test_models.py 35.7 KB
Newer Older
1
import contextlib
2
3
4
import functools
import operator
import os
5
import pkgutil
6
import platform
7
import sys
8
import warnings
9
from collections import OrderedDict
10
from tempfile import TemporaryDirectory
11
from typing import Any
12
13

import pytest
14
import torch
15
import torch.fx
16
import torch.nn as nn
17
from _utils_internal import get_relative_path
18
from common_utils import cpu_and_gpu, freeze_rng_state, map_nested_tensor_object, needs_cuda, set_rng_seed
19
20
from PIL import Image
from torchvision import models, transforms
21
from torchvision.models import get_model_builder, list_models
22

23

24
ACCEPT = os.getenv("EXPECTTEST_ACCEPT", "0") == "1"
25
SKIP_BIG_MODEL = os.getenv("SKIP_BIG_MODEL", "1") == "1"
26
27


28
def list_model_fns(module):
29
    return [get_model_builder(name) for name in list_models(module)]
30
31


32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
def _get_image(input_shape, real_image, device):
    """This routine loads a real or random image based on `real_image` argument.
    Currently, the real image is utilized for the following list of models:
    - `retinanet_resnet50_fpn`,
    - `retinanet_resnet50_fpn_v2`,
    - `keypointrcnn_resnet50_fpn`,
    - `fasterrcnn_resnet50_fpn`,
    - `fasterrcnn_resnet50_fpn_v2`,
    - `fcos_resnet50_fpn`,
    - `maskrcnn_resnet50_fpn`,
    - `maskrcnn_resnet50_fpn_v2`,
    in `test_classification_model` and `test_detection_mode`.
    To do so, a keyword argument `real_image` was added to the abovelisted models in `_model_params`
    """
    if real_image:
47
48
49
        # TODO: Maybe unify file discovery logic with test_image.py
        GRACE_HOPPER = os.path.join(
            os.path.dirname(os.path.abspath(__file__)), "assets", "encode_jpeg", "grace_hopper_517x606.jpg"
50
        )
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
        img = Image.open(GRACE_HOPPER)

        original_width, original_height = img.size

        # make the image square
        img = img.crop((0, 0, original_width, original_width))
        img = img.resize(input_shape[1:3])

        convert_tensor = transforms.ToTensor()
        image = convert_tensor(img)
        assert tuple(image.size()) == input_shape
        return image.to(device=device)

    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    return torch.rand(input_shape).to(device=device)


69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
@pytest.fixture
def disable_weight_loading(mocker):
    """When testing models, the two slowest operations are the downloading of the weights to a file and loading them
    into the model. Unless, you want to test against specific weights, these steps can be disabled without any
    drawbacks.

    Including this fixture into the signature of your test, i.e. `test_foo(disable_weight_loading)`, will recurse
    through all models in `torchvision.models` and will patch all occurrences of the function
    `download_state_dict_from_url` as well as the method `load_state_dict` on all subclasses of `nn.Module` to be
    no-ops.

    .. warning:

        Loaded models are still executable as normal, but will always have random weights. Make sure to not use this
        fixture if you want to compare the model output against reference values.

    """
    starting_point = models
    function_name = "load_state_dict_from_url"
    method_name = "load_state_dict"

    module_names = {info.name for info in pkgutil.walk_packages(starting_point.__path__, f"{starting_point.__name__}.")}
    targets = {f"torchvision._internally_replaced_utils.{function_name}", f"torch.nn.Module.{method_name}"}
    for name in module_names:
        module = sys.modules.get(name)
        if not module:
            continue

        if function_name in module.__dict__:
            targets.add(f"{module.__name__}.{function_name}")

        targets.update(
            {
                f"{module.__name__}.{obj.__name__}.{method_name}"
                for obj in module.__dict__.values()
                if isinstance(obj, type) and issubclass(obj, nn.Module) and method_name in obj.__dict__
            }
        )

    for target in targets:
        # See https://github.com/pytorch/vision/pull/4867#discussion_r743677802 for details
        with contextlib.suppress(AttributeError):
            mocker.patch(target)


114
115
116
117
118
119
def _get_expected_file(name=None):
    # Determine expected file based on environment
    expected_file_base = get_relative_path(os.path.realpath(__file__), "expect")

    # Note: for legacy reasons, the reference file names all had "ModelTest.test_" in their names
    # We hardcode it here to avoid having to re-generate the reference files
120
    expected_file = os.path.join(expected_file_base, "ModelTester.test_" + name)
121
122
123
124
125
126
127
128
129
130
131
132
    expected_file += "_expect.pkl"

    if not ACCEPT and not os.path.exists(expected_file):
        raise RuntimeError(
            f"No expect file exists for {os.path.basename(expected_file)} in {expected_file}; "
            "to accept the current output, re-run the failing test after setting the EXPECTTEST_ACCEPT "
            "env variable. For example: EXPECTTEST_ACCEPT=1 pytest test/test_models.py -k alexnet"
        )

    return expected_file


133
def _assert_expected(output, name, prec=None, atol=None, rtol=None):
134
135
136
137
138
139
140
141
142
143
144
    """Test that a python value matches the recorded contents of a file
    based on a "check" name. The value must be
    pickable with `torch.save`. This file
    is placed in the 'expect' directory in the same directory
    as the test script. You can automatically update the recorded test
    output using an EXPECTTEST_ACCEPT=1 env variable.
    """
    expected_file = _get_expected_file(name)

    if ACCEPT:
        filename = {os.path.basename(expected_file)}
145
        print(f"Accepting updated output for {filename}:\n\n{output}")
146
147
148
149
        torch.save(output, expected_file)
        MAX_PICKLE_SIZE = 50 * 1000  # 50 KB
        binary_size = os.path.getsize(expected_file)
        if binary_size > MAX_PICKLE_SIZE:
150
            raise RuntimeError(f"The output for {filename}, is larger than 50kb - got {binary_size}kb")
151
152
    else:
        expected = torch.load(expected_file)
153
154
        rtol = rtol or prec  # keeping prec param for legacy reason, but could be removed ideally
        atol = atol or prec
155
        torch.testing.assert_close(output, expected, rtol=rtol, atol=atol, check_dtype=False, check_device=False)
156
157


158
def _check_jit_scriptable(nn_module, args, unwrapper=None, eager_out=None):
159
160
    """Check that a nn.Module's results in TorchScript match eager and that it can be exported"""

161
162
163
164
165
166
167
    def get_export_import_copy(m):
        """Save and load a TorchScript model"""
        with TemporaryDirectory() as dir:
            path = os.path.join(dir, "script.pt")
            m.save(path)
            imported = torch.jit.load(path)
        return imported
168
169
170

    sm = torch.jit.script(nn_module)

171
172
    if eager_out is None:
        with torch.no_grad(), freeze_rng_state():
173
            eager_out = nn_module(*args)
174

175
    with torch.no_grad(), freeze_rng_state():
176
177
178
179
180
        script_out = sm(*args)
        if unwrapper:
            script_out = unwrapper(script_out)

    torch.testing.assert_close(eager_out, script_out, atol=1e-4, rtol=1e-4)
181
182
183
184
185
186
187
188

    m_import = get_export_import_copy(sm)
    with torch.no_grad(), freeze_rng_state():
        imported_script_out = m_import(*args)
        if unwrapper:
            imported_script_out = unwrapper(imported_script_out)

    torch.testing.assert_close(script_out, imported_script_out, atol=3e-4, rtol=3e-4)
189
190


191
def _check_fx_compatible(model, inputs, eager_out=None):
192
    model_fx = torch.fx.symbolic_trace(model)
193
194
195
196
    if eager_out is None:
        eager_out = model(inputs)
    fx_out = model_fx(inputs)
    torch.testing.assert_close(eager_out, fx_out)
197
198


199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
def _check_input_backprop(model, inputs):
    if isinstance(inputs, list):
        requires_grad = list()
        for inp in inputs:
            requires_grad.append(inp.requires_grad)
            inp.requires_grad_(True)
    else:
        requires_grad = inputs.requires_grad
        inputs.requires_grad_(True)

    out = model(inputs)

    if isinstance(out, dict):
        out["out"].sum().backward()
    else:
        if isinstance(out[0], dict):
            out[0]["scores"].sum().backward()
        else:
            out[0].sum().backward()

    if isinstance(inputs, list):
        for i, inp in enumerate(inputs):
            assert inputs[i].grad is not None
            inp.requires_grad_(requires_grad[i])
    else:
        assert inputs.grad is not None
        inputs.requires_grad_(requires_grad)


228
229
230
# If 'unwrapper' is provided it will be called with the script model outputs
# before they are compared to the eager model outputs. This is useful if the
# model outputs are different between TorchScript / Eager mode
231
script_model_unwrapper = {
232
233
    "googlenet": lambda x: x.logits,
    "inception_v3": lambda x: x.logits,
234
    "fasterrcnn_resnet50_fpn": lambda x: x[1],
235
    "fasterrcnn_resnet50_fpn_v2": lambda x: x[1],
236
    "fasterrcnn_mobilenet_v3_large_fpn": lambda x: x[1],
237
    "fasterrcnn_mobilenet_v3_large_320_fpn": lambda x: x[1],
238
    "maskrcnn_resnet50_fpn": lambda x: x[1],
239
    "maskrcnn_resnet50_fpn_v2": lambda x: x[1],
240
241
    "keypointrcnn_resnet50_fpn": lambda x: x[1],
    "retinanet_resnet50_fpn": lambda x: x[1],
242
    "retinanet_resnet50_fpn_v2": lambda x: x[1],
243
    "ssd300_vgg16": lambda x: x[1],
244
    "ssdlite320_mobilenet_v3_large": lambda x: x[1],
Hu Ye's avatar
Hu Ye committed
245
    "fcos_resnet50_fpn": lambda x: x[1],
246
}
247
248


249
250
251
252
253
254
255
256
257
258
259
260
261
262
# The following models exhibit flaky numerics under autocast in _test_*_model harnesses.
# This may be caused by the harness environment (e.g. num classes, input initialization
# via torch.rand), and does not prove autocast is unsuitable when training with real data
# (autocast has been used successfully with real data for some of these models).
# TODO:  investigate why autocast numerics are flaky in the harnesses.
#
# For the following models, _test_*_model harnesses skip numerical checks on outputs when
# trying autocast. However, they still try an autocasted forward pass, so they still ensure
# autocast coverage suffices to prevent dtype errors in each model.
autocast_flaky_numerics = (
    "inception_v3",
    "resnet101",
    "resnet152",
    "wide_resnet101_2",
263
264
    "deeplabv3_resnet50",
    "deeplabv3_resnet101",
265
    "deeplabv3_mobilenet_v3_large",
266
267
    "fcn_resnet50",
    "fcn_resnet101",
268
    "lraspp_mobilenet_v3_large",
269
    "maskrcnn_resnet50_fpn",
270
    "maskrcnn_resnet50_fpn_v2",
271
    "keypointrcnn_resnet50_fpn",
272
273
)

274
275
276
# The tests for the following quantized models are flaky possibly due to inconsistent
# rounding errors in different platforms. For this reason the input/output consistency
# tests under test_quantized_classification_model will be skipped for the following models.
277
quantized_flaky_models = ("inception_v3", "resnet50")
278

279

280
281
282
# The following contains configuration parameters for all models which are used by
# the _test_*_model methods.
_model_params = {
283
    "inception_v3": {"input_shape": (1, 3, 299, 299), "init_weights": True},
284
285
286
287
288
289
    "retinanet_resnet50_fpn": {
        "num_classes": 20,
        "score_thresh": 0.01,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
290
        "real_image": True,
291
    },
292
293
294
295
296
297
    "retinanet_resnet50_fpn_v2": {
        "num_classes": 20,
        "score_thresh": 0.01,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
298
        "real_image": True,
299
    },
300
301
302
303
    "keypointrcnn_resnet50_fpn": {
        "num_classes": 2,
        "min_size": 224,
        "max_size": 224,
304
        "box_score_thresh": 0.17,
305
        "input_shape": (3, 224, 224),
306
        "real_image": True,
307
    },
308
309
310
311
312
    "fasterrcnn_resnet50_fpn": {
        "num_classes": 20,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
313
        "real_image": True,
314
    },
315
316
317
318
319
    "fasterrcnn_resnet50_fpn_v2": {
        "num_classes": 20,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
320
        "real_image": True,
321
    },
Hu Ye's avatar
Hu Ye committed
322
323
324
325
326
327
    "fcos_resnet50_fpn": {
        "num_classes": 2,
        "score_thresh": 0.05,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
328
        "real_image": True,
Hu Ye's avatar
Hu Ye committed
329
    },
330
331
332
333
334
    "maskrcnn_resnet50_fpn": {
        "num_classes": 10,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
335
        "real_image": True,
336
    },
337
338
339
340
341
    "maskrcnn_resnet50_fpn_v2": {
        "num_classes": 10,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
342
        "real_image": True,
343
    },
344
345
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "box_score_thresh": 0.02076,
346
    },
347
348
349
350
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "box_score_thresh": 0.02076,
        "rpn_pre_nms_top_n_test": 1000,
        "rpn_post_nms_top_n_test": 1000,
351
    },
352
353
354
355
    "vit_h_14": {
        "image_size": 56,
        "input_shape": (1, 3, 56, 56),
    },
356
357
358
    "mvit_v1_b": {
        "input_shape": (1, 3, 16, 224, 224),
    },
359
360
361
    "mvit_v2_s": {
        "input_shape": (1, 3, 16, 224, 224),
    },
362
363
364
    "s3d": {
        "input_shape": (1, 3, 16, 224, 224),
    },
365
    "googlenet": {"init_weights": True},
366
}
367
368
369
370
371
# speeding up slow models:
slow_models = [
    "convnext_base",
    "convnext_large",
    "resnext101_32x8d",
372
    "resnext101_64x4d",
373
374
375
376
377
378
379
380
381
382
    "wide_resnet101_2",
    "efficientnet_b6",
    "efficientnet_b7",
    "efficientnet_v2_m",
    "efficientnet_v2_l",
    "regnet_y_16gf",
    "regnet_y_32gf",
    "regnet_y_128gf",
    "regnet_x_16gf",
    "regnet_x_32gf",
Joao Gomes's avatar
Joao Gomes committed
383
    "swin_t",
384
385
    "swin_s",
    "swin_b",
Local State's avatar
Local State committed
386
387
388
    "swin_v2_t",
    "swin_v2_s",
    "swin_v2_b",
389
390
391
]
for m in slow_models:
    _model_params[m] = {"input_shape": (1, 3, 64, 64)}
392
393


394
# skip big models to reduce memory usage on CI test. We can exclude combinations of (platform-system, device).
395
skipped_big_models = {
396
397
    "vit_h_14": {("Windows", "cpu"), ("Windows", "cuda")},
    "regnet_y_128gf": {("Windows", "cpu"), ("Windows", "cuda")},
398
399
    "mvit_v1_b": {("Windows", "cuda"), ("Linux", "cuda")},
    "mvit_v2_s": {("Windows", "cuda"), ("Linux", "cuda")},
400
401
}

402
403
404
405
406
407
408
409
410
411
412

def is_skippable(model_name, device):
    if model_name not in skipped_big_models:
        return False

    platform_system = platform.system()
    device_name = str(device).split(":")[0]

    return (platform_system, device_name) in skipped_big_models[model_name]


413
414
415
416
417
418
# The following contains configuration and expected values to be used tests that are model specific
_model_tests_values = {
    "retinanet_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [36, 46, 65, 78, 88, 89],
    },
419
420
421
422
    "retinanet_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [44, 74, 131, 170, 200, 203],
    },
423
424
425
426
427
428
429
430
    "keypointrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [48, 58, 77, 90, 100, 101],
    },
    "fasterrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [30, 40, 59, 72, 82, 83],
    },
431
432
433
434
    "fasterrcnn_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [50, 80, 137, 176, 206, 209],
    },
435
436
437
438
    "maskrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [42, 52, 71, 84, 94, 95],
    },
439
440
441
442
    "maskrcnn_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [66, 96, 153, 192, 222, 225],
    },
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "ssd300_vgg16": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [45, 51, 57, 63, 67, 71],
    },
    "ssdlite320_mobilenet_v3_large": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [96, 99, 138, 200, 239, 257, 266],
    },
Hu Ye's avatar
Hu Ye committed
459
460
461
462
    "fcos_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [54, 64, 83, 96, 106, 107],
    },
463
464
465
}


Anirudh's avatar
Anirudh committed
466
467
468
469
470
471
472
473
474
475
def _make_sliced_model(model, stop_layer):
    layers = OrderedDict()
    for name, layer in model.named_children():
        layers[name] = layer
        if name == stop_layer:
            break
    new_model = torch.nn.Sequential(layers)
    return new_model


476
477
@pytest.mark.parametrize("model_fn", [models.densenet121, models.densenet169, models.densenet201, models.densenet161])
def test_memory_efficient_densenet(model_fn):
Anirudh's avatar
Anirudh committed
478
479
480
    input_shape = (1, 3, 300, 300)
    x = torch.rand(input_shape)

481
    model1 = model_fn(num_classes=50, memory_efficient=True)
Anirudh's avatar
Anirudh committed
482
    params = model1.state_dict()
483
    num_params = sum(x.numel() for x in model1.parameters())
Anirudh's avatar
Anirudh committed
484
485
486
    model1.eval()
    out1 = model1(x)
    out1.sum().backward()
487
    num_grad = sum(x.grad.numel() for x in model1.parameters() if x.grad is not None)
Anirudh's avatar
Anirudh committed
488

489
    model2 = model_fn(num_classes=50, memory_efficient=False)
Anirudh's avatar
Anirudh committed
490
491
492
493
494
495
496
    model2.load_state_dict(params)
    model2.eval()
    out2 = model2(x)

    assert num_params == num_grad
    torch.testing.assert_close(out1, out2, rtol=0.0, atol=1e-5)

497
498
499
    _check_input_backprop(model1, x)
    _check_input_backprop(model2, x)

Anirudh's avatar
Anirudh committed
500

501
502
503
@pytest.mark.parametrize("dilate_layer_2", (True, False))
@pytest.mark.parametrize("dilate_layer_3", (True, False))
@pytest.mark.parametrize("dilate_layer_4", (True, False))
Anirudh's avatar
Anirudh committed
504
505
def test_resnet_dilation(dilate_layer_2, dilate_layer_3, dilate_layer_4):
    # TODO improve tests to also check that each layer has the right dimensionality
506
    model = models.resnet50(replace_stride_with_dilation=(dilate_layer_2, dilate_layer_3, dilate_layer_4))
Anirudh's avatar
Anirudh committed
507
508
509
510
511
512
513
514
515
    model = _make_sliced_model(model, stop_layer="layer4")
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    f = 2 ** sum((dilate_layer_2, dilate_layer_3, dilate_layer_4))
    assert out.shape == (1, 2048, 7 * f, 7 * f)


def test_mobilenet_v2_residual_setting():
516
    model = models.mobilenet_v2(inverted_residual_setting=[[1, 16, 1, 1], [6, 24, 2, 2]])
Anirudh's avatar
Anirudh committed
517
518
519
520
521
522
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    assert out.shape[-1] == 1000


523
524
525
@pytest.mark.parametrize("model_fn", [models.mobilenet_v2, models.mobilenet_v3_large, models.mobilenet_v3_small])
def test_mobilenet_norm_layer(model_fn):
    model = model_fn()
Anirudh's avatar
Anirudh committed
526
527
528
    assert any(isinstance(x, nn.BatchNorm2d) for x in model.modules())

    def get_gn(num_channels):
529
        return nn.GroupNorm(1, num_channels)
Anirudh's avatar
Anirudh committed
530

531
    model = model_fn(norm_layer=get_gn)
532
    assert not (any(isinstance(x, nn.BatchNorm2d) for x in model.modules()))
Anirudh's avatar
Anirudh committed
533
534
535
536
537
    assert any(isinstance(x, nn.GroupNorm) for x in model.modules())


def test_inception_v3_eval():
    kwargs = {}
538
539
540
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
541
542
543
544
545
546
547
    name = "inception_v3"
    model = models.Inception3(**kwargs)
    model.aux_logits = False
    model.AuxLogits = None
    model = model.eval()
    x = torch.rand(1, 3, 299, 299)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
548
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
549
550
551


def test_fasterrcnn_double():
552
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
553
554
555
556
557
558
559
560
561
562
563
    model.double()
    model.eval()
    input_shape = (3, 300, 300)
    x = torch.rand(input_shape, dtype=torch.float64)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x
    assert len(out) == 1
    assert "boxes" in out[0]
    assert "scores" in out[0]
    assert "labels" in out[0]
564
    _check_input_backprop(model, model_input)
Anirudh's avatar
Anirudh committed
565
566
567
568


def test_googlenet_eval():
    kwargs = {}
569
570
571
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
572
573
574
575
576
577
578
579
    name = "googlenet"
    model = models.GoogLeNet(**kwargs)
    model.aux_logits = False
    model.aux1 = None
    model.aux2 = None
    model = model.eval()
    x = torch.rand(1, 3, 224, 224)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
580
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
581
582
583
584
585
586
587
588
589
590


@needs_cuda
def test_fasterrcnn_switch_devices():
    def checkOut(out):
        assert len(out) == 1
        assert "boxes" in out[0]
        assert "scores" in out[0]
        assert "labels" in out[0]

591
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
592
593
594
    model.cuda()
    model.eval()
    input_shape = (3, 300, 300)
595
    x = torch.rand(input_shape, device="cuda")
Anirudh's avatar
Anirudh committed
596
597
598
599
600
601
602
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

    checkOut(out)

    with torch.cuda.amp.autocast():
603
        out = model(model_input)
604

Anirudh's avatar
Anirudh committed
605
    checkOut(out)
606

607
608
    _check_input_backprop(model, model_input)

Anirudh's avatar
Anirudh committed
609
610
611
612
    # now switch to cpu and make sure it works
    model.cpu()
    x = x.cpu()
    out_cpu = model([x])
613

Anirudh's avatar
Anirudh committed
614
    checkOut(out_cpu)
615

616
617
    _check_input_backprop(model, [x])

618

Anirudh's avatar
Anirudh committed
619
def test_generalizedrcnn_transform_repr():
620

Anirudh's avatar
Anirudh committed
621
622
623
    min_size, max_size = 224, 299
    image_mean = [0.485, 0.456, 0.406]
    image_std = [0.229, 0.224, 0.225]
624

625
626
627
    t = models.detection.transform.GeneralizedRCNNTransform(
        min_size=min_size, max_size=max_size, image_mean=image_mean, image_std=image_std
    )
628

Anirudh's avatar
Anirudh committed
629
    # Check integrity of object __repr__ attribute
630
631
    expected_string = "GeneralizedRCNNTransform("
    _indent = "\n    "
632
633
    expected_string += f"{_indent}Normalize(mean={image_mean}, std={image_std})"
    expected_string += f"{_indent}Resize(min_size=({min_size},), max_size={max_size}, "
Anirudh's avatar
Anirudh committed
634
635
    expected_string += "mode='bilinear')\n)"
    assert t.__repr__() == expected_string
636
637


638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
test_vit_conv_stem_configs = [
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=64),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=128),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=1, out_channels=128),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=256),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=1, out_channels=256),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=512),
]


def vitc_b_16(**kwargs: Any):
    return models.VisionTransformer(
        image_size=224,
        patch_size=16,
        num_layers=12,
        num_heads=12,
        hidden_dim=768,
        mlp_dim=3072,
        conv_stem_configs=test_vit_conv_stem_configs,
        **kwargs,
    )


@pytest.mark.parametrize("model_fn", [vitc_b_16])
@pytest.mark.parametrize("dev", cpu_and_gpu())
def test_vitc_models(model_fn, dev):
    test_classification_model(model_fn, dev)


667
@pytest.mark.parametrize("model_fn", list_model_fns(models))
668
@pytest.mark.parametrize("dev", cpu_and_gpu())
669
def test_classification_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
670
671
    set_rng_seed(0)
    defaults = {
672
673
        "num_classes": 50,
        "input_shape": (1, 3, 224, 224),
Anirudh's avatar
Anirudh committed
674
    }
675
    model_name = model_fn.__name__
676
    if SKIP_BIG_MODEL and is_skippable(model_name, dev):
677
        pytest.skip("Skipped to reduce memory usage. Set env var SKIP_BIG_MODEL=0 to enable test for this model")
Anirudh's avatar
Anirudh committed
678
    kwargs = {**defaults, **_model_params.get(model_name, {})}
679
    num_classes = kwargs.get("num_classes")
680
    input_shape = kwargs.pop("input_shape")
681
    real_image = kwargs.pop("real_image", False)
Anirudh's avatar
Anirudh committed
682

683
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
684
    model.eval().to(device=dev)
685
    x = _get_image(input_shape=input_shape, real_image=real_image, device=dev)
Anirudh's avatar
Anirudh committed
686
    out = model(x)
687
    _assert_expected(out.cpu(), model_name, prec=1e-3)
688
    assert out.shape[-1] == num_classes
689
690
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
691

692
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
693
694
695
696
697
698
        with torch.cuda.amp.autocast():
            out = model(x)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                _assert_expected(out.cpu(), model_name, prec=0.1)
            assert out.shape[-1] == 50
699

700
701
    _check_input_backprop(model, x)

702

703
@pytest.mark.parametrize("model_fn", list_model_fns(models.segmentation))
704
@pytest.mark.parametrize("dev", cpu_and_gpu())
705
def test_segmentation_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
706
707
    set_rng_seed(0)
    defaults = {
708
        "num_classes": 10,
709
        "weights_backbone": None,
710
        "input_shape": (1, 3, 32, 32),
Anirudh's avatar
Anirudh committed
711
    }
712
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
713
    kwargs = {**defaults, **_model_params.get(model_name, {})}
714
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
715

716
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
717
718
719
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
720
    out = model(x)
Anirudh's avatar
Anirudh committed
721
722
723
724
725
726
727
728
729
730
731
732
733
734

    def check_out(out):
        prec = 0.01
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(out.cpu(), model_name, prec=prec)
        except AssertionError:
            # Unfortunately some segmentation models are flaky with autocast
            # so instead of validating the probability scores, check that the class
            # predictions match.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
735
736
737
            torch.testing.assert_close(
                out.argmax(dim=1), expected.argmax(dim=1), rtol=prec, atol=prec, check_device=False
            )
Anirudh's avatar
Anirudh committed
738
739
740
741
            return False  # Partial validation performed

        return True  # Full validation performed

742
    full_validation = check_out(out["out"])
Anirudh's avatar
Anirudh committed
743

744
745
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
746

747
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
748
        with torch.cuda.amp.autocast():
749
            out = model(x)
Anirudh's avatar
Anirudh committed
750
751
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
752
                full_validation &= check_out(out["out"])
Anirudh's avatar
Anirudh committed
753
754

    if not full_validation:
755
        msg = (
756
            f"The output of {test_segmentation_model.__name__} could only be partially validated. "
757
758
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
759
            "significant changes to the codebase."
760
        )
Anirudh's avatar
Anirudh committed
761
762
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
763

764
765
    _check_input_backprop(model, x)

766

767
@pytest.mark.parametrize("model_fn", list_model_fns(models.detection))
768
@pytest.mark.parametrize("dev", cpu_and_gpu())
769
def test_detection_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
770
771
    set_rng_seed(0)
    defaults = {
772
        "num_classes": 50,
773
        "weights_backbone": None,
774
        "input_shape": (3, 300, 300),
Anirudh's avatar
Anirudh committed
775
    }
776
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
777
    kwargs = {**defaults, **_model_params.get(model_name, {})}
778
    input_shape = kwargs.pop("input_shape")
779
    real_image = kwargs.pop("real_image", False)
Anirudh's avatar
Anirudh committed
780

781
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
782
    model.eval().to(device=dev)
783
    x = _get_image(input_shape=input_shape, real_image=real_image, device=dev)
Anirudh's avatar
Anirudh committed
784
785
786
787
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

788
    def check_out(out):
Anirudh's avatar
Anirudh committed
789
790
791
        assert len(out) == 1

        def compact(tensor):
792
            tensor = tensor.cpu()
Anirudh's avatar
Anirudh committed
793
794
795
796
797
798
799
800
801
802
803
804
805
806
            size = tensor.size()
            elements_per_sample = functools.reduce(operator.mul, size[1:], 1)
            if elements_per_sample > 30:
                return compute_mean_std(tensor)
            else:
                return subsample_tensor(tensor)

        def subsample_tensor(tensor):
            num_elems = tensor.size(0)
            num_samples = 20
            if num_elems <= num_samples:
                return tensor

            ith_index = num_elems // num_samples
807
            return tensor[ith_index - 1 :: ith_index]
Anirudh's avatar
Anirudh committed
808
809
810
811
812
813
814
815
816

        def compute_mean_std(tensor):
            # can't compute mean of integral tensor
            tensor = tensor.to(torch.double)
            mean = torch.mean(tensor)
            std = torch.std(tensor)
            return {"mean": mean, "std": std}

        output = map_nested_tensor_object(out, tensor_map_fn=compact)
817
        prec = 0.01
Anirudh's avatar
Anirudh committed
818
819
820
821
822
823
824
825
826
827
828
829
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(output, model_name, prec=prec)
        except AssertionError:
            # Unfortunately detection models are flaky due to the unstable sort
            # in NMS. If matching across all outputs fails, use the same approach
            # as in NMSTester.test_nms_cuda to see if this is caused by duplicate
            # scores.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
830
831
832
            torch.testing.assert_close(
                output[0]["scores"], expected[0]["scores"], rtol=prec, atol=prec, check_device=False, check_dtype=False
            )
Anirudh's avatar
Anirudh committed
833
834
835
836
837
838
839
840
841
842

            # Note: Fmassa proposed turning off NMS by adapting the threshold
            # and then using the Hungarian algorithm as in DETR to find the
            # best match between output and expected boxes and eliminate some
            # of the flakiness. Worth exploring.
            return False  # Partial validation performed

        return True  # Full validation performed

    full_validation = check_out(out)
843
    _check_jit_scriptable(model, ([x],), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
Anirudh's avatar
Anirudh committed
844

845
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
846
847
848
849
        with torch.cuda.amp.autocast():
            out = model(model_input)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
850
                full_validation &= check_out(out)
Anirudh's avatar
Anirudh committed
851
852

    if not full_validation:
853
        msg = (
854
            f"The output of {test_detection_model.__name__} could only be partially validated. "
855
856
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
857
            "significant changes to the codebase."
858
        )
Anirudh's avatar
Anirudh committed
859
860
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
861

862
863
    _check_input_backprop(model, model_input)

864

865
@pytest.mark.parametrize("model_fn", list_model_fns(models.detection))
866
def test_detection_model_validation(model_fn):
Anirudh's avatar
Anirudh committed
867
    set_rng_seed(0)
868
    model = model_fn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
869
870
871
872
    input_shape = (3, 300, 300)
    x = [torch.rand(input_shape)]

    # validate that targets are present in training
873
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
874
875
876
        model(x)

    # validate type
877
    targets = [{"boxes": 0.0}]
878
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
879
880
881
882
        model(x, targets=targets)

    # validate boxes shape
    for boxes in (torch.rand((4,)), torch.rand((1, 5))):
883
        targets = [{"boxes": boxes}]
884
        with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
885
886
887
888
            model(x, targets=targets)

    # validate that no degenerate boxes are present
    boxes = torch.tensor([[1, 3, 1, 4], [2, 4, 3, 4]])
889
    targets = [{"boxes": boxes}]
890
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
891
        model(x, targets=targets)
892

893

894
@pytest.mark.parametrize("model_fn", list_model_fns(models.video))
895
@pytest.mark.parametrize("dev", cpu_and_gpu())
896
def test_video_model(model_fn, dev):
897
    set_rng_seed(0)
Anirudh's avatar
Anirudh committed
898
899
    # the default input shape is
    # bs * num_channels * clip_len * h *w
900
901
902
903
    defaults = {
        "input_shape": (1, 3, 4, 112, 112),
        "num_classes": 50,
    }
904
    model_name = model_fn.__name__
905
    if SKIP_BIG_MODEL and is_skippable(model_name, dev):
906
        pytest.skip("Skipped to reduce memory usage. Set env var SKIP_BIG_MODEL=0 to enable test for this model")
907
908
909
    kwargs = {**defaults, **_model_params.get(model_name, {})}
    num_classes = kwargs.get("num_classes")
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
910
    # test both basicblock and Bottleneck
911
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
912
913
914
915
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
916
    _assert_expected(out.cpu(), model_name, prec=1e-5)
917
    assert out.shape[-1] == num_classes
918
919
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
920
    assert out.shape[-1] == num_classes
Anirudh's avatar
Anirudh committed
921

922
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
923
924
        with torch.cuda.amp.autocast():
            out = model(x)
925
926
927
928
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                _assert_expected(out.cpu(), model_name, prec=0.1)
            assert out.shape[-1] == num_classes
929

930
931
    _check_input_backprop(model, x)

932

933
934
935
936
937
938
939
@pytest.mark.skipif(
    not (
        "fbgemm" in torch.backends.quantized.supported_engines
        and "qnnpack" in torch.backends.quantized.supported_engines
    ),
    reason="This Pytorch Build has not been built with fbgemm and qnnpack",
)
940
@pytest.mark.parametrize("model_fn", list_model_fns(models.quantization))
941
def test_quantized_classification_model(model_fn):
942
    set_rng_seed(0)
943
    defaults = {
944
        "num_classes": 5,
945
946
        "input_shape": (1, 3, 224, 224),
        "quantize": True,
947
    }
948
    model_name = model_fn.__name__
949
    kwargs = {**defaults, **_model_params.get(model_name, {})}
950
    input_shape = kwargs.pop("input_shape")
951
952

    # First check if quantize=True provides models that can run with input data
953
    model = model_fn(**kwargs)
954
    model.eval()
955
    x = torch.rand(input_shape)
956
957
958
    out = model(x)

    if model_name not in quantized_flaky_models:
959
        _assert_expected(out.cpu(), model_name + "_quantized", prec=2e-2)
960
        assert out.shape[-1] == 5
961
962
963
964
965
966
967
        _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
        _check_fx_compatible(model, x, eager_out=out)
    else:
        try:
            torch.jit.script(model)
        except Exception as e:
            raise AssertionError("model cannot be scripted.") from e
968

969
    kwargs["quantize"] = False
970
    for eval_mode in [True, False]:
971
        model = model_fn(**kwargs)
972
973
        if eval_mode:
            model.eval()
974
            model.qconfig = torch.ao.quantization.default_qconfig
975
976
        else:
            model.train()
977
            model.qconfig = torch.ao.quantization.default_qat_qconfig
978

979
        model.fuse_model(is_qat=not eval_mode)
980
        if eval_mode:
981
            torch.ao.quantization.prepare(model, inplace=True)
982
        else:
983
            torch.ao.quantization.prepare_qat(model, inplace=True)
984
985
            model.eval()

986
        torch.ao.quantization.convert(model, inplace=True)
987
988


989
@pytest.mark.parametrize("model_fn", list_model_fns(models.detection))
990
def test_detection_model_trainable_backbone_layers(model_fn, disable_weight_loading):
991
    model_name = model_fn.__name__
992
993
994
    max_trainable = _model_tests_values[model_name]["max_trainable"]
    n_trainable_params = []
    for trainable_layers in range(0, max_trainable + 1):
995
        model = model_fn(weights=None, weights_backbone="DEFAULT", trainable_backbone_layers=trainable_layers)
996
997
998
999
1000

        n_trainable_params.append(len([p for p in model.parameters() if p.requires_grad]))
    assert n_trainable_params == _model_tests_values[model_name]["n_trn_params_per_layer"]


1001
@needs_cuda
1002
@pytest.mark.parametrize("model_fn", list_model_fns(models.optical_flow))
1003
@pytest.mark.parametrize("scripted", (False, True))
1004
def test_raft(model_fn, scripted):
1005
1006
1007
1008
1009
1010
1011
1012
1013

    torch.manual_seed(0)

    # We need very small images, otherwise the pickle size would exceed the 50KB
    # As a resut we need to override the correlation pyramid to not downsample
    # too much, otherwise we would get nan values (effective H and W would be
    # reduced to 1)
    corr_block = models.optical_flow.raft.CorrBlock(num_levels=2, radius=2)

1014
    model = model_fn(corr_block=corr_block).eval().to("cuda")
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
    if scripted:
        model = torch.jit.script(model)

    bs = 1
    img1 = torch.rand(bs, 3, 80, 72).cuda()
    img2 = torch.rand(bs, 3, 80, 72).cuda()

    preds = model(img1, img2)
    flow_pred = preds[-1]
    # Tolerance is fairly high, but there are 2 * H * W outputs to check
    # The .pkl were generated on the AWS cluter, on the CI it looks like the resuts are slightly different
1026
    _assert_expected(flow_pred.cpu(), name=model_fn.__name__, atol=1e-2, rtol=1)
1027
1028


1029
if __name__ == "__main__":
1030
    pytest.main([__file__])