test_models.py 36.8 KB
Newer Older
1
import contextlib
2
3
4
import functools
import operator
import os
5
import pkgutil
6
import platform
7
import sys
8
import warnings
9
from collections import OrderedDict
10
from tempfile import TemporaryDirectory
11
from typing import Any
12
13

import pytest
14
import torch
15
import torch.fx
16
import torch.nn as nn
17
from _utils_internal import get_relative_path
18
from common_utils import cpu_and_cuda, freeze_rng_state, map_nested_tensor_object, needs_cuda, set_rng_seed
19
20
from PIL import Image
from torchvision import models, transforms
21
from torchvision.models import get_model_builder, list_models
22

23

24
ACCEPT = os.getenv("EXPECTTEST_ACCEPT", "0") == "1"
25
SKIP_BIG_MODEL = os.getenv("SKIP_BIG_MODEL", "1") == "1"
26
27


28
def list_model_fns(module):
29
    return [get_model_builder(name) for name in list_models(module)]
30
31


32
def _get_image(input_shape, real_image, device, dtype=None):
33
34
35
36
37
38
39
40
41
42
    """This routine loads a real or random image based on `real_image` argument.
    Currently, the real image is utilized for the following list of models:
    - `retinanet_resnet50_fpn`,
    - `retinanet_resnet50_fpn_v2`,
    - `keypointrcnn_resnet50_fpn`,
    - `fasterrcnn_resnet50_fpn`,
    - `fasterrcnn_resnet50_fpn_v2`,
    - `fcos_resnet50_fpn`,
    - `maskrcnn_resnet50_fpn`,
    - `maskrcnn_resnet50_fpn_v2`,
Aidyn-A's avatar
Aidyn-A committed
43
    in `test_classification_model` and `test_detection_model`.
44
45
46
    To do so, a keyword argument `real_image` was added to the abovelisted models in `_model_params`
    """
    if real_image:
47
48
49
        # TODO: Maybe unify file discovery logic with test_image.py
        GRACE_HOPPER = os.path.join(
            os.path.dirname(os.path.abspath(__file__)), "assets", "encode_jpeg", "grace_hopper_517x606.jpg"
50
        )
51

52
53
54
55
56
57
58
59
60
61
62
        img = Image.open(GRACE_HOPPER)

        original_width, original_height = img.size

        # make the image square
        img = img.crop((0, 0, original_width, original_width))
        img = img.resize(input_shape[1:3])

        convert_tensor = transforms.ToTensor()
        image = convert_tensor(img)
        assert tuple(image.size()) == input_shape
63
        return image.to(device=device, dtype=dtype)
64
65

    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
66
    return torch.rand(input_shape).to(device=device, dtype=dtype)
67
68


69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
@pytest.fixture
def disable_weight_loading(mocker):
    """When testing models, the two slowest operations are the downloading of the weights to a file and loading them
    into the model. Unless, you want to test against specific weights, these steps can be disabled without any
    drawbacks.

    Including this fixture into the signature of your test, i.e. `test_foo(disable_weight_loading)`, will recurse
    through all models in `torchvision.models` and will patch all occurrences of the function
    `download_state_dict_from_url` as well as the method `load_state_dict` on all subclasses of `nn.Module` to be
    no-ops.

    .. warning:

        Loaded models are still executable as normal, but will always have random weights. Make sure to not use this
        fixture if you want to compare the model output against reference values.

    """
    starting_point = models
    function_name = "load_state_dict_from_url"
    method_name = "load_state_dict"

    module_names = {info.name for info in pkgutil.walk_packages(starting_point.__path__, f"{starting_point.__name__}.")}
    targets = {f"torchvision._internally_replaced_utils.{function_name}", f"torch.nn.Module.{method_name}"}
    for name in module_names:
        module = sys.modules.get(name)
        if not module:
            continue

        if function_name in module.__dict__:
            targets.add(f"{module.__name__}.{function_name}")

        targets.update(
            {
                f"{module.__name__}.{obj.__name__}.{method_name}"
                for obj in module.__dict__.values()
                if isinstance(obj, type) and issubclass(obj, nn.Module) and method_name in obj.__dict__
            }
        )

    for target in targets:
        # See https://github.com/pytorch/vision/pull/4867#discussion_r743677802 for details
        with contextlib.suppress(AttributeError):
            mocker.patch(target)


114
115
116
117
118
119
def _get_expected_file(name=None):
    # Determine expected file based on environment
    expected_file_base = get_relative_path(os.path.realpath(__file__), "expect")

    # Note: for legacy reasons, the reference file names all had "ModelTest.test_" in their names
    # We hardcode it here to avoid having to re-generate the reference files
120
    expected_file = os.path.join(expected_file_base, "ModelTester.test_" + name)
121
122
123
124
125
126
127
128
129
130
131
132
    expected_file += "_expect.pkl"

    if not ACCEPT and not os.path.exists(expected_file):
        raise RuntimeError(
            f"No expect file exists for {os.path.basename(expected_file)} in {expected_file}; "
            "to accept the current output, re-run the failing test after setting the EXPECTTEST_ACCEPT "
            "env variable. For example: EXPECTTEST_ACCEPT=1 pytest test/test_models.py -k alexnet"
        )

    return expected_file


133
def _assert_expected(output, name, prec=None, atol=None, rtol=None):
134
135
136
137
138
139
140
141
142
143
144
    """Test that a python value matches the recorded contents of a file
    based on a "check" name. The value must be
    pickable with `torch.save`. This file
    is placed in the 'expect' directory in the same directory
    as the test script. You can automatically update the recorded test
    output using an EXPECTTEST_ACCEPT=1 env variable.
    """
    expected_file = _get_expected_file(name)

    if ACCEPT:
        filename = {os.path.basename(expected_file)}
145
        print(f"Accepting updated output for {filename}:\n\n{output}")
146
147
148
149
        torch.save(output, expected_file)
        MAX_PICKLE_SIZE = 50 * 1000  # 50 KB
        binary_size = os.path.getsize(expected_file)
        if binary_size > MAX_PICKLE_SIZE:
150
            raise RuntimeError(f"The output for {filename}, is larger than 50kb - got {binary_size}kb")
151
152
    else:
        expected = torch.load(expected_file)
153
154
        rtol = rtol or prec  # keeping prec param for legacy reason, but could be removed ideally
        atol = atol or prec
155
        torch.testing.assert_close(output, expected, rtol=rtol, atol=atol, check_dtype=False, check_device=False)
156
157


158
def _check_jit_scriptable(nn_module, args, unwrapper=None, eager_out=None):
159
160
    """Check that a nn.Module's results in TorchScript match eager and that it can be exported"""

161
162
163
164
165
166
167
    def get_export_import_copy(m):
        """Save and load a TorchScript model"""
        with TemporaryDirectory() as dir:
            path = os.path.join(dir, "script.pt")
            m.save(path)
            imported = torch.jit.load(path)
        return imported
168
169

    sm = torch.jit.script(nn_module)
Aidyn-A's avatar
Aidyn-A committed
170
    sm.eval()
171

172
173
    if eager_out is None:
        with torch.no_grad(), freeze_rng_state():
174
            eager_out = nn_module(*args)
175

176
    with torch.no_grad(), freeze_rng_state():
177
178
179
180
181
        script_out = sm(*args)
        if unwrapper:
            script_out = unwrapper(script_out)

    torch.testing.assert_close(eager_out, script_out, atol=1e-4, rtol=1e-4)
182
183
184
185
186
187
188
189

    m_import = get_export_import_copy(sm)
    with torch.no_grad(), freeze_rng_state():
        imported_script_out = m_import(*args)
        if unwrapper:
            imported_script_out = unwrapper(imported_script_out)

    torch.testing.assert_close(script_out, imported_script_out, atol=3e-4, rtol=3e-4)
190
191


192
def _check_fx_compatible(model, inputs, eager_out=None):
193
    model_fx = torch.fx.symbolic_trace(model)
194
195
    if eager_out is None:
        eager_out = model(inputs)
Aidyn-A's avatar
Aidyn-A committed
196
197
    with torch.no_grad(), freeze_rng_state():
        fx_out = model_fx(inputs)
198
    torch.testing.assert_close(eager_out, fx_out)
199
200


201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
def _check_input_backprop(model, inputs):
    if isinstance(inputs, list):
        requires_grad = list()
        for inp in inputs:
            requires_grad.append(inp.requires_grad)
            inp.requires_grad_(True)
    else:
        requires_grad = inputs.requires_grad
        inputs.requires_grad_(True)

    out = model(inputs)

    if isinstance(out, dict):
        out["out"].sum().backward()
    else:
        if isinstance(out[0], dict):
            out[0]["scores"].sum().backward()
        else:
            out[0].sum().backward()

    if isinstance(inputs, list):
        for i, inp in enumerate(inputs):
            assert inputs[i].grad is not None
            inp.requires_grad_(requires_grad[i])
    else:
        assert inputs.grad is not None
        inputs.requires_grad_(requires_grad)


230
231
232
# If 'unwrapper' is provided it will be called with the script model outputs
# before they are compared to the eager model outputs. This is useful if the
# model outputs are different between TorchScript / Eager mode
233
script_model_unwrapper = {
234
235
    "googlenet": lambda x: x.logits,
    "inception_v3": lambda x: x.logits,
236
    "fasterrcnn_resnet50_fpn": lambda x: x[1],
237
    "fasterrcnn_resnet50_fpn_v2": lambda x: x[1],
238
    "fasterrcnn_mobilenet_v3_large_fpn": lambda x: x[1],
239
    "fasterrcnn_mobilenet_v3_large_320_fpn": lambda x: x[1],
240
    "maskrcnn_resnet50_fpn": lambda x: x[1],
241
    "maskrcnn_resnet50_fpn_v2": lambda x: x[1],
242
243
    "keypointrcnn_resnet50_fpn": lambda x: x[1],
    "retinanet_resnet50_fpn": lambda x: x[1],
244
    "retinanet_resnet50_fpn_v2": lambda x: x[1],
245
    "ssd300_vgg16": lambda x: x[1],
246
    "ssdlite320_mobilenet_v3_large": lambda x: x[1],
Hu Ye's avatar
Hu Ye committed
247
    "fcos_resnet50_fpn": lambda x: x[1],
248
}
249
250


251
252
253
254
255
256
257
258
259
260
261
262
263
264
# The following models exhibit flaky numerics under autocast in _test_*_model harnesses.
# This may be caused by the harness environment (e.g. num classes, input initialization
# via torch.rand), and does not prove autocast is unsuitable when training with real data
# (autocast has been used successfully with real data for some of these models).
# TODO:  investigate why autocast numerics are flaky in the harnesses.
#
# For the following models, _test_*_model harnesses skip numerical checks on outputs when
# trying autocast. However, they still try an autocasted forward pass, so they still ensure
# autocast coverage suffices to prevent dtype errors in each model.
autocast_flaky_numerics = (
    "inception_v3",
    "resnet101",
    "resnet152",
    "wide_resnet101_2",
265
266
    "deeplabv3_resnet50",
    "deeplabv3_resnet101",
267
    "deeplabv3_mobilenet_v3_large",
268
269
    "fcn_resnet50",
    "fcn_resnet101",
270
    "lraspp_mobilenet_v3_large",
271
    "maskrcnn_resnet50_fpn",
272
    "maskrcnn_resnet50_fpn_v2",
273
    "keypointrcnn_resnet50_fpn",
274
275
)

276
277
278
# The tests for the following quantized models are flaky possibly due to inconsistent
# rounding errors in different platforms. For this reason the input/output consistency
# tests under test_quantized_classification_model will be skipped for the following models.
279
quantized_flaky_models = ("inception_v3", "resnet50")
280

281
282
283
284
285
# The tests for the following detection models are flaky.
# We run those tests on float64 to avoid floating point errors.
# FIXME: we shouldn't have to do that :'/
detection_flaky_models = ("keypointrcnn_resnet50_fpn", "maskrcnn_resnet50_fpn", "maskrcnn_resnet50_fpn_v2")

286

287
288
289
# The following contains configuration parameters for all models which are used by
# the _test_*_model methods.
_model_params = {
290
    "inception_v3": {"input_shape": (1, 3, 299, 299), "init_weights": True},
291
292
293
294
295
296
    "retinanet_resnet50_fpn": {
        "num_classes": 20,
        "score_thresh": 0.01,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
297
        "real_image": True,
298
    },
299
300
301
302
303
304
    "retinanet_resnet50_fpn_v2": {
        "num_classes": 20,
        "score_thresh": 0.01,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
305
        "real_image": True,
306
    },
307
308
309
310
    "keypointrcnn_resnet50_fpn": {
        "num_classes": 2,
        "min_size": 224,
        "max_size": 224,
311
        "box_score_thresh": 0.17,
312
        "input_shape": (3, 224, 224),
313
        "real_image": True,
314
    },
315
316
317
318
319
    "fasterrcnn_resnet50_fpn": {
        "num_classes": 20,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
320
        "real_image": True,
321
    },
322
323
324
325
326
    "fasterrcnn_resnet50_fpn_v2": {
        "num_classes": 20,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
327
        "real_image": True,
328
    },
Hu Ye's avatar
Hu Ye committed
329
330
331
332
333
334
    "fcos_resnet50_fpn": {
        "num_classes": 2,
        "score_thresh": 0.05,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
335
        "real_image": True,
Hu Ye's avatar
Hu Ye committed
336
    },
337
338
339
340
341
    "maskrcnn_resnet50_fpn": {
        "num_classes": 10,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
342
        "real_image": True,
343
    },
344
345
346
347
348
    "maskrcnn_resnet50_fpn_v2": {
        "num_classes": 10,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
349
        "real_image": True,
350
    },
351
352
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "box_score_thresh": 0.02076,
353
    },
354
355
356
357
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "box_score_thresh": 0.02076,
        "rpn_pre_nms_top_n_test": 1000,
        "rpn_post_nms_top_n_test": 1000,
358
    },
359
360
361
362
    "vit_h_14": {
        "image_size": 56,
        "input_shape": (1, 3, 56, 56),
    },
363
364
365
    "mvit_v1_b": {
        "input_shape": (1, 3, 16, 224, 224),
    },
366
367
368
    "mvit_v2_s": {
        "input_shape": (1, 3, 16, 224, 224),
    },
369
370
371
    "s3d": {
        "input_shape": (1, 3, 16, 224, 224),
    },
372
    "googlenet": {"init_weights": True},
373
}
374
375
376
377
378
# speeding up slow models:
slow_models = [
    "convnext_base",
    "convnext_large",
    "resnext101_32x8d",
379
    "resnext101_64x4d",
380
381
382
383
384
385
386
387
388
389
    "wide_resnet101_2",
    "efficientnet_b6",
    "efficientnet_b7",
    "efficientnet_v2_m",
    "efficientnet_v2_l",
    "regnet_y_16gf",
    "regnet_y_32gf",
    "regnet_y_128gf",
    "regnet_x_16gf",
    "regnet_x_32gf",
Joao Gomes's avatar
Joao Gomes committed
390
    "swin_t",
391
392
    "swin_s",
    "swin_b",
Local State's avatar
Local State committed
393
394
395
    "swin_v2_t",
    "swin_v2_s",
    "swin_v2_b",
396
397
398
]
for m in slow_models:
    _model_params[m] = {"input_shape": (1, 3, 64, 64)}
399
400


401
# skip big models to reduce memory usage on CI test. We can exclude combinations of (platform-system, device).
402
skipped_big_models = {
403
404
    "vit_h_14": {("Windows", "cpu"), ("Windows", "cuda")},
    "regnet_y_128gf": {("Windows", "cpu"), ("Windows", "cuda")},
405
406
    "mvit_v1_b": {("Windows", "cuda"), ("Linux", "cuda")},
    "mvit_v2_s": {("Windows", "cuda"), ("Linux", "cuda")},
407
408
}

409
410
411
412
413
414
415
416
417
418
419

def is_skippable(model_name, device):
    if model_name not in skipped_big_models:
        return False

    platform_system = platform.system()
    device_name = str(device).split(":")[0]

    return (platform_system, device_name) in skipped_big_models[model_name]


420
421
422
423
424
425
# The following contains configuration and expected values to be used tests that are model specific
_model_tests_values = {
    "retinanet_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [36, 46, 65, 78, 88, 89],
    },
426
427
428
429
    "retinanet_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [44, 74, 131, 170, 200, 203],
    },
430
431
432
433
434
435
436
437
    "keypointrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [48, 58, 77, 90, 100, 101],
    },
    "fasterrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [30, 40, 59, 72, 82, 83],
    },
438
439
440
441
    "fasterrcnn_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [50, 80, 137, 176, 206, 209],
    },
442
443
444
445
    "maskrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [42, 52, 71, 84, 94, 95],
    },
446
447
448
449
    "maskrcnn_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [66, 96, 153, 192, 222, 225],
    },
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "ssd300_vgg16": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [45, 51, 57, 63, 67, 71],
    },
    "ssdlite320_mobilenet_v3_large": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [96, 99, 138, 200, 239, 257, 266],
    },
Hu Ye's avatar
Hu Ye committed
466
467
468
469
    "fcos_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [54, 64, 83, 96, 106, 107],
    },
470
471
472
}


Anirudh's avatar
Anirudh committed
473
474
475
476
477
478
479
480
481
482
def _make_sliced_model(model, stop_layer):
    layers = OrderedDict()
    for name, layer in model.named_children():
        layers[name] = layer
        if name == stop_layer:
            break
    new_model = torch.nn.Sequential(layers)
    return new_model


483
484
@pytest.mark.parametrize("model_fn", [models.densenet121, models.densenet169, models.densenet201, models.densenet161])
def test_memory_efficient_densenet(model_fn):
Anirudh's avatar
Anirudh committed
485
486
487
    input_shape = (1, 3, 300, 300)
    x = torch.rand(input_shape)

488
    model1 = model_fn(num_classes=50, memory_efficient=True)
Anirudh's avatar
Anirudh committed
489
    params = model1.state_dict()
490
    num_params = sum(x.numel() for x in model1.parameters())
Anirudh's avatar
Anirudh committed
491
492
493
    model1.eval()
    out1 = model1(x)
    out1.sum().backward()
494
    num_grad = sum(x.grad.numel() for x in model1.parameters() if x.grad is not None)
Anirudh's avatar
Anirudh committed
495

496
    model2 = model_fn(num_classes=50, memory_efficient=False)
Anirudh's avatar
Anirudh committed
497
498
499
500
501
502
503
    model2.load_state_dict(params)
    model2.eval()
    out2 = model2(x)

    assert num_params == num_grad
    torch.testing.assert_close(out1, out2, rtol=0.0, atol=1e-5)

504
505
506
    _check_input_backprop(model1, x)
    _check_input_backprop(model2, x)

Anirudh's avatar
Anirudh committed
507

508
509
510
@pytest.mark.parametrize("dilate_layer_2", (True, False))
@pytest.mark.parametrize("dilate_layer_3", (True, False))
@pytest.mark.parametrize("dilate_layer_4", (True, False))
Anirudh's avatar
Anirudh committed
511
512
def test_resnet_dilation(dilate_layer_2, dilate_layer_3, dilate_layer_4):
    # TODO improve tests to also check that each layer has the right dimensionality
513
    model = models.resnet50(replace_stride_with_dilation=(dilate_layer_2, dilate_layer_3, dilate_layer_4))
Anirudh's avatar
Anirudh committed
514
515
516
517
518
519
520
521
522
    model = _make_sliced_model(model, stop_layer="layer4")
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    f = 2 ** sum((dilate_layer_2, dilate_layer_3, dilate_layer_4))
    assert out.shape == (1, 2048, 7 * f, 7 * f)


def test_mobilenet_v2_residual_setting():
523
    model = models.mobilenet_v2(inverted_residual_setting=[[1, 16, 1, 1], [6, 24, 2, 2]])
Anirudh's avatar
Anirudh committed
524
525
526
527
528
529
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    assert out.shape[-1] == 1000


530
531
532
@pytest.mark.parametrize("model_fn", [models.mobilenet_v2, models.mobilenet_v3_large, models.mobilenet_v3_small])
def test_mobilenet_norm_layer(model_fn):
    model = model_fn()
Anirudh's avatar
Anirudh committed
533
534
535
    assert any(isinstance(x, nn.BatchNorm2d) for x in model.modules())

    def get_gn(num_channels):
536
        return nn.GroupNorm(1, num_channels)
Anirudh's avatar
Anirudh committed
537

538
    model = model_fn(norm_layer=get_gn)
539
    assert not (any(isinstance(x, nn.BatchNorm2d) for x in model.modules()))
Anirudh's avatar
Anirudh committed
540
541
542
543
544
    assert any(isinstance(x, nn.GroupNorm) for x in model.modules())


def test_inception_v3_eval():
    kwargs = {}
545
546
547
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
548
549
550
551
552
553
554
    name = "inception_v3"
    model = models.Inception3(**kwargs)
    model.aux_logits = False
    model.AuxLogits = None
    model = model.eval()
    x = torch.rand(1, 3, 299, 299)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
555
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
556
557
558


def test_fasterrcnn_double():
559
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
560
561
562
563
564
565
566
567
568
569
570
    model.double()
    model.eval()
    input_shape = (3, 300, 300)
    x = torch.rand(input_shape, dtype=torch.float64)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x
    assert len(out) == 1
    assert "boxes" in out[0]
    assert "scores" in out[0]
    assert "labels" in out[0]
571
    _check_input_backprop(model, model_input)
Anirudh's avatar
Anirudh committed
572
573
574
575


def test_googlenet_eval():
    kwargs = {}
576
577
578
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
579
580
581
582
583
584
585
586
    name = "googlenet"
    model = models.GoogLeNet(**kwargs)
    model.aux_logits = False
    model.aux1 = None
    model.aux2 = None
    model = model.eval()
    x = torch.rand(1, 3, 224, 224)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
587
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
588
589
590
591
592
593
594
595
596
597


@needs_cuda
def test_fasterrcnn_switch_devices():
    def checkOut(out):
        assert len(out) == 1
        assert "boxes" in out[0]
        assert "scores" in out[0]
        assert "labels" in out[0]

598
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
599
600
601
    model.cuda()
    model.eval()
    input_shape = (3, 300, 300)
602
    x = torch.rand(input_shape, device="cuda")
Anirudh's avatar
Anirudh committed
603
604
605
606
607
608
609
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

    checkOut(out)

    with torch.cuda.amp.autocast():
610
        out = model(model_input)
611

Anirudh's avatar
Anirudh committed
612
    checkOut(out)
613

614
615
    _check_input_backprop(model, model_input)

Anirudh's avatar
Anirudh committed
616
617
618
619
    # now switch to cpu and make sure it works
    model.cpu()
    x = x.cpu()
    out_cpu = model([x])
620

Anirudh's avatar
Anirudh committed
621
    checkOut(out_cpu)
622

623
624
    _check_input_backprop(model, [x])

625

Anirudh's avatar
Anirudh committed
626
def test_generalizedrcnn_transform_repr():
627

Anirudh's avatar
Anirudh committed
628
629
630
    min_size, max_size = 224, 299
    image_mean = [0.485, 0.456, 0.406]
    image_std = [0.229, 0.224, 0.225]
631

632
633
634
    t = models.detection.transform.GeneralizedRCNNTransform(
        min_size=min_size, max_size=max_size, image_mean=image_mean, image_std=image_std
    )
635

Anirudh's avatar
Anirudh committed
636
    # Check integrity of object __repr__ attribute
637
638
    expected_string = "GeneralizedRCNNTransform("
    _indent = "\n    "
639
640
    expected_string += f"{_indent}Normalize(mean={image_mean}, std={image_std})"
    expected_string += f"{_indent}Resize(min_size=({min_size},), max_size={max_size}, "
Anirudh's avatar
Anirudh committed
641
642
    expected_string += "mode='bilinear')\n)"
    assert t.__repr__() == expected_string
643
644


645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
test_vit_conv_stem_configs = [
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=64),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=128),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=1, out_channels=128),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=256),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=1, out_channels=256),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=512),
]


def vitc_b_16(**kwargs: Any):
    return models.VisionTransformer(
        image_size=224,
        patch_size=16,
        num_layers=12,
        num_heads=12,
        hidden_dim=768,
        mlp_dim=3072,
        conv_stem_configs=test_vit_conv_stem_configs,
        **kwargs,
    )


@pytest.mark.parametrize("model_fn", [vitc_b_16])
669
@pytest.mark.parametrize("dev", cpu_and_cuda())
670
671
672
673
def test_vitc_models(model_fn, dev):
    test_classification_model(model_fn, dev)


674
@torch.backends.cudnn.flags(allow_tf32=False)  # see: https://github.com/pytorch/vision/issues/7618
675
@pytest.mark.parametrize("model_fn", list_model_fns(models))
676
@pytest.mark.parametrize("dev", cpu_and_cuda())
677
def test_classification_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
678
679
    set_rng_seed(0)
    defaults = {
680
681
        "num_classes": 50,
        "input_shape": (1, 3, 224, 224),
Anirudh's avatar
Anirudh committed
682
    }
683
    model_name = model_fn.__name__
684
    if SKIP_BIG_MODEL and is_skippable(model_name, dev):
685
        pytest.skip("Skipped to reduce memory usage. Set env var SKIP_BIG_MODEL=0 to enable test for this model")
Anirudh's avatar
Anirudh committed
686
    kwargs = {**defaults, **_model_params.get(model_name, {})}
687
    num_classes = kwargs.get("num_classes")
688
    input_shape = kwargs.pop("input_shape")
689
    real_image = kwargs.pop("real_image", False)
Anirudh's avatar
Anirudh committed
690

691
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
692
    model.eval().to(device=dev)
693
    x = _get_image(input_shape=input_shape, real_image=real_image, device=dev)
Anirudh's avatar
Anirudh committed
694
    out = model(x)
695
696
697
698
699
700
701
702
    # FIXME: this if/else is nasty and only here to please our CI prior to the
    # release. We rethink these tests altogether.
    if model_name == "resnet101":
        prec = 0.2
    else:
        # FIXME: this is probably still way too high.
        prec = 0.1
    _assert_expected(out.cpu(), model_name, prec=prec)
703
    assert out.shape[-1] == num_classes
704
705
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
706

707
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
708
709
710
711
712
713
        with torch.cuda.amp.autocast():
            out = model(x)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                _assert_expected(out.cpu(), model_name, prec=0.1)
            assert out.shape[-1] == 50
714

715
716
    _check_input_backprop(model, x)

717

718
@pytest.mark.parametrize("model_fn", list_model_fns(models.segmentation))
719
@pytest.mark.parametrize("dev", cpu_and_cuda())
720
def test_segmentation_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
721
722
    set_rng_seed(0)
    defaults = {
723
        "num_classes": 10,
724
        "weights_backbone": None,
725
        "input_shape": (1, 3, 32, 32),
Anirudh's avatar
Anirudh committed
726
    }
727
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
728
    kwargs = {**defaults, **_model_params.get(model_name, {})}
729
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
730

731
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
732
733
734
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
Aidyn-A's avatar
Aidyn-A committed
735
736
    with torch.no_grad(), freeze_rng_state():
        out = model(x)
Anirudh's avatar
Anirudh committed
737
738
739
740
741
742
743
744
745
746
747
748
749
750

    def check_out(out):
        prec = 0.01
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(out.cpu(), model_name, prec=prec)
        except AssertionError:
            # Unfortunately some segmentation models are flaky with autocast
            # so instead of validating the probability scores, check that the class
            # predictions match.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
751
752
753
            torch.testing.assert_close(
                out.argmax(dim=1), expected.argmax(dim=1), rtol=prec, atol=prec, check_device=False
            )
Anirudh's avatar
Anirudh committed
754
755
756
757
            return False  # Partial validation performed

        return True  # Full validation performed

758
    full_validation = check_out(out["out"])
Anirudh's avatar
Anirudh committed
759

760
761
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
762

763
    if dev == "cuda":
Aidyn-A's avatar
Aidyn-A committed
764
        with torch.cuda.amp.autocast(), torch.no_grad(), freeze_rng_state():
765
            out = model(x)
Anirudh's avatar
Anirudh committed
766
767
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
768
                full_validation &= check_out(out["out"])
Anirudh's avatar
Anirudh committed
769
770

    if not full_validation:
771
        msg = (
772
            f"The output of {test_segmentation_model.__name__} could only be partially validated. "
773
774
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
775
            "significant changes to the codebase."
776
        )
Anirudh's avatar
Anirudh committed
777
778
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
779

780
781
    _check_input_backprop(model, x)

782

783
@pytest.mark.parametrize("model_fn", list_model_fns(models.detection))
784
@pytest.mark.parametrize("dev", cpu_and_cuda())
785
def test_detection_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
786
787
    set_rng_seed(0)
    defaults = {
788
        "num_classes": 50,
789
        "weights_backbone": None,
790
        "input_shape": (3, 300, 300),
Anirudh's avatar
Anirudh committed
791
    }
792
    model_name = model_fn.__name__
793
794
795
796
    if model_name in detection_flaky_models:
        dtype = torch.float64
    else:
        dtype = torch.get_default_dtype()
Anirudh's avatar
Anirudh committed
797
    kwargs = {**defaults, **_model_params.get(model_name, {})}
798
    input_shape = kwargs.pop("input_shape")
799
    real_image = kwargs.pop("real_image", False)
Anirudh's avatar
Anirudh committed
800

801
    model = model_fn(**kwargs)
802
803
    model.eval().to(device=dev, dtype=dtype)
    x = _get_image(input_shape=input_shape, real_image=real_image, device=dev, dtype=dtype)
Anirudh's avatar
Anirudh committed
804
    model_input = [x]
Aidyn-A's avatar
Aidyn-A committed
805
806
    with torch.no_grad(), freeze_rng_state():
        out = model(model_input)
Anirudh's avatar
Anirudh committed
807
808
    assert model_input[0] is x

809
    def check_out(out):
Anirudh's avatar
Anirudh committed
810
811
812
        assert len(out) == 1

        def compact(tensor):
813
            tensor = tensor.cpu()
Anirudh's avatar
Anirudh committed
814
815
816
817
818
819
820
821
822
823
824
825
826
827
            size = tensor.size()
            elements_per_sample = functools.reduce(operator.mul, size[1:], 1)
            if elements_per_sample > 30:
                return compute_mean_std(tensor)
            else:
                return subsample_tensor(tensor)

        def subsample_tensor(tensor):
            num_elems = tensor.size(0)
            num_samples = 20
            if num_elems <= num_samples:
                return tensor

            ith_index = num_elems // num_samples
828
            return tensor[ith_index - 1 :: ith_index]
Anirudh's avatar
Anirudh committed
829
830
831
832
833
834
835
836
837

        def compute_mean_std(tensor):
            # can't compute mean of integral tensor
            tensor = tensor.to(torch.double)
            mean = torch.mean(tensor)
            std = torch.std(tensor)
            return {"mean": mean, "std": std}

        output = map_nested_tensor_object(out, tensor_map_fn=compact)
838
        prec = 0.01
Anirudh's avatar
Anirudh committed
839
840
841
842
843
844
845
846
847
848
849
850
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(output, model_name, prec=prec)
        except AssertionError:
            # Unfortunately detection models are flaky due to the unstable sort
            # in NMS. If matching across all outputs fails, use the same approach
            # as in NMSTester.test_nms_cuda to see if this is caused by duplicate
            # scores.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
851
852
853
            torch.testing.assert_close(
                output[0]["scores"], expected[0]["scores"], rtol=prec, atol=prec, check_device=False, check_dtype=False
            )
Anirudh's avatar
Anirudh committed
854
855
856
857
858
859
860
861
862
863

            # Note: Fmassa proposed turning off NMS by adapting the threshold
            # and then using the Hungarian algorithm as in DETR to find the
            # best match between output and expected boxes and eliminate some
            # of the flakiness. Worth exploring.
            return False  # Partial validation performed

        return True  # Full validation performed

    full_validation = check_out(out)
864
    _check_jit_scriptable(model, ([x],), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
Anirudh's avatar
Anirudh committed
865

866
    if dev == "cuda":
Aidyn-A's avatar
Aidyn-A committed
867
        with torch.cuda.amp.autocast(), torch.no_grad(), freeze_rng_state():
Anirudh's avatar
Anirudh committed
868
869
870
            out = model(model_input)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
871
                full_validation &= check_out(out)
Anirudh's avatar
Anirudh committed
872
873

    if not full_validation:
874
        msg = (
875
            f"The output of {test_detection_model.__name__} could only be partially validated. "
876
877
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
878
            "significant changes to the codebase."
879
        )
Anirudh's avatar
Anirudh committed
880
881
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
882

883
884
    _check_input_backprop(model, model_input)

885

886
@pytest.mark.parametrize("model_fn", list_model_fns(models.detection))
887
def test_detection_model_validation(model_fn):
Anirudh's avatar
Anirudh committed
888
    set_rng_seed(0)
889
    model = model_fn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
890
891
892
893
    input_shape = (3, 300, 300)
    x = [torch.rand(input_shape)]

    # validate that targets are present in training
894
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
895
896
897
        model(x)

    # validate type
898
    targets = [{"boxes": 0.0}]
899
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
900
901
902
903
        model(x, targets=targets)

    # validate boxes shape
    for boxes in (torch.rand((4,)), torch.rand((1, 5))):
904
        targets = [{"boxes": boxes}]
905
        with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
906
907
908
909
            model(x, targets=targets)

    # validate that no degenerate boxes are present
    boxes = torch.tensor([[1, 3, 1, 4], [2, 4, 3, 4]])
910
    targets = [{"boxes": boxes}]
911
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
912
        model(x, targets=targets)
913

914

915
@pytest.mark.parametrize("model_fn", list_model_fns(models.video))
916
@pytest.mark.parametrize("dev", cpu_and_cuda())
917
def test_video_model(model_fn, dev):
918
    set_rng_seed(0)
Anirudh's avatar
Anirudh committed
919
920
    # the default input shape is
    # bs * num_channels * clip_len * h *w
921
922
923
924
    defaults = {
        "input_shape": (1, 3, 4, 112, 112),
        "num_classes": 50,
    }
925
    model_name = model_fn.__name__
926
    if SKIP_BIG_MODEL and is_skippable(model_name, dev):
927
        pytest.skip("Skipped to reduce memory usage. Set env var SKIP_BIG_MODEL=0 to enable test for this model")
928
929
930
    kwargs = {**defaults, **_model_params.get(model_name, {})}
    num_classes = kwargs.get("num_classes")
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
931
    # test both basicblock and Bottleneck
932
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
933
934
935
936
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
937
    _assert_expected(out.cpu(), model_name, prec=0.1)
938
    assert out.shape[-1] == num_classes
939
940
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
941
    assert out.shape[-1] == num_classes
Anirudh's avatar
Anirudh committed
942

943
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
944
945
        with torch.cuda.amp.autocast():
            out = model(x)
946
947
948
949
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                _assert_expected(out.cpu(), model_name, prec=0.1)
            assert out.shape[-1] == num_classes
950

951
952
    _check_input_backprop(model, x)

953

954
955
956
957
958
959
960
@pytest.mark.skipif(
    not (
        "fbgemm" in torch.backends.quantized.supported_engines
        and "qnnpack" in torch.backends.quantized.supported_engines
    ),
    reason="This Pytorch Build has not been built with fbgemm and qnnpack",
)
961
@pytest.mark.parametrize("model_fn", list_model_fns(models.quantization))
962
def test_quantized_classification_model(model_fn):
963
    set_rng_seed(0)
964
    defaults = {
965
        "num_classes": 5,
966
967
        "input_shape": (1, 3, 224, 224),
        "quantize": True,
968
    }
969
    model_name = model_fn.__name__
970
    kwargs = {**defaults, **_model_params.get(model_name, {})}
971
    input_shape = kwargs.pop("input_shape")
972
973

    # First check if quantize=True provides models that can run with input data
974
    model = model_fn(**kwargs)
975
    model.eval()
976
    x = torch.rand(input_shape)
977
978
979
    out = model(x)

    if model_name not in quantized_flaky_models:
980
        _assert_expected(out.cpu(), model_name + "_quantized", prec=2e-2)
981
        assert out.shape[-1] == 5
982
983
984
985
986
987
988
        _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
        _check_fx_compatible(model, x, eager_out=out)
    else:
        try:
            torch.jit.script(model)
        except Exception as e:
            raise AssertionError("model cannot be scripted.") from e
989

990
    kwargs["quantize"] = False
991
    for eval_mode in [True, False]:
992
        model = model_fn(**kwargs)
993
994
        if eval_mode:
            model.eval()
995
            model.qconfig = torch.ao.quantization.default_qconfig
996
997
        else:
            model.train()
998
            model.qconfig = torch.ao.quantization.default_qat_qconfig
999

1000
        model.fuse_model(is_qat=not eval_mode)
1001
        if eval_mode:
1002
            torch.ao.quantization.prepare(model, inplace=True)
1003
        else:
1004
            torch.ao.quantization.prepare_qat(model, inplace=True)
1005
1006
            model.eval()

1007
        torch.ao.quantization.convert(model, inplace=True)
1008
1009


1010
@pytest.mark.parametrize("model_fn", list_model_fns(models.detection))
1011
def test_detection_model_trainable_backbone_layers(model_fn, disable_weight_loading):
1012
    model_name = model_fn.__name__
1013
1014
1015
    max_trainable = _model_tests_values[model_name]["max_trainable"]
    n_trainable_params = []
    for trainable_layers in range(0, max_trainable + 1):
1016
        model = model_fn(weights=None, weights_backbone="DEFAULT", trainable_backbone_layers=trainable_layers)
1017
1018
1019
1020
1021

        n_trainable_params.append(len([p for p in model.parameters() if p.requires_grad]))
    assert n_trainable_params == _model_tests_values[model_name]["n_trn_params_per_layer"]


1022
@needs_cuda
1023
@pytest.mark.parametrize("model_fn", list_model_fns(models.optical_flow))
1024
@pytest.mark.parametrize("scripted", (False, True))
1025
def test_raft(model_fn, scripted):
1026
1027
1028
1029

    torch.manual_seed(0)

    # We need very small images, otherwise the pickle size would exceed the 50KB
1030
    # As a result we need to override the correlation pyramid to not downsample
1031
1032
1033
1034
    # too much, otherwise we would get nan values (effective H and W would be
    # reduced to 1)
    corr_block = models.optical_flow.raft.CorrBlock(num_levels=2, radius=2)

1035
    model = model_fn(corr_block=corr_block).eval().to("cuda")
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
    if scripted:
        model = torch.jit.script(model)

    bs = 1
    img1 = torch.rand(bs, 3, 80, 72).cuda()
    img2 = torch.rand(bs, 3, 80, 72).cuda()

    preds = model(img1, img2)
    flow_pred = preds[-1]
    # Tolerance is fairly high, but there are 2 * H * W outputs to check
1046
    # The .pkl were generated on the AWS cluter, on the CI it looks like the results are slightly different
1047
    _assert_expected(flow_pred.cpu(), name=model_fn.__name__, atol=1e-2, rtol=1)
1048
1049


1050
if __name__ == "__main__":
1051
    pytest.main([__file__])