to compare the model output against reference values.

    """
    starting_point = models
    function_name = "load_state_dict_from_url"
    method_name = "load_state_dict"

    module_names = {info.name for info in pkgutil.walk_packages(starting_point.__path__, f"{starting_point.__name__}.")}
    targets = {f"torchvision._internally_replaced_utils.{function_name}", f"torch.nn.Module.{method_name}"}
    for name in module_names:
        module = sys.modules.get(name)
        if not module:
            continue

        if function_name in module.__dict__:
            targets.add(f"{module.__name__}.{function_name}")

        targets.update(
            {
                f"{module.__name__}.{obj.__name__}.{method_name}"
                for obj in module.__dict__.values()
                if isinstance(obj, type) and issubclass(obj, nn.Module) and method_name in obj.__dict__
            }
        )

    for target in targets:
        # See https://github.com/pytorch/vision/pull/4867#discussion_r743677802 for details
        with contextlib.suppress(AttributeError):
            mocker.patch(target)


114
115
116
117
118
119
def _get_expected_file(name=None):
    # Determine expected file based on environment
    expected_file_base = get_relative_path(os.path.realpath(__file__), "expect")

    # Note: for legacy reasons, the reference file names all had "ModelTest.test_" in their names
    # We hardcode it here to avoid having to re-generate the reference files
120
    expected_file = os.path.join(expected_file_base, "ModelTester.test_" + name)
121
122
123
124
125
126
127
128
129
130
131
132
    expected_file += "_expect.pkl"

    if not ACCEPT and not os.path.exists(expected_file):
        raise RuntimeError(
            f"No expect file exists for {os.path.basename(expected_file)} in {expected_file}; "
            "to accept the current output, re-run the failing test after setting the EXPECTTEST_ACCEPT "
            "env variable. For example: EXPECTTEST_ACCEPT=1 pytest test/test_models.py -k alexnet"
        )

    return expected_file


133
def _assert_expected(output, name, prec=None, atol=None, rtol=None):
134
135
136
137
138
139
140
141
142
143
144
    """Test that a python value matches the recorded contents of a file
    based on a "check" name. The value must be
    pickable with `torch.save`. This file
    is placed in the 'expect' directory in the same directory
    as the test script. You can automatically update the recorded test
    output using an EXPECTTEST_ACCEPT=1 env variable.
    """
    expected_file = _get_expected_file(name)

    if ACCEPT:
        filename = {os.path.basename(expected_file)}
145
        print(f"Accepting updated output for {filename}:\n\n{output}")
146
147
148
149
        torch.save(output, expected_file)
        MAX_PICKLE_SIZE = 50 * 1000  # 50 KB
        binary_size = os.path.getsize(expected_file)
        if binary_size > MAX_PICKLE_SIZE:
150
            raise RuntimeError(f"The output for {filename}, is larger than 50kb - got {binary_size}kb")
151
152
    else:
        expected = torch.load(expected_file)
153
154
        rtol = rtol or prec  # keeping prec param for legacy reason, but could be removed ideally
        atol = atol or prec
155
        torch.testing.assert_close(output, expected, rtol=rtol, atol=atol, check_dtype=False, check_device=False)
156
157


158
def _check_jit_scriptable(nn_module, args, unwrapper=None, eager_out=None):
159
160
    """Check that a nn.Module's results in TorchScript match eager and that it can be exported"""

161
162
163
164
165
166
167
    def get_export_import_copy(m):
        """Save and load a TorchScript model"""
        with TemporaryDirectory() as dir:
            path = os.path.join(dir, "script.pt")
            m.save(path)
            imported = torch.jit.load(path)
        return imported
168
169

    sm = torch.jit.script(nn_module)
Aidyn-A's avatar
Aidyn-A committed
170
    sm.eval()
171

172
173
    if eager_out is None:
        with torch.no_grad(), freeze_rng_state():
174
            eager_out = nn_module(*args)
175

176
    with torch.no_grad(), freeze_rng_state():
177
178
179
180
181
        script_out = sm(*args)
        if unwrapper:
            script_out = unwrapper(script_out)

    torch.testing.assert_close(eager_out, script_out, atol=1e-4, rtol=1e-4)
182
183
184
185
186
187
188
189

    m_import = get_export_import_copy(sm)
    with torch.no_grad(), freeze_rng_state():
        imported_script_out = m_import(*args)
        if unwrapper:
            imported_script_out = unwrapper(imported_script_out)

    torch.testing.assert_close(script_out, imported_script_out, atol=3e-4, rtol=3e-4)
190
191


192
def _check_fx_compatible(model, inputs, eager_out=None):
193
    model_fx = torch.fx.symbolic_trace(model)
194
195
    if eager_out is None:
        eager_out = model(inputs)
Aidyn-A's avatar
Aidyn-A committed
196
197
    with torch.no_grad(), freeze_rng_state():
        fx_out = model_fx(inputs)
198
    torch.testing.assert_close(eager_out, fx_out)
199
200


201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
def _check_input_backprop(model, inputs):
    if isinstance(inputs, list):
        requires_grad = list()
        for inp in inputs:
            requires_grad.append(inp.requires_grad)
            inp.requires_grad_(True)
    else:
        requires_grad = inputs.requires_grad
        inputs.requires_grad_(True)

    out = model(inputs)

    if isinstance(out, dict):
        out["out"].sum().backward()
    else:
        if isinstance(out[0], dict):
            out[0]["scores"].sum().backward()
        else:
            out[0].sum().backward()

    if isinstance(inputs, list):
        for i, inp in enumerate(inputs):
            assert inputs[i].grad is not None
            inp.requires_grad_(requires_grad[i])
    else:
        assert inputs.grad is not None
        inputs.requires_grad_(requires_grad)


230
231
232
# If 'unwrapper' is provided it will be called with the script model outputs
# before they are compared to the eager model outputs. This is useful if the
# model outputs are different between TorchScript / Eager mode
233
script_model_unwrapper = {
234
235
    "googlenet": lambda x: x.logits,
    "inception_v3": lambda x: x.logits,
236
    "fasterrcnn_resnet50_fpn": lambda x: x[1],
237
    "fasterrcnn_resnet50_fpn_v2": lambda x: x[1],
238
    "fasterrcnn_mobilenet_v3_large_fpn": lambda x: x[1],
239
    "fasterrcnn_mobilenet_v3_large_320_fpn": lambda x: x[1],
240
    "maskrcnn_resnet50_fpn": lambda x: x[1],
241
    "maskrcnn_resnet50_fpn_v2": lambda x: x[1],
242
243
    "keypointrcnn_resnet50_fpn": lambda x: x[1],
    "retinanet_resnet50_fpn": lambda x: x[1],
244
    "retinanet_resnet50_fpn_v2": lambda x: x[1],
245
    "ssd300_vgg16": lambda x: x[1],
246
    "ssdlite320_mobilenet_v3_large": lambda x: x[1],
Hu Ye's avatar
Hu Ye committed
247
    "fcos_resnet50_fpn": lambda x: x[1],
248
}
249
250


251
252
253
254
255
256
257
258
259
260
261
262
263
264
# The following models exhibit flaky numerics under autocast in _test_*_model harnesses.
# This may be caused by the harness environment (e.g. num classes, input initialization
# via torch.rand), and does not prove autocast is unsuitable when training with real data
# (autocast has been used successfully with real data for some of these models).
# TODO:  investigate why autocast numerics are flaky in the harnesses.
#
# For the following models, _test_*_model harnesses skip numerical checks on outputs when
# trying autocast. However, they still try an autocasted forward pass, so they still ensure
# autocast coverage suffices to prevent dtype errors in each model.
autocast_flaky_numerics = (
    "inception_v3",
    "resnet101",
    "resnet152",
    "wide_resnet101_2",
265
266
    "deeplabv3_resnet50",
    "deeplabv3_resnet101",
267
    "deeplabv3_mobilenet_v3_large",
268
269
    "fcn_resnet50",
    "fcn_resnet101",
270
    "lraspp_mobilenet_v3_large",
271
    "maskrcnn_resnet50_fpn",
272
    "maskrcnn_resnet50_fpn_v2",
273
    "keypointrcnn_resnet50_fpn",
274
275
)

276
277
278
# The tests for the following quantized models are flaky possibly due to inconsistent
# rounding errors in different platforms. For this reason the input/output consistency
# tests under test_quantized_classification_model will be skipped for the following models.
279
quantized_flaky_models = ("inception_v3", "resnet50")
280

281
282
283
284
285
# The tests for the following detection models are flaky.
# We run those tests on float64 to avoid floating point errors.
# FIXME: we shouldn't have to do that :'/
detection_flaky_models = ("keypointrcnn_resnet50_fpn", "maskrcnn_resnet50_fpn", "maskrcnn_resnet50_fpn_v2")

286

287
288
289
# The following contains configuration parameters for all models which are used by
# the _test_*_model methods.
_model_params = {
290
    "inception_v3": {"input_shape": (1, 3, 299, 299), "init_weights": True},
291
292
293
294
295
296
    "retinanet_resnet50_fpn": {
        "num_classes": 20,
        "score_thresh": 0.01,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
297
        "real_image": True,
298
    },
299
300
301
302
303
304
    "retinanet_resnet50_fpn_v2": {
        "num_classes": 20,
        "score_thresh": 0.01,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
305
        "real_image": True,
306
    },
307
308
309
310
    "keypointrcnn_resnet50_fpn": {
        "num_classes": 2,
        "min_size": 224,
        "max_size": 224,
311
        "box_score_thresh": 0.17,
312
        "input_shape": (3, 224, 224),
313
        "real_image": True,
314
    },
315
316
317
318
319
    "fasterrcnn_resnet50_fpn": {
        "num_classes": 20,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
320
        "real_image": True,
321
    },
322
323
324
325
326
    "fasterrcnn_resnet50_fpn_v2": {
        "num_classes": 20,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
327
        "real_image": True,
328
    },
Hu Ye's avatar
Hu Ye committed
329
330
331
332
333
334
    "fcos_resnet50_fpn": {
        "num_classes": 2,
        "score_thresh": 0.05,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
335
        "real_image": True,
Hu Ye's avatar
Hu Ye committed
336
    },
337
338
339
340
341
    "maskrcnn_resnet50_fpn": {
        "num_classes": 10,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
342
        "real_image": True,
343
    },
344
345
346
347
348
    "maskrcnn_resnet50_fpn_v2": {
        "num_classes": 10,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
349
        "real_image": True,
350
    },
351
352
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "box_score_thresh": 0.02076,
353
    },
354
355
356
357
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "box_score_thresh": 0.02076,
        "rpn_pre_nms_top_n_test": 1000,
        "rpn_post_nms_top_n_test": 1000,
358
    },
359
360
361
362
    "vit_h_14": {
        "image_size": 56,
        "input_shape": (1, 3, 56, 56),
    },
363
364
365
    "mvit_v1_b": {
        "input_shape": (1, 3, 16, 224, 224),
    },
366
367
368
    "mvit_v2_s": {
        "input_shape": (1, 3, 16, 224, 224),
    },
369
370
371
    "s3d": {
        "input_shape": (1, 3, 16, 224, 224),
    },
372
    "googlenet": {"init_weights": True},
373
}
374
375
376
377
378
# speeding up slow models:
slow_models = [
    "convnext_base",
    "convnext_large",
    "resnext101_32x8d",
379
    "resnext101_64x4d",
380
381
382
383
384
385
386
387
388
389
    "wide_resnet101_2",
    "efficientnet_b6",
    "efficientnet_b7",
    "efficientnet_v2_m",
    "efficientnet_v2_l",
    "regnet_y_16gf",
    "regnet_y_32gf",
    "regnet_y_128gf",
    "regnet_x_16gf",
    "regnet_x_32gf",
Joao Gomes's avatar
Joao Gomes committed
390
    "swin_t",
391
392
    "swin_s",
    "swin_b",
Local State's avatar
Local State committed
393
394
395
    "swin_v2_t",
    "swin_v2_s",
    "swin_v2_b",
396
397
398
]
for m in slow_models:
    _model_params[m] = {"input_shape": (1, 3, 64, 64)}
399
400


401
# skip big models to reduce memory usage on CI test. We can exclude combinations of (platform-system, device).
402
skipped_big_models = {
403
404
    "vit_h_14": {("Windows", "cpu"), ("Windows", "cuda")},
    "regnet_y_128gf": {("Windows", "cpu"), ("Windows", "cuda")},
405
406
    "mvit_v1_b": {("Windows", "cuda"), ("Linux", "cuda")},
    "mvit_v2_s": {("Windows", "cuda"), ("Linux", "cuda")},
407
408
}

409
410
411
412
413
414
415
416
417
418
419

def is_skippable(model_name, device):
    if model_name not in skipped_big_models:
        return False

    platform_system = platform.system()
    device_name = str(device).split(":")[0]

    return (platform_system, device_name) in skipped_big_models[model_name]


420
421
422
423
424
425
# The following contains configuration and expected values to be used tests that are model specific
_model_tests_values = {
    "retinanet_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [36, 46, 65, 78, 88, 89],
    },
426
427
428
429
    "retinanet_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [44, 74, 131, 170, 200, 203],
    },
430
431
432
433
434
435
436
437
    "keypointrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [48, 58, 77, 90, 100, 101],
    },
    "fasterrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [30, 40, 59, 72, 82, 83],
    },
438
439
440
441
    "fasterrcnn_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [50, 80, 137, 176, 206, 209],
    },
442
443
444
445
    "maskrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [42, 52, 71, 84, 94, 95],
    },
446
447
448
449
    "maskrcnn_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [66, 96, 153, 192, 222, 225],
    },
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "ssd300_vgg16": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [45, 51, 57, 63, 67, 71],
    },
    "ssdlite320_mobilenet_v3_large": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [96, 99, 138, 200, 239, 257, 266],
    },
Hu Ye's avatar
Hu Ye committed
466
467
468
469
    "fcos_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [54, 64, 83, 96, 106, 107],
    },
470
471
472
}


Anirudh's avatar
Anirudh committed
473
474
475
476
477
478
479
480
481
482
def _make_sliced_model(model, stop_layer):
    layers = OrderedDict()
    for name, layer in model.named_children():
        layers[name] = layer
        if name == stop_layer:
            break
    new_model = torch.nn.Sequential(layers)
    return new_model


483
484
@pytest.mark.parametrize("model_fn", [models.densenet121, models.densenet169, models.densenet201, models.densenet161])
def test_memory_efficient_densenet(model_fn):
Anirudh's avatar
Anirudh committed
485
486
487
    input_shape = (1, 3, 300, 300)
    x = torch.rand(input_shape)

488
    model1 = model_fn(num_classes=50, memory_efficient=True)
Anirudh's avatar
Anirudh committed
489
    params = model1.state_dict()
490
    num_params = sum(x.numel() for x in model1.parameters())
Anirudh's avatar
Anirudh committed
491
492
493
    model1.eval()
    out1 = model1(x)
    out1.sum().backward()
494
    num_grad = sum(x.grad.numel() for x in model1.parameters() if x.grad is not None)
Anirudh's avatar
Anirudh committed
495

496
    model2 = model_fn(num_classes=50, memory_efficient=False)
Anirudh's avatar
Anirudh committed
497
498
499
500
501
502
503
    model2.load_state_dict(params)
    model2.eval()
    out2 = model2(x)

    assert num_params == num_grad
    torch.testing.assert_close(out1, out2, rtol=0.0, atol=1e-5)

504
505
506
    _check_input_backprop(model1, x)
    _check_input_backprop(model2, x)

Anirudh's avatar
Anirudh committed
507

508
509
510
@pytest.mark.parametrize("dilate_layer_2", (True, False))
@pytest.mark.parametrize("dilate_layer_3", (True, False))
@pytest.mark.parametrize("dilate_layer_4", (True, False))
Anirudh's avatar
Anirudh committed
511
512
def test_resnet_dilation(dilate_layer_2, dilate_layer_3, dilate_layer_4):
    # TODO improve tests to also check that each layer has the right dimensionality
513
    model = models.resnet50(replace_stride_with_dilation=(dilate_layer_2, dilate_layer_3, dilate_layer_4))
Anirudh's avatar
Anirudh committed
514
515
516
517
518
519
520
521
522
    model = _make_sliced_model(model, stop_layer="layer4")
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    f = 2 ** sum((dilate_layer_2, dilate_layer_3, dilate_layer_4))
    assert out.shape == (1, 2048, 7 * f, 7 * f)


def test_mobilenet_v2_residual_setting():
523
    model = models.mobilenet_v2(inverted_residual_setting=[[1, 16, 1, 1], [6, 24, 2, 2]])
Anirudh's avatar
Anirudh committed
524
525
526
527
528
529
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    assert out.shape[-1] == 1000


530
531
532
@pytest.mark.parametrize("model_fn", [models.mobilenet_v2, models.mobilenet_v3_large, models.mobilenet_v3_small])
def test_mobilenet_norm_layer(model_fn):
    model = model_fn()
Anirudh's avatar
Anirudh committed
533
534
535
    assert any(isinstance(x, nn.BatchNorm2d) for x in model.modules())

    def get_gn(num_channels):
536
        return nn.GroupNorm(1, num_channels)
Anirudh's avatar
Anirudh committed
537

538
    model = model_fn(norm_layer=get_gn)
539
    assert not (any(isinstance(x, nn.BatchNorm2d) for x in model.modules()))
Anirudh's avatar
Anirudh committed
540
541
542
543
544
    assert any(isinstance(x, nn.GroupNorm) for x in model.modules())


def test_inception_v3_eval():
    kwargs = {}
545
546
547
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
548
549
550
551
552
553
554
    name = "inception_v3"
    model = models.Inception3(**kwargs)
    model.aux_logits = False
    model.AuxLogits = None
    model = model.eval()
    x = torch.rand(1, 3, 299, 299)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
555
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
556
557
558


def test_fasterrcnn_double():
559
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
560
561
562
563
564
565
566
567
568
569
570
    model.double()
    model.eval()
    input_shape = (3, 300, 300)
    x = torch.rand(input_shape, dtype=torch.float64)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x
    assert len(out) == 1
    assert "boxes" in out[0]
    assert "scores" in out[0]
    assert "labels" in out[0]
571
    _check_input_backprop(model, model_input)
Anirudh's avatar
Anirudh committed
572
573
574
575


def test_googlenet_eval():
    kwargs = {}
576
577
578
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
579
580
581
582
583
584
585
586
    name = "googlenet"
    model = models.GoogLeNet(**kwargs)
    model.aux_logits = False
    model.aux1 = None
    model.aux2 = None
    model = model.eval()
    x = torch.rand(1, 3, 224, 224)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
587
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
588
589
590
591
592
593
594
595
596
597


@needs_cuda
def test_fasterrcnn_switch_devices():
    def checkOut(out):
        assert len(out) == 1
        assert "boxes" in out[0]
        assert "scores" in out[0]
        assert "labels" in out[0]

598
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
599
600
601
    model.cuda()
    model.eval()
    input_shape = (3, 300, 300)
602
    x = torch.rand(input_shape, device="cuda")
Anirudh's avatar
Anirudh committed
603
604
605
606
607
608
609
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

    checkOut(out)

    with torch.cuda.amp.autocast():
610
        out = model(model_input)
611

Anirudh's avatar
Anirudh committed
612
    checkOut(out)
613

614
615
    _check_input_backprop(model, model_input)

Anirudh's avatar
Anirudh committed
616
617
618
619
    # now switch to cpu and make sure it works
    model.cpu()
    x = x.cpu()
    out_cpu = model([x])
620

Anirudh's avatar
Anirudh committed
621
    checkOut(out_cpu)
622

623
624
    _check_input_backprop(model, [x])

625

Anirudh's avatar
Anirudh committed
626
def test_generalizedrcnn_transform_repr():
627

Anirudh's avatar
Anirudh committed
628
629
630
    min_size, max_size = 224, 299
    image_mean = [0.485, 0.456, 0.406]
    image_std = [0.229, 0.224, 0.225]
631

632
633
634
    t = models.detection.transform.GeneralizedRCNNTransform(
        min_size=min_size, max_size=max_size, image_mean=image_mean, image_std=image_std
    )
635

Anirudh's avatar
Anirudh committed
636
    # Check integrity of object __repr__ attribute
637
638
    expected_string = "GeneralizedRCNNTransform("
    _indent = "\n    "
639
640
    expected_string += f"{_indent}Normalize(mean={image_mean}, std={image_std})"
    expected_string += f"{_indent}Resize(min_size=({min_size},), max_size={max_size}, "
Anirudh's avatar
Anirudh committed
641
642
    expected_string += "mode='bilinear')\n)"
    assert t.__repr__() == expected_string
643
644


645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
test_vit_conv_stem_configs = [
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=64),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=128),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=1, out_channels=128),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=256),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=1, out_channels=256),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=512),
]


def vitc_b_16(**kwargs: Any):
    return models.VisionTransformer(
        image_size=224,
        patch_size=16,
        num_layers=12,
        num_heads=12,
        hidden_dim=768,
        mlp_dim=3072,
        conv_stem_configs=test_vit_conv_stem_configs,
        **kwargs,
    )


@pytest.mark.parametrize("model_fn", [vitc_b_16])
@pytest.mark.parametrize("dev", cpu_and_gpu())
def test_vitc_models(model_fn, dev):
    test_classification_model(model_fn, dev)


674
@pytest.mark.parametrize("model_fn", list_model_fns(models))
675
@pytest.mark.parametrize("dev", cpu_and_gpu())
676
def test_classification_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
677
678
    set_rng_seed(0)
    defaults = {
679
680
        "num_classes": 50,
        "input_shape": (1, 3, 224, 224),
Anirudh's avatar
Anirudh committed
681
    }
682
    model_name = model_fn.__name__
683
    if SKIP_BIG_MODEL and is_skippable(model_name, dev):
684
        pytest.skip("Skipped to reduce memory usage. Set env var SKIP_BIG_MODEL=0 to enable test for this model")
685
686
687
688
    if model_name == "vit_h_14" and dev == "cuda":
        # TODO: investigate why this fail on CI. It doesn't fail on AWS cluster with CUDA 11.6
        # (can't test with later versions ATM)
        pytest.xfail("https://github.com/pytorch/vision/issues/7143")
Anirudh's avatar
Anirudh committed
689
    kwargs = {**defaults, **_model_params.get(model_name, {})}
690
    num_classes = kwargs.get("num_classes")
691
    input_shape = kwargs.pop("input_shape")
692
    real_image = kwargs.pop("real_image", False)
Anirudh's avatar
Anirudh committed
693

694
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
695
    model.eval().to(device=dev)
696
    x = _get_image(input_shape=input_shape, real_image=real_image, device=dev)
Anirudh's avatar
Anirudh committed
697
    out = model(x)
698
699
700
701
702
703
704
705
    # FIXME: this if/else is nasty and only here to please our CI prior to the
    # release. We rethink these tests altogether.
    if model_name == "resnet101":
        prec = 0.2
    else:
        # FIXME: this is probably still way too high.
        prec = 0.1
    _assert_expected(out.cpu(), model_name, prec=prec)
706
    assert out.shape[-1] == num_classes
707
708
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
709

710
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
711
712
713
714
715
716
        with torch.cuda.amp.autocast():
            out = model(x)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                _assert_expected(out.cpu(), model_name, prec=0.1)
            assert out.shape[-1] == 50
717

718
719
    _check_input_backprop(model, x)

720

721
@pytest.mark.parametrize("model_fn", list_model_fns(models.segmentation))
722
@pytest.mark.parametrize("dev", cpu_and_gpu())
723
def test_segmentation_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
724
725
    set_rng_seed(0)
    defaults = {
726
        "num_classes": 10,
727
        "weights_backbone": None,
728
        "input_shape": (1, 3, 32, 32),
Anirudh's avatar
Anirudh committed
729
    }
730
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
731
    kwargs = {**defaults, **_model_params.get(model_name, {})}
732
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
733

734
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
735
736
737
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
Aidyn-A's avatar
Aidyn-A committed
738
739
    with torch.no_grad(), freeze_rng_state():
        out = model(x)
Anirudh's avatar
Anirudh committed
740
741
742
743
744
745
746
747
748
749
750
751
752
753

    def check_out(out):
        prec = 0.01
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(out.cpu(), model_name, prec=prec)
        except AssertionError:
            # Unfortunately some segmentation models are flaky with autocast
            # so instead of validating the probability scores, check that the class
            # predictions match.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
754
755
756
            torch.testing.assert_close(
                out.argmax(dim=1), expected.argmax(dim=1), rtol=prec, atol=prec, check_device=False
            )
Anirudh's avatar
Anirudh committed
757
758
759
760
            return False  # Partial validation performed

        return True  # Full validation performed

761
    full_validation = check_out(out["out"])
Anirudh's avatar
Anirudh committed
762

763
764
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
765

766
    if dev == "cuda":
Aidyn-A's avatar
Aidyn-A committed
767
        with torch.cuda.amp.autocast(), torch.no_grad(), freeze_rng_state():
768
            out = model(x)
Anirudh's avatar
Anirudh committed
769
770
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
771
                full_validation &= check_out(out["out"])
Anirudh's avatar
Anirudh committed
772
773

    if not full_validation:
774
        msg = (
775
            f"The output of {test_segmentation_model.__name__} could only be partially validated. "
776
777
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
778
            "significant changes to the codebase."
779
        )
Anirudh's avatar
Anirudh committed
780
781
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
782

783
784
    _check_input_backprop(model, x)

785

786
@pytest.mark.parametrize("model_fn", list_model_fns(models.detection))
787
@pytest.mark.parametrize("dev", cpu_and_gpu())
788
def test_detection_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
789
790
    set_rng_seed(0)
    defaults = {
791
        "num_classes": 50,
792
        "weights_backbone": None,
793
        "input_shape": (3, 300, 300),
Anirudh's avatar
Anirudh committed
794
    }
795
    model_name = model_fn.__name__
796
797
798
799
    if model_name in detection_flaky_models:
        dtype = torch.float64
    else:
        dtype = torch.get_default_dtype()
Anirudh's avatar
Anirudh committed
800
    kwargs = {**defaults, **_model_params.get(model_name, {})}
801
    input_shape = kwargs.pop("input_shape")
802
    real_image = kwargs.pop("real_image", False)
Anirudh's avatar
Anirudh committed
803

804
    model = model_fn(**kwargs)
805
806
    model.eval().to(device=dev, dtype=dtype)
    x = _get_image(input_shape=input_shape, real_image=real_image, device=dev, dtype=dtype)
Anirudh's avatar
Anirudh committed
807
    model_input = [x]
Aidyn-A's avatar
Aidyn-A committed
808
809
    with torch.no_grad(), freeze_rng_state():
        out = model(model_input)
Anirudh's avatar
Anirudh committed
810
811
    assert model_input[0] is x

812
    def check_out(out):
Anirudh's avatar
Anirudh committed
813
814
815
        assert len(out) == 1

        def compact(tensor):
816
            tensor = tensor.cpu()
Anirudh's avatar
Anirudh committed
817
818
819
820
821
822
823
824
825
826
827
828
829
830
            size = tensor.size()
            elements_per_sample = functools.reduce(operator.mul, size[1:], 1)
            if elements_per_sample > 30:
                return compute_mean_std(tensor)
            else:
                return subsample_tensor(tensor)

        def subsample_tensor(tensor):
            num_elems = tensor.size(0)
            num_samples = 20
            if num_elems <= num_samples:
                return tensor

            ith_index = num_elems // num_samples
831
            return tensor[ith_index - 1 :: ith_index]
Anirudh's avatar
Anirudh committed
832
833
834
835
836
837
838
839
840

        def compute_mean_std(tensor):
            # can't compute mean of integral tensor
            tensor = tensor.to(torch.double)
            mean = torch.mean(tensor)
            std = torch.std(tensor)
            return {"mean": mean, "std": std}

        output = map_nested_tensor_object(out, tensor_map_fn=compact)
841
        prec = 0.01
Anirudh's avatar
Anirudh committed
842
843
844
845
846
847
848
849
850
851
852
853
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(output, model_name, prec=prec)
        except AssertionError:
            # Unfortunately detection models are flaky due to the unstable sort
            # in NMS. If matching across all outputs fails, use the same approach
            # as in NMSTester.test_nms_cuda to see if this is caused by duplicate
            # scores.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
854
855
856
            torch.testing.assert_close(
                output[0]["scores"], expected[0]["scores"], rtol=prec, atol=prec, check_device=False, check_dtype=False
            )
Anirudh's avatar
Anirudh committed
857
858
859
860
861
862
863
864
865
866

            # Note: Fmassa proposed turning off NMS by adapting the threshold
            # and then using the Hungarian algorithm as in DETR to find the
            # best match between output and expected boxes and eliminate some
            # of the flakiness. Worth exploring.
            return False  # Partial validation performed

        return True  # Full validation performed

    full_validation = check_out(out)
867
    _check_jit_scriptable(model, ([x],), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
Anirudh's avatar
Anirudh committed
868

869
    if dev == "cuda":
Aidyn-A's avatar
Aidyn-A committed
870
        with torch.cuda.amp.autocast(), torch.no_grad(), freeze_rng_state():
Anirudh's avatar
Anirudh committed
871
872
873
            out = model(model_input)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
874
                full_validation &= check_out(out)
Anirudh's avatar
Anirudh committed
875
876

    if not full_validation:
877
        msg = (
878
            f"The output of {test_detection_model.__name__} could only be partially validated. "
879
880
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
881
            "significant changes to the codebase."
882
        )
Anirudh's avatar
Anirudh committed
883
884
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
885

886
887
    _check_input_backprop(model, model_input)

888

889
@pytest.mark.parametrize("model_fn", list_model_fns(models.detection))
890
def test_detection_model_validation(model_fn):
Anirudh's avatar
Anirudh committed
891
    set_rng_seed(0)
892
    model = model_fn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
893
894
895
896
    input_shape = (3, 300, 300)
    x = [torch.rand(input_shape)]

    # validate that targets are present in training
897
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
898
899
900
        model(x)

    # validate type
901
    targets = [{"boxes": 0.0}]
902
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
903
904
905
906
        model(x, targets=targets)

    # validate boxes shape
    for boxes in (torch.rand((4,)), torch.rand((1, 5))):
907
        targets = [{"boxes": boxes}]
908
        with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
909
910
911
912
            model(x, targets=targets)

    # validate that no degenerate boxes are present
    boxes = torch.tensor([[1, 3, 1, 4], [2, 4, 3, 4]])
913
    targets = [{"boxes": boxes}]
914
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
915
        model(x, targets=targets)
916

917

918
@pytest.mark.parametrize("model_fn", list_model_fns(models.video))
919
@pytest.mark.parametrize("dev", cpu_and_gpu())
920
def test_video_model(model_fn, dev):
921
    set_rng_seed(0)
Anirudh's avatar
Anirudh committed
922
923
    # the default input shape is
    # bs * num_channels * clip_len * h *w
924
925
926
927
    defaults = {
        "input_shape": (1, 3, 4, 112, 112),
        "num_classes": 50,
    }
928
    model_name = model_fn.__name__
929
    if SKIP_BIG_MODEL and is_skippable(model_name, dev):
930
        pytest.skip("Skipped to reduce memory usage. Set env var SKIP_BIG_MODEL=0 to enable test for this model")
931
932
933
    kwargs = {**defaults, **_model_params.get(model_name, {})}
    num_classes = kwargs.get("num_classes")
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
934
    # test both basicblock and Bottleneck
935
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
936
937
938
939
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
940
    _assert_expected(out.cpu(), model_name, prec=0.1)
941
    assert out.shape[-1] == num_classes
942
943
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
944
    assert out.shape[-1] == num_classes
Anirudh's avatar
Anirudh committed
945

946
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
947
948
        with torch.cuda.amp.autocast():
            out = model(x)
949
950
951
952
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                _assert_expected(out.cpu(), model_name, prec=0.1)
            assert out.shape[-1] == num_classes
953

954
955
    _check_input_backprop(model, x)

956

957
958
959
960
961
962
963
@pytest.mark.skipif(
    not (
        "fbgemm" in torch.backends.quantized.supported_engines
        and "qnnpack" in torch.backends.quantized.supported_engines
    ),
    reason="This Pytorch Build has not been built with fbgemm and qnnpack",
)
964
@pytest.mark.parametrize("model_fn", list_model_fns(models.quantization))
965
def test_quantized_classification_model(model_fn):
966
    set_rng_seed(0)
967
    defaults = {
968
        "num_classes": 5,
969
970
        "input_shape": (1, 3, 224, 224),
        "quantize": True,
971
    }
972
    model_name = model_fn.__name__
973
    kwargs = {**defaults, **_model_params.get(model_name, {})}
974
    input_shape = kwargs.pop("input_shape")
975
976

    # First check if quantize=True provides models that can run with input data
977
    model = model_fn(**kwargs)
978
    model.eval()
979
    x = torch.rand(input_shape)
980
981
982
    out = model(x)

    if model_name not in quantized_flaky_models:
983
        _assert_expected(out.cpu(), model_name + "_quantized", prec=2e-2)
984
        assert out.shape[-1] == 5
985
986
987
988
989
990
991
        _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
        _check_fx_compatible(model, x, eager_out=out)
    else:
        try:
            torch.jit.script(model)
        except Exception as e:
            raise AssertionError("model cannot be scripted.") from e
992

993
    kwargs["quantize"] = False
994
    for eval_mode in [True, False]:
995
        model = model_fn(**kwargs)
996
997
        if eval_mode:
            model.eval()
998
            model.qconfig = torch.ao.quantization.default_qconfig
999
1000
        else:
            model.train()
1001
            model.qconfig = torch.ao.quantization.default_qat_qconfig
1002

1003
        model.fuse_model(is_qat=not eval_mode)
1004
        if eval_mode:
1005
            torch.ao.quantization.prepare(model, inplace=True)
1006
        else:
1007
            torch.ao.quantization.prepare_qat(model, inplace=True)
1008
1009
            model.eval()

1010
        torch.ao.quantization.convert(model, inplace=True)
1011
1012


1013
@pytest.mark.parametrize("model_fn", list_model_fns(models.detection))
1014
def test_detection_model_trainable_backbone_layers(model_fn, disable_weight_loading):
1015
    model_name = model_fn.__name__
1016
1017
1018
    max_trainable = _model_tests_values[model_name]["max_trainable"]
    n_trainable_params = []
    for trainable_layers in range(0, max_trainable + 1):
1019
        model = model_fn(weights=None, weights_backbone="DEFAULT", trainable_backbone_layers=trainable_layers)
1020
1021
1022
1023
1024

        n_trainable_params.append(len([p for p in model.parameters() if p.requires_grad]))
    assert n_trainable_params == _model_tests_values[model_name]["n_trn_params_per_layer"]


1025
@needs_cuda
1026
@pytest.mark.parametrize("model_fn", list_model_fns(models.optical_flow))
1027
@pytest.mark.parametrize("scripted", (False, True))
1028
def test_raft(model_fn, scripted):
1029
1030
1031
1032
1033
1034
1035
1036
1037

    torch.manual_seed(0)

    # We need very small images, otherwise the pickle size would exceed the 50KB
    # As a resut we need to override the correlation pyramid to not downsample
    # too much, otherwise we would get nan values (effective H and W would be
    # reduced to 1)
    corr_block = models.optical_flow.raft.CorrBlock(num_levels=2, radius=2)

1038
    model = model_fn(corr_block=corr_block).eval().to("cuda")
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
    if scripted:
        model = torch.jit.script(model)

    bs = 1
    img1 = torch.rand(bs, 3, 80, 72).cuda()
    img2 = torch.rand(bs, 3, 80, 72).cuda()

    preds = model(img1, img2)
    flow_pred = preds[-1]
    # Tolerance is fairly high, but there are 2 * H * W outputs to check
1049
    # The .pkl were generated on the AWS cluter, on the CI it looks like the results are slightly different
1050
    _assert_expected(flow_pred.cpu(), name=model_fn.__name__, atol=1e-2, rtol=1)
1051
1052


1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
def test_presets_antialias():

    img = torch.randint(0, 256, size=(1, 3, 224, 224), dtype=torch.uint8)

    match = "The default value of the antialias parameter"
    with pytest.warns(UserWarning, match=match):
        models.ResNet18_Weights.DEFAULT.transforms()(img)
    with pytest.warns(UserWarning, match=match):
        models.segmentation.DeepLabV3_ResNet50_Weights.DEFAULT.transforms()(img)

    with warnings.catch_warnings():
        warnings.simplefilter("error")
        models.ResNet18_Weights.DEFAULT.transforms(antialias=True)(img)
        models.segmentation.DeepLabV3_ResNet50_Weights.DEFAULT.transforms(antialias=True)(img)

        models.detection.FasterRCNN_ResNet50_FPN_Weights.DEFAULT.transforms()(img)
        models.video.R3D_18_Weights.DEFAULT.transforms()(img)
        models.optical_flow.Raft_Small_Weights.DEFAULT.transforms()(img, img)


1073
if __name__ == "__main__":
1074
    pytest.main([__file__])