training.py 42.5 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()
24
25
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
26
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
27

Neel Kant's avatar
Neel Kant committed
28
from megatron import get_args
29
from megatron import get_signal_handler
Mohammad's avatar
Mohammad committed
30
31
from megatron import get_timers
from megatron import get_tensorboard_writer
32
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
33
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
34
from megatron import is_last_rank
mohammad's avatar
mohammad committed
35
from megatron import update_num_microbatches
36
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
37
from megatron import print_rank_0
38
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
39
40
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
41
from megatron.model import Float16Module
42
from megatron.model import ModelType
mohammad's avatar
mohammad committed
43
from megatron.optimizer import get_megatron_optimizer
Mohammad's avatar
Mohammad committed
44
from megatron.initialize import initialize_megatron
45
from megatron.initialize import write_args_to_tensorboard
46
from megatron.optimizer_param_scheduler import OptimizerParamScheduler
47
48
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.utils import check_adlr_autoresume_termination
49
from megatron.utils import unwrap_model
Vijay Korthikanti's avatar
Vijay Korthikanti committed
50
from megatron.data.data_samplers import build_pretraining_data_loader
mohammad's avatar
mohammad committed
51
from megatron.utils import calc_params_l2_norm
52
from megatron.schedules import get_forward_backward_func
53
from megatron.utils import report_memory
54
from megatron.model.vision.knn_monitor import compute_feature_bank
55

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
56

57
58
59
60
61
62
63
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


64
def pretrain(train_valid_test_dataset_provider,
65
             model_provider,
66
             model_type,
67
             forward_step_func,
68
             process_non_loss_data_func=None,
69
             extra_args_provider=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
70
             args_defaults={}):
71
72
73
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
74
75
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
76
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
77
        4) train the modle using the forward_step_func.
78
79

    Arguments:
80
81
82
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
83
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
84
        model_type: an enum that specifies the type of model being trained.
Mohammad's avatar
Mohammad committed
85
86
87
88
89
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
90
91
92
93
        process_non_loss_data_func: a function to post process outputs of the
            network. It can be used for dumping output tensors (e.g images) to
            tensorboard. It takes `collected data`(list of tensors),
            `current iteration index` and `tensorboard writer` as arguments.
Mohammad's avatar
Mohammad committed
94
95
96
97
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
98
99
    """

100
    # Initalize and get arguments, timers, and Tensorboard writer.
101
102
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
103

104
105
106
107
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
108
    start_time_tensor = torch.cuda.DoubleTensor([_TRAIN_START_TIME])
109
110
111
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
112
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
113
114
115
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

116
    args = get_args()
Mohammad's avatar
Mohammad committed
117
    timers = get_timers()
118
119

    # Model, optimizer, and learning rate.
120
    timers('model-and-optimizer-setup').start()
121
    model, optimizer, opt_param_scheduler = setup_model_and_optimizer(model_provider,
122
                                                               model_type)
123
    timers('model-and-optimizer-setup').stop()
124
125
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
126
127

    # Data stuff.
128
129
    timers('train/valid/test-data-iterators-setup').start()
    if args.virtual_pipeline_model_parallel_size is not None:
130
        all_data_iterators = [
131
132
133
            build_train_valid_test_data_iterators(train_valid_test_dataset_provider)
            for _ in range(len(model))
        ]
134
135
136
        train_data_iterator = [data_iterators[0] for data_iterators in all_data_iterators]
        valid_data_iterator = [data_iterators[1] for data_iterators in all_data_iterators]
        test_data_iterator = [data_iterators[2] for data_iterators in all_data_iterators]
137
138
139
140
141
    else:
        train_data_iterator, valid_data_iterator, test_data_iterator \
            = build_train_valid_test_data_iterators(
                train_valid_test_dataset_provider)
    timers('train/valid/test-data-iterators-setup').stop()
mshoeybi's avatar
mshoeybi committed
142
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
143
144

    # Print setup timing.
145
146
    print_rank_0('done with setup ...')
    timers.log(['model-and-optimizer-setup', 'train/valid/test-data-iterators-setup'])
Mohammad's avatar
Mohammad committed
147
    print_rank_0('training ...')
148
149

    iteration = 0
150
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
151
        iteration = train(forward_step_func,
152
                          model, optimizer, opt_param_scheduler,
153
154
                          train_data_iterator, valid_data_iterator,
                          process_non_loss_data_func)
155
    print_datetime('after training is done')
Mohammad's avatar
Mohammad committed
156

157
158
159
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
160
                                   valid_data_iterator, model,
161
162
                                   iteration, process_non_loss_data_func,
                                   False)
163
164

    if args.save and iteration != 0:
165
        save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
166
167
168
169
170
171

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
172
173
                                   0, process_non_loss_data_func,
                                   True)
174

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
191
192
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
193
194
            iterations += 1
        # Reset
195
        update_num_microbatches(0, consistency_check=False)
196
197
198
199
200
201
202
203
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

204

205
def get_model(model_provider_func, model_type=ModelType.encoder_or_decoder, wrap_with_ddp=True):
206
    """Build the model."""
Mohammad's avatar
Mohammad committed
207
    args = get_args()
208
    args.model_type = model_type
209

210
    # Build model.
211
212
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
       args.virtual_pipeline_model_parallel_size is not None:
213
214
        assert model_type != ModelType.encoder_and_decoder, \
            "Interleaved schedule not supported for model with both encoder and decoder"
215
216
217
        model = []
        for i in range(args.virtual_pipeline_model_parallel_size):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
218
219
220
            # Set pre_process and post_process only after virtual rank is set.
            pre_process = mpu.is_pipeline_first_stage()
            post_process = mpu.is_pipeline_last_stage()
221
            this_model = model_provider_func(
222
223
224
                pre_process=pre_process,
                post_process=post_process
            )
225
            this_model.model_type = model_type
226
            model.append(this_model)
227
    else:
228
229
        pre_process = mpu.is_pipeline_first_stage()
        post_process = mpu.is_pipeline_last_stage()
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
        add_encoder = True
        add_decoder = True
        if model_type == ModelType.encoder_and_decoder:
            if mpu.get_pipeline_model_parallel_world_size() > 1:
                assert args.pipeline_model_parallel_split_rank is not None, \
                    "Split rank needs to be specified for model with both encoder and decoder"
                rank = mpu.get_pipeline_model_parallel_rank()
                split_rank = args.pipeline_model_parallel_split_rank
                world_size = mpu.get_pipeline_model_parallel_world_size()
                pre_process = rank == 0 or rank == split_rank
                post_process = (rank == (split_rank - 1)) or (
                        rank == (world_size - 1))
                add_encoder = mpu.is_pipeline_stage_before_split()
                add_decoder = mpu.is_pipeline_stage_after_split()
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process,
                add_encoder=add_encoder,
                add_decoder=add_decoder)
        else:
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process
            )
        model.model_type = model_type
255

256
257
    if not isinstance(model, list):
        model = [model]
258

259
    # Set tensor model parallel attributes if not set.
mohammad's avatar
mohammad committed
260
261
262
    # Only parameters that are already tensor model parallel have these
    # attributes set for them. We should make sure the default attributes
    # are set for all params so the optimizer can use them.
263
264
265
    for model_module in model:
        for param in model_module.parameters():
            mpu.set_defaults_if_not_set_tensor_model_parallel_attributes(param)
266

267
268
    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
269
        print(' > number of parameters on (tensor, pipeline) '
270
              'model parallel rank ({}, {}): {}'.format(
271
272
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
273
274
            sum([sum([p.nelement() for p in model_module.parameters()])
                 for model_module in model])), flush=True)
275
276

    # GPU allocation.
277
278
    for model_module in model:
        model_module.cuda(torch.cuda.current_device())
279
280

    # Fp16 conversion.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
281
282
    if args.fp16 or args.bf16:
        model = [Float16Module(model_module, args) for model_module in model]
283

284
285
286
287
288
289
    if wrap_with_ddp:
        if args.DDP_impl == 'torch':
            i = torch.cuda.current_device()
            model = [torchDDP(model_module, device_ids=[i], output_device=i,
                              process_group=mpu.get_data_parallel_group())
                     for model_module in model]
290

291
292
293
294
295
        elif args.DDP_impl == 'local':
            model = [LocalDDP(model_module,
                              args.accumulate_allreduce_grads_in_fp32,
                              args.use_contiguous_buffers_in_local_ddp)
                     for model_module in model]
296
297
298
299
            # broad cast params from data parallel src rank to other data parallel ranks
            if args.data_parallel_random_init:
                for model_module in model:
                    model_module.broadcast_params()
300
301
302
        else:
            raise NotImplementedError('Unknown DDP implementation specified: '
                                      '{}. Exiting.'.format(args.DDP_impl))
303

304
    return model
305
306


307
def get_optimizer_param_scheduler(optimizer):
308
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
309
    args = get_args()
310

311
312
313
314
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
Vijay Korthikanti's avatar
Vijay Korthikanti committed
315
316
        lr_decay_steps = args.lr_decay_iters * args.global_batch_size
        wd_incr_steps = args.train_iters * args.global_batch_size
317
        if args.lr_warmup_fraction is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
318
            lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
319
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
320
            lr_warmup_steps = args.lr_warmup_iters * args.global_batch_size
321
322
323
324
325
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
326
        update_train_iters(args)
327
328
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
Vijay Korthikanti's avatar
Vijay Korthikanti committed
329
330
        lr_decay_steps = args.lr_decay_samples
        wd_incr_steps = args.train_samples
331
        if args.lr_warmup_fraction is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
332
            lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
333
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
334
            lr_warmup_steps = args.lr_warmup_samples
335
    else:
336
337
338
        raise Exception(
            'either train-iters or train-samples should be provided.')

339
    opt_param_scheduler = OptimizerParamScheduler(
340
        optimizer,
341
        max_lr=args.lr,
342
        min_lr=args.min_lr,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
343
344
345
        lr_warmup_steps=lr_warmup_steps,
        lr_decay_steps=lr_decay_steps,
        lr_decay_style=args.lr_decay_style,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
346
347
        start_wd=args.start_weight_decay,
        end_wd=args.end_weight_decay,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
348
        wd_incr_steps=wd_incr_steps,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
349
        wd_incr_style=args.weight_decay_incr_style,
350
351
        use_checkpoint_opt_param_scheduler=args.use_checkpoint_opt_param_scheduler,
        override_opt_param_scheduler=args.override_opt_param_scheduler)
352

353
    return opt_param_scheduler
354
355


356
357
358
359
360
def setup_model_and_optimizer(model_provider_func,
                              model_type,
                              no_wd_decay_cond=None,
                              scale_lr_cond=None,
                              lr_mult=1.0):
361
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
362
    args = get_args()
363

364
    model = get_model(model_provider_func, model_type)
365

366
    unwrapped_model = unwrap_model(model,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
367
                                   (torchDDP, LocalDDP, Float16Module))
368
369
    optimizer = get_megatron_optimizer(unwrapped_model, no_wd_decay_cond,
                                       scale_lr_cond, lr_mult)
370

371
    opt_param_scheduler = get_optimizer_param_scheduler(optimizer)
372
373

    if args.load is not None:
374
375
376
377
        timers = get_timers()
        # Extra barrier is added to make sure all ranks report the
        # max time.
        torch.distributed.barrier()
378
        timers('load-checkpoint').start()
379
        args.iteration = load_checkpoint(model, optimizer, opt_param_scheduler)
380
        torch.distributed.barrier()
381
382
        timers('load-checkpoint').stop()
        timers.log(['load-checkpoint'])
383
384
385
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
386
    # We only support local DDP with multiple micro-batches.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
387
    if len(model) > 1 or mpu.get_pipeline_model_parallel_world_size() > 1:
mohammad's avatar
mohammad committed
388
389
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
390
    # get model without FP16 and/or TorchDDP wrappers
Mostofa Patwary's avatar
Mostofa Patwary committed
391
392
    if args.iteration == 0 and len(unwrapped_model) == 1 \
        and hasattr(unwrapped_model[0], 'init_state_dict_from_bert'):
Mostofa Patwary's avatar
Mostofa Patwary committed
393
        print_rank_0("Initializing ICT from pretrained BERT model")
Mostofa Patwary's avatar
Mostofa Patwary committed
394
        unwrapped_model[0].init_state_dict_from_bert()
Mostofa Patwary's avatar
Mostofa Patwary committed
395
396
        if args.fp16:
            optimizer.reload_model_params()
Neel Kant's avatar
Neel Kant committed
397

398
    return model, optimizer, opt_param_scheduler
399
400


401
def train_step(forward_step_func, data_iterator,
402
               model, optimizer, opt_param_scheduler):
403
404
405
406
407
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
408
    if args.DDP_impl == 'local' and args.use_contiguous_buffers_in_local_ddp:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
409
410
        for partition in model:
            partition.zero_grad_buffer()
411
    optimizer.zero_grad()
412

413
    forward_backward_func = get_forward_backward_func()
414
415
416
    losses_reduced = forward_backward_func(
        forward_step_func, data_iterator, model,
        optimizer, timers, forward_only=False)
417

418
    # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
419
    if args.empty_unused_memory_level >= 1:
420
421
        torch.cuda.empty_cache()

422
423
    # All-reduce layernorm parameters across model parallel nodes
    # when sequence parallelism is used
424
    if mpu.get_tensor_model_parallel_world_size() > 1 and \
425
426
427
428
429
430
            args.model_parallel_memory_opt:
        grads = []
        for model_module in model:
            unwrapped_model = unwrap_model( 
                model_module, (torchDDP, LocalDDP, Float16Module))
            for param in unwrapped_model.parameters():
431
432
433
                if getattr(param, 'sequence_parallel', False):
                    grad = param.main_grad if args.DDP_impl == 'local' else param.grad
                    grads.append(grad.data)
434
        coalesced = _flatten_dense_tensors(grads)
435
436
        #TODO VIJAY
        #coalesced /= mpu.get_tensor_model_parallel_world_size()
437
438
439
440
441
442
        torch.distributed.all_reduce(
            coalesced, group=mpu.get_tensor_model_parallel_group())
        for buf, synced in zip(grads, _unflatten_dense_tensors(
                coalesced, grads)):
            buf.copy_(synced)

443
444
    # All-reduce if needed.
    if args.DDP_impl == 'local':
445
        timers('backward-params-all-reduce').start()
446
        for model_module in model:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
447
            model_module.allreduce_gradients()
448
        timers('backward-params-all-reduce').stop()
449

450
451
452
453
    # All-reduce word_embeddings' grad across first and last stages to ensure
    # that word_embeddings parameters stay in sync.
    # This should only run for models that support pipelined model parallelism
    # (BERT and GPT-2).
454
    timers('backward-embedding-all-reduce').start()
455
    if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
456
            mpu.get_pipeline_model_parallel_world_size() > 1:
457
458
459
460
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            unwrapped_model = model[0]
        elif mpu.is_pipeline_last_stage(ignore_virtual=True):
            unwrapped_model = model[-1]
461
462
        else:  # We do not support the interleaved schedule for T5 yet.
            unwrapped_model = model[0]
463
        unwrapped_model = unwrap_model(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
464
            unwrapped_model, (torchDDP, LocalDDP, Float16Module))
465

466
467
        if unwrapped_model.share_word_embeddings:
            word_embeddings_weight = unwrapped_model.word_embeddings_weight()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
468
469
470
471
472
            if args.DDP_impl == 'local':
                grad = word_embeddings_weight.main_grad
            else:
                grad = word_embeddings_weight.grad
            torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
Vijay Korthikanti's avatar
Vijay Korthikanti committed
473

Vijay Korthikanti's avatar
Vijay Korthikanti committed
474
475
476
    # All-reduce position_embeddings grad across first (encoder) and split (decoder) 
    # stages to ensure that position embeddings parameters stay in sync.
    # This should only run for T5 models with pipeline parallelism
Vijay Korthikanti's avatar
Vijay Korthikanti committed
477
478
479
480
481
482
    if mpu.is_rank_in_position_embedding_group() and \
            mpu.get_pipeline_model_parallel_world_size() > 1 and \
            args.pipeline_model_parallel_split_rank is not None:
        unwrapped_model = model[0]
        unwrapped_model = unwrap_model(
            unwrapped_model, (torchDDP, LocalDDP, Float16Module))
Vijay Korthikanti's avatar
Vijay Korthikanti committed
483
484
        assert args.DDP_impl == 'local', \
            'T5 model is only supported with local DDP mode'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
485
486
        grad = unwrapped_model.language_model.embedding.position_embeddings.weight.main_grad
        torch.distributed.all_reduce(grad, group=mpu.get_position_embedding_group())
487
    timers('backward-embedding-all-reduce').stop()
488

Vijay Korthikanti's avatar
Vijay Korthikanti committed
489
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
490
491
492
493
494
        unwrapped_model = unwrap_model(model[0],
                                       (torchDDP, LocalDDP, Float16Module))
        unwrapped_model.cancel_gradients_last_layer(args.curr_iteration)


495
496
    # Update parameters.
    timers('optimizer').start()
497
    update_successful, grad_norm, num_zeros_in_grad = optimizer.step()
498
499
    timers('optimizer').stop()

Vijay Korthikanti's avatar
Vijay Korthikanti committed
500
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
501
502
503
504
505
        unwrapped_model = unwrap_model(model[0],
                                       (torchDDP, LocalDDP, Float16Module))
        unwrapped_model.update_momentum(args.curr_iteration)


506
    # Update learning rate.
507
    if update_successful:
508
509
510
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
511
        opt_param_scheduler.step(increment=increment)
mohammad's avatar
mohammad committed
512
        skipped_iter = 0
513
514
515
    else:
        skipped_iter = 1

516
    # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
517
    if args.empty_unused_memory_level >= 2:
518
519
        torch.cuda.empty_cache()

520
    if mpu.is_pipeline_last_stage(ignore_virtual=True):
521
522
523
524
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
525
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
526
527
        return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
    return {}, skipped_iter, grad_norm, num_zeros_in_grad
528
529


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
530
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
531
                 loss_scale, report_memory_flag, skipped_iter,
532
                 grad_norm, params_norm, num_zeros_in_grad):
Mohammad's avatar
Mohammad committed
533
534
535
536
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
537

mohammad's avatar
mohammad committed
538
539
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
540
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
541
542
543
544
545
546
547
548
549
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
550
551
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
552
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
553
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
554
    for key in loss_dict:
mohammad's avatar
mohammad committed
555
        if not skipped_iter:
556
557
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
558
559
560
561
562
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
563
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
564
565
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
566
567
568

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
569

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
570
571
572
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
573
574
575
    add_to_logging('forward-compute')
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
576
    add_to_logging('forward-backward-send-forward-backward-recv')
577
578
579
    add_to_logging('backward-compute')
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
580
    add_to_logging('backward-send-forward-recv')
581
    add_to_logging('backward-send-backward-recv')
582
    add_to_logging('backward-params-all-reduce')
583
    add_to_logging('backward-embedding-all-reduce')
584
    add_to_logging('optimizer-copy-to-main-grad')
mohammad's avatar
mohammad committed
585
    add_to_logging('optimizer-unscale-and-check-inf')
586
587
    add_to_logging('optimizer-clip-main-grad')
    add_to_logging('optimizer-copy-main-to-model-params')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
588
    add_to_logging('optimizer')
mohammad's avatar
mohammad committed
589
    add_to_logging('batch-generator')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
590

mohammad's avatar
mohammad committed
591
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
592
593
594
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
595
596
597
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
598
    # Tensorboard values.
599
600
601
602
603
604
605
606
607
608
    if writer and (iteration % args.tensorboard_log_interval == 0 ) and \
       is_last_rank():
        if args.log_learning_rate_to_tensorboard:
            writer.add_scalar('learning-rate', learning_rate, iteration)
            writer.add_scalar('learning-rate vs samples', learning_rate,
                              args.consumed_train_samples)
        if args.log_batch_size_to_tensorboard:
            writer.add_scalar('batch-size', batch_size, iteration)
            writer.add_scalar('batch-size vs samples', batch_size,
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
609
        for key in loss_dict:
mohammad's avatar
mohammad committed
610
611
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
612
                              args.consumed_train_samples)
613
614
615
616
        if args.log_loss_scale_to_tensorboard:
            writer.add_scalar('loss-scale', loss_scale, iteration)
            writer.add_scalar('loss-scale vs samples', loss_scale,
                              args.consumed_train_samples)
617
618
619
620
        if args.log_world_size_to_tensorboard:
            writer.add_scalar('world-size', args.world_size, iteration)
            writer.add_scalar('world-size vs samples', args.world_size,
                              args.consumed_train_samples)
621
622
623
624
        if grad_norm is not None:
            writer.add_scalar('grad-norm', grad_norm, iteration)
            writer.add_scalar('grad-norm vs samples', grad_norm,
                              args.consumed_train_samples)
625
626
627
        if num_zeros_in_grad is not None:
            writer.add_scalar('num-zeros', num_zeros_in_grad, iteration)
            writer.add_scalar('num-zeros vs samples', num_zeros_in_grad,
Rewon Child's avatar
Rewon Child committed
628
                              args.consumed_train_samples)
mohammad's avatar
mohammad committed
629
630
631
632
        if params_norm is not None:
            writer.add_scalar('params-norm', params_norm, iteration)
            writer.add_scalar('params-norm vs samples', params_norm,
                              args.consumed_train_samples)
633
634
635
        if args.log_timers_to_tensorboard:
            timers.write(timers_to_log, writer, iteration,
                         normalizer=total_iterations)
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
        if args.log_memory_to_tensorboard:
            mem_stats = torch.cuda.memory_stats()
            writer.add_scalar(
                "mem-reserved-bytes",
                mem_stats["reserved_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-bytes",
                mem_stats["allocated_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-count",
                mem_stats["allocation.all.current"],
                iteration,
            )
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
653
654

    if iteration % args.log_interval == 0:
655
        elapsed_time = timers('interval-time').elapsed()
mohammad's avatar
mohammad committed
656
        elapsed_time_per_iteration = elapsed_time / total_iterations
mshoeybi's avatar
mshoeybi committed
657
        if writer:
658
659
660
            if args.log_timers_to_tensorboard:
                writer.add_scalar('iteration-time',
                                  elapsed_time_per_iteration, iteration)
661
662
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
663
        log_string += ' consumed samples: {:12d} |'.format(
664
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
665
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
666
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
667
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
668
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
669
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
670
671
672
673
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
674
675
676
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
677
        log_string += ' loss scale: {:.1f} |'.format(loss_scale)
678
679
        if grad_norm is not None:
            log_string += ' grad norm: {:.3f} |'.format(grad_norm)
680
681
        if num_zeros_in_grad is not None:
            log_string += ' num zeros: {:.1f} |'.format(num_zeros_in_grad)
mohammad's avatar
mohammad committed
682
683
        if params_norm is not None:
            log_string += ' params norm: {:.3f} |'.format(params_norm)
mohammad's avatar
mohammad committed
684
685
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
686
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
687
688
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
689
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
690
        total_loss_dict[nan_iters_key] = 0
691
        print_rank_last(log_string)
692
693
694
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
695
696
697
698
699
700
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


701
def save_checkpoint_and_time(iteration, model, optimizer, opt_param_scheduler):
702
703
704
705
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
    torch.distributed.barrier()
706
    timers('save-checkpoint').start()
707
    save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
708
    torch.distributed.barrier()
709
710
    timers('save-checkpoint').stop()
    timers.log(['save-checkpoint'])
711
712


713
def train(forward_step_func, model, optimizer, opt_param_scheduler,
714
715
          train_data_iterator, valid_data_iterator,
          process_non_loss_data_func):
716
    """Train the model function."""
Mohammad's avatar
Mohammad committed
717
718
    args = get_args()
    timers = get_timers()
719

720
721
722
    # Write args to tensorboard
    write_args_to_tensorboard()

723
    # Turn on training mode which enables dropout.
724
725
    for model_module in model:
        model_module.train()
726
727
728
729
730
731
732

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

733
    timers('interval-time').start()
734
    print_datetime('before the start of training step')
735
736
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
737
        update_num_microbatches(args.consumed_train_samples)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
738
        args.curr_iteration = iteration
739
740
741
742
743
        loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = \
            train_step(forward_step_func,
                       train_data_iterator,
                       model,
                       optimizer,
744
                       opt_param_scheduler)
745
        iteration += 1
746
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
747
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
748
                                       get_num_microbatches()
749
750

        # Logging.
751
        loss_scale = optimizer.get_loss_scale().item()
752
753
754
        params_norm = None
        if args.log_params_norm:
            params_norm = calc_params_l2_norm(model)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
755
756
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
757
                                          iteration, loss_scale,
758
                                          report_memory_flag, skipped_iter,
759
                                          grad_norm, params_norm, num_zeros_in_grad)
760
761

        # Autoresume
762
763
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
764
            check_adlr_autoresume_termination(iteration, model, optimizer,
765
                                              opt_param_scheduler)
766
767
768
769
770
771

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
772
                                       valid_data_iterator, model,
773
774
                                       iteration, process_non_loss_data_func,
                                       False)
775

776
777
        # Checkpointing
        saved_checkpoint = False
778
779
780
781
        if args.exit_signal_handler:
            signal_handler = get_signal_handler()
            if any(signal_handler.signals_received()):
                save_checkpoint_and_time(iteration, model, optimizer,
782
                                         opt_param_scheduler)
783
784
785
                print_datetime('exiting program after receiving SIGTERM.')
                sys.exit()

786
787
788
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
789
                                     opt_param_scheduler)
790
791
            saved_checkpoint = True

792
793
794
795
796
797
798
799
800
801
802
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
803
                                             opt_param_scheduler)
804
                print_datetime('exiting program after {} minutes'.format(train_time))
805
806
                sys.exit()

807
        # Exiting based on iterations
808
        if args.exit_interval and iteration % args.exit_interval == 0:
809
810
            if not saved_checkpoint:
                save_checkpoint_and_time(iteration, model, optimizer,
811
                                         opt_param_scheduler)
812
            torch.distributed.barrier()
813
            print_datetime('exiting program at iteration {}'.format(iteration))
Mohammad's avatar
Mohammad committed
814
            sys.exit()
815

816

mohammad's avatar
mohammad committed
817
    return iteration
818
819


820
821
822
823
824
def evaluate(forward_step_func,
             data_iterator,
             model,
             process_non_loss_data_func,
             verbose=False):
825
    """Evaluation."""
Mohammad's avatar
Mohammad committed
826
    args = get_args()
827

Vijay Korthikanti's avatar
Vijay Korthikanti committed
828
829
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
        compute_feature_bank(model)
830

831
    # Turn on evaluation mode which disables dropout.
832
833
    for model_module in model:
        model_module.eval()
834
835
836
837
838
839
840
841
842
843

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
844

845
            forward_backward_func = get_forward_backward_func()
846
847
848
849
            loss_dicts = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True)

850
            # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
851
            if args.empty_unused_memory_level >= 1:
852
853
                torch.cuda.empty_cache()

854
855
856
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                # Reduce across processes.
                for loss_dict in loss_dicts:
857
                    for key in loss_dict:
858
859
                        total_loss_dict[key] = total_loss_dict.get(
                            key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
860

861
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
862
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
863
                                           * get_num_microbatches()
864
865
866
867
868
869
        collected_non_loss_data = None
        if process_non_loss_data_func is not None and is_last_rank():
            collected_non_loss_data = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True, collect_non_loss_data=True)

870
    # Move model back to the train mode.
871
872
    for model_module in model:
        model_module.train()
873
874

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
875
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
876

877
    return total_loss_dict, collected_non_loss_data
878
879
880

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
881
882
                               iteration, process_non_loss_data_func,
                               verbose=False):
883
    """Helper function to evaluate and dump results on screen."""
884
    args = get_args()
Mohammad's avatar
Mohammad committed
885
886
    writer = get_tensorboard_writer()

887
888
889
    total_loss_dict, collected_non_loss_data = evaluate(
        forward_step_func, data_iterator, model,
        process_non_loss_data_func, verbose)
890
891
892
893
894
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
mshoeybi's avatar
mshoeybi committed
895
        if writer:
mohammad's avatar
mohammad committed
896
            writer.add_scalar('{} validation'.format(key),
897
898
                              total_loss_dict[key].item(),
                              iteration)
mohammad's avatar
mohammad committed
899
            writer.add_scalar('{} validation vs samples'.format(key),
900
901
                              total_loss_dict[key].item(),
                              args.consumed_train_samples)
902
            if args.log_validation_ppl_to_tensorboard:
mohammad's avatar
mohammad committed
903
                writer.add_scalar('{} validation ppl'.format(key), ppl,
904
                                  iteration)
mohammad's avatar
mohammad committed
905
                writer.add_scalar('{} validation ppl vs samples'.format(key),
906
                                  ppl, args.consumed_train_samples)
907

908
909
910
    if process_non_loss_data_func is not None and writer and is_last_rank():
        process_non_loss_data_func(collected_non_loss_data, iteration, writer)

911
    length = len(string) + 1
912
913
914
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
915
916


Vijay Korthikanti's avatar
Vijay Korthikanti committed
917
def cyclic_iter(iter):
918
    while True:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
919
        for x in iter:
920
921
            yield x

922
923
924
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
925
    args = get_args()
926

927
928
929
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
930
931
932

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
933
934
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
935
        args.consumed_train_samples = args.iteration * args.global_batch_size
936
    if args.iteration > 0 and args.consumed_valid_samples == 0:
937
938
939
        if args.train_samples is None:
            args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
                args.eval_iters * args.global_batch_size
940

941
    # Data loader only on rank 0 of each model parallel group.
942
    if mpu.get_tensor_model_parallel_rank() == 0:
943
944

        # Number of train/valid/test samples.
945
946
947
948
949
950
        if args.train_samples:
            train_samples = args.train_samples
        else:
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
                     args.eval_iters
951
        test_iters = args.eval_iters
952
        train_val_test_num_samples = [train_samples,
mohammad's avatar
mohammad committed
953
954
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
955
956
957
958
959
960
961
962
963
964
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
965
966
967
968
969
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
970
971
972
973
974
975
976
977
978
979
980
981
982

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
983
984
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
985
986
987
988
989
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

    # Build iterators.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
990
991
992
    dl_type = args.dataloader_type
    assert dl_type in ['single', 'cyclic']

993
    if train_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
994
995
        train_data_iterator = iter(train_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(train_dataloader))
996
997
998
    else:
        train_data_iterator = None

999
    if valid_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1000
1001
        valid_data_iterator = iter(valid_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(valid_dataloader))
1002
    else:
1003
        valid_data_iterator = None
1004

1005
    if test_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1006
1007
        test_data_iterator = iter(test_dataloader) if dl_type == 'single' \
                             else iter(cyclic_iter(test_dataloader))
1008
1009
1010
    else:
        test_data_iterator = None

1011
    return train_data_iterator, valid_data_iterator, test_data_iterator