training.py 42.5 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()
24
25
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
26
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
27

Neel Kant's avatar
Neel Kant committed
28
from megatron import get_args
29
from megatron import get_signal_handler
Mohammad's avatar
Mohammad committed
30
31
from megatron import get_timers
from megatron import get_tensorboard_writer
32
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
33
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
34
from megatron import is_last_rank
mohammad's avatar
mohammad committed
35
from megatron import update_num_microbatches
36
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
37
from megatron import print_rank_0
38
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
39
40
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
41
from megatron.model import Float16Module
42
from megatron.model import ModelType
mohammad's avatar
mohammad committed
43
from megatron.optimizer import get_megatron_optimizer
Mohammad's avatar
Mohammad committed
44
from megatron.initialize import initialize_megatron
45
from megatron.initialize import write_args_to_tensorboard
46
from megatron.optimizer_param_scheduler import OptimizerParamScheduler
47
48
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.utils import check_adlr_autoresume_termination
49
from megatron.utils import unwrap_model
Vijay Korthikanti's avatar
Vijay Korthikanti committed
50
from megatron.data.data_samplers import build_pretraining_data_loader
mohammad's avatar
mohammad committed
51
from megatron.utils import calc_params_l2_norm
52
from megatron.schedules import get_forward_backward_func
53
from megatron.utils import report_memory
54
from megatron.model.vision.knn_monitor import compute_feature_bank
55

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
56

57
58
59
60
61
62
63
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


64
def pretrain(train_valid_test_dataset_provider,
65
             model_provider,
66
             model_type,
67
             forward_step_func,
68
             process_non_loss_data_func=None,
69
             extra_args_provider=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
70
             args_defaults={}):
71
72
73
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
74
75
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
76
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
77
        4) train the modle using the forward_step_func.
78
79

    Arguments:
80
81
82
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
83
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
84
        model_type: an enum that specifies the type of model being trained.
Mohammad's avatar
Mohammad committed
85
86
87
88
89
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
90
91
92
93
        process_non_loss_data_func: a function to post process outputs of the
            network. It can be used for dumping output tensors (e.g images) to
            tensorboard. It takes `collected data`(list of tensors),
            `current iteration index` and `tensorboard writer` as arguments.
Mohammad's avatar
Mohammad committed
94
95
96
97
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
98
99
    """

100
    # Initalize and get arguments, timers, and Tensorboard writer.
101
102
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
103

104
105
106
107
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
108
    start_time_tensor = torch.cuda.DoubleTensor([_TRAIN_START_TIME])
109
110
111
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
112
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
113
114
115
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

116
    args = get_args()
Mohammad's avatar
Mohammad committed
117
    timers = get_timers()
118
119

    # Model, optimizer, and learning rate.
120
    timers('model-and-optimizer-setup').start()
121
    model, optimizer, opt_param_scheduler = setup_model_and_optimizer(model_provider,
122
                                                               model_type)
123
    timers('model-and-optimizer-setup').stop()
124
125
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
126
127

    # Data stuff.
128
129
    timers('train/valid/test-data-iterators-setup').start()
    if args.virtual_pipeline_model_parallel_size is not None:
130
        all_data_iterators = [
131
132
133
            build_train_valid_test_data_iterators(train_valid_test_dataset_provider)
            for _ in range(len(model))
        ]
134
135
136
        train_data_iterator = [data_iterators[0] for data_iterators in all_data_iterators]
        valid_data_iterator = [data_iterators[1] for data_iterators in all_data_iterators]
        test_data_iterator = [data_iterators[2] for data_iterators in all_data_iterators]
137
138
139
140
141
    else:
        train_data_iterator, valid_data_iterator, test_data_iterator \
            = build_train_valid_test_data_iterators(
                train_valid_test_dataset_provider)
    timers('train/valid/test-data-iterators-setup').stop()
mshoeybi's avatar
mshoeybi committed
142
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
143
144

    # Print setup timing.
145
146
    print_rank_0('done with setup ...')
    timers.log(['model-and-optimizer-setup', 'train/valid/test-data-iterators-setup'])
Mohammad's avatar
Mohammad committed
147
    print_rank_0('training ...')
148
149

    iteration = 0
150
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
151
        iteration = train(forward_step_func,
152
                          model, optimizer, opt_param_scheduler,
153
154
                          train_data_iterator, valid_data_iterator,
                          process_non_loss_data_func)
155
    print_datetime('after training is done')
Mohammad's avatar
Mohammad committed
156

157
158
159
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
160
                                   valid_data_iterator, model,
161
162
                                   iteration, process_non_loss_data_func,
                                   False)
163
164

    if args.save and iteration != 0:
165
        save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
166
167
168
169
170
171

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
172
173
                                   0, process_non_loss_data_func,
                                   True)
174

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
191
192
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
193
194
            iterations += 1
        # Reset
195
        update_num_microbatches(0, consistency_check=False)
196
197
198
199
200
201
202
203
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

204

205
def get_model(model_provider_func, model_type=ModelType.encoder_or_decoder, wrap_with_ddp=True):
206
    """Build the model."""
Mohammad's avatar
Mohammad committed
207
    args = get_args()
208
    args.model_type = model_type
209

210
    # Build model.
211
212
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
       args.virtual_pipeline_model_parallel_size is not None:
213
214
        assert model_type != ModelType.encoder_and_decoder, \
            "Interleaved schedule not supported for model with both encoder and decoder"
215
216
217
        model = []
        for i in range(args.virtual_pipeline_model_parallel_size):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
218
219
220
            # Set pre_process and post_process only after virtual rank is set.
            pre_process = mpu.is_pipeline_first_stage()
            post_process = mpu.is_pipeline_last_stage()
221
            this_model = model_provider_func(
222
223
224
                pre_process=pre_process,
                post_process=post_process
            )
225
            this_model.model_type = model_type
226
            model.append(this_model)
227
    else:
228
229
        pre_process = mpu.is_pipeline_first_stage()
        post_process = mpu.is_pipeline_last_stage()
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
        add_encoder = True
        add_decoder = True
        if model_type == ModelType.encoder_and_decoder:
            if mpu.get_pipeline_model_parallel_world_size() > 1:
                assert args.pipeline_model_parallel_split_rank is not None, \
                    "Split rank needs to be specified for model with both encoder and decoder"
                rank = mpu.get_pipeline_model_parallel_rank()
                split_rank = args.pipeline_model_parallel_split_rank
                world_size = mpu.get_pipeline_model_parallel_world_size()
                pre_process = rank == 0 or rank == split_rank
                post_process = (rank == (split_rank - 1)) or (
                        rank == (world_size - 1))
                add_encoder = mpu.is_pipeline_stage_before_split()
                add_decoder = mpu.is_pipeline_stage_after_split()
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process,
                add_encoder=add_encoder,
                add_decoder=add_decoder)
        else:
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process
            )
        model.model_type = model_type
255

256
257
    if not isinstance(model, list):
        model = [model]
258

259
    # Set tensor model parallel attributes if not set.
mohammad's avatar
mohammad committed
260
261
262
    # Only parameters that are already tensor model parallel have these
    # attributes set for them. We should make sure the default attributes
    # are set for all params so the optimizer can use them.
263
264
265
    for model_module in model:
        for param in model_module.parameters():
            mpu.set_defaults_if_not_set_tensor_model_parallel_attributes(param)
266

267
268
    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
269
        print(' > number of parameters on (tensor, pipeline) '
270
              'model parallel rank ({}, {}): {}'.format(
271
272
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
273
274
            sum([sum([p.nelement() for p in model_module.parameters()])
                 for model_module in model])), flush=True)
275
276

    # GPU allocation.
277
278
    for model_module in model:
        model_module.cuda(torch.cuda.current_device())
279
280

    # Fp16 conversion.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
281
282
    if args.fp16 or args.bf16:
        model = [Float16Module(model_module, args) for model_module in model]
283

284
285
286
287
288
289
    if wrap_with_ddp:
        if args.DDP_impl == 'torch':
            i = torch.cuda.current_device()
            model = [torchDDP(model_module, device_ids=[i], output_device=i,
                              process_group=mpu.get_data_parallel_group())
                     for model_module in model]
290

291
292
293
294
295
        elif args.DDP_impl == 'local':
            model = [LocalDDP(model_module,
                              args.accumulate_allreduce_grads_in_fp32,
                              args.use_contiguous_buffers_in_local_ddp)
                     for model_module in model]
296
297
298
299
            # broad cast params from data parallel src rank to other data parallel ranks
            if args.data_parallel_random_init:
                for model_module in model:
                    model_module.broadcast_params()
300
301
302
        else:
            raise NotImplementedError('Unknown DDP implementation specified: '
                                      '{}. Exiting.'.format(args.DDP_impl))
303

304
    return model
305
306


307
def get_optimizer_param_scheduler(optimizer):
308
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
309
    args = get_args()
310

311
312
313
314
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
Vijay Korthikanti's avatar
Vijay Korthikanti committed
315
316
        lr_decay_steps = args.lr_decay_iters * args.global_batch_size
        wd_incr_steps = args.train_iters * args.global_batch_size
317
        if args.lr_warmup_fraction is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
318
            lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
319
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
320
            lr_warmup_steps = args.lr_warmup_iters * args.global_batch_size
321
322
323
324
325
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
326
        update_train_iters(args)
327
328
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
Vijay Korthikanti's avatar
Vijay Korthikanti committed
329
330
        lr_decay_steps = args.lr_decay_samples
        wd_incr_steps = args.train_samples
331
        if args.lr_warmup_fraction is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
332
            lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
333
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
334
            lr_warmup_steps = args.lr_warmup_samples
335
    else:
336
337
338
        raise Exception(
            'either train-iters or train-samples should be provided.')

339
    opt_param_scheduler = OptimizerParamScheduler(
340
        optimizer,
341
        max_lr=args.lr,
342
        min_lr=args.min_lr,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
343
344
345
        lr_warmup_steps=lr_warmup_steps,
        lr_decay_steps=lr_decay_steps,
        lr_decay_style=args.lr_decay_style,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
346
347
        start_wd=args.start_weight_decay,
        end_wd=args.end_weight_decay,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
348
        wd_incr_steps=wd_incr_steps,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
349
        wd_incr_style=args.weight_decay_incr_style,
350
351
        use_checkpoint_opt_param_scheduler=args.use_checkpoint_opt_param_scheduler,
        override_opt_param_scheduler=args.override_opt_param_scheduler)
352

353
    return opt_param_scheduler
354
355


356
357
358
359
360
def setup_model_and_optimizer(model_provider_func,
                              model_type,
                              no_wd_decay_cond=None,
                              scale_lr_cond=None,
                              lr_mult=1.0):
361
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
362
    args = get_args()
363

364
    model = get_model(model_provider_func, model_type)
365

366
    unwrapped_model = unwrap_model(model,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
367
                                   (torchDDP, LocalDDP, Float16Module))
368
369
    optimizer = get_megatron_optimizer(unwrapped_model, no_wd_decay_cond,
                                       scale_lr_cond, lr_mult)
370

371
    opt_param_scheduler = get_optimizer_param_scheduler(optimizer)
372
373

    if args.load is not None:
374
375
376
377
        timers = get_timers()
        # Extra barrier is added to make sure all ranks report the
        # max time.
        torch.distributed.barrier()
378
        timers('load-checkpoint').start()
379
        args.iteration = load_checkpoint(model, optimizer, opt_param_scheduler)
380
        torch.distributed.barrier()
381
382
        timers('load-checkpoint').stop()
        timers.log(['load-checkpoint'])
383
384
385
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
386
    # We only support local DDP with multiple micro-batches.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
387
    if len(model) > 1 or mpu.get_pipeline_model_parallel_world_size() > 1:
mohammad's avatar
mohammad committed
388
389
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
390
    # get model without FP16 and/or TorchDDP wrappers
Mostofa Patwary's avatar
Mostofa Patwary committed
391
392
    if args.iteration == 0 and len(unwrapped_model) == 1 \
        and hasattr(unwrapped_model[0], 'init_state_dict_from_bert'):
Mostofa Patwary's avatar
Mostofa Patwary committed
393
        print_rank_0("Initializing ICT from pretrained BERT model")
Mostofa Patwary's avatar
Mostofa Patwary committed
394
        unwrapped_model[0].init_state_dict_from_bert()
Mostofa Patwary's avatar
Mostofa Patwary committed
395
396
        if args.fp16:
            optimizer.reload_model_params()
Neel Kant's avatar
Neel Kant committed
397

398
    return model, optimizer, opt_param_scheduler
399
400


401
def train_step(forward_step_func, data_iterator,
402
               model, optimizer, opt_param_scheduler):
403
404
405
406
407
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
408
    if args.DDP_impl == 'local' and args.use_contiguous_buffers_in_local_ddp:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
409
410
        for partition in model:
            partition.zero_grad_buffer()
411
    optimizer.zero_grad()
412

413
    forward_backward_func = get_forward_backward_func()
414
415
416
    losses_reduced = forward_backward_func(
        forward_step_func, data_iterator, model,
        optimizer, timers, forward_only=False)
417

418
    # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
419
    if args.empty_unused_memory_level >= 1:
420
421
        torch.cuda.empty_cache()

422
423
    # All-reduce layernorm parameters across model parallel nodes
    # when sequence parallelism is used
424
    if mpu.get_tensor_model_parallel_world_size() > 1 and \
425
426
427
428
429
430
            args.model_parallel_memory_opt:
        grads = []
        for model_module in model:
            unwrapped_model = unwrap_model( 
                model_module, (torchDDP, LocalDDP, Float16Module))
            for param in unwrapped_model.parameters():
431
432
433
                if getattr(param, 'sequence_parallel', False):
                    grad = param.main_grad if args.DDP_impl == 'local' else param.grad
                    grads.append(grad.data)
434
435
436
437
438
439
440
441
        coalesced = _flatten_dense_tensors(grads)
        coalesced /= mpu.get_tensor_model_parallel_world_size()
        torch.distributed.all_reduce(
            coalesced, group=mpu.get_tensor_model_parallel_group())
        for buf, synced in zip(grads, _unflatten_dense_tensors(
                coalesced, grads)):
            buf.copy_(synced)

442
443
    # All-reduce if needed.
    if args.DDP_impl == 'local':
444
        timers('backward-params-all-reduce').start()
445
        for model_module in model:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
446
            model_module.allreduce_gradients()
447
        timers('backward-params-all-reduce').stop()
448

449
450
451
452
    # All-reduce word_embeddings' grad across first and last stages to ensure
    # that word_embeddings parameters stay in sync.
    # This should only run for models that support pipelined model parallelism
    # (BERT and GPT-2).
453
    timers('backward-embedding-all-reduce').start()
454
    if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
455
            mpu.get_pipeline_model_parallel_world_size() > 1:
456
457
458
459
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            unwrapped_model = model[0]
        elif mpu.is_pipeline_last_stage(ignore_virtual=True):
            unwrapped_model = model[-1]
460
461
        else:  # We do not support the interleaved schedule for T5 yet.
            unwrapped_model = model[0]
462
        unwrapped_model = unwrap_model(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
463
            unwrapped_model, (torchDDP, LocalDDP, Float16Module))
464

465
466
        if unwrapped_model.share_word_embeddings:
            word_embeddings_weight = unwrapped_model.word_embeddings_weight()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
467
468
469
470
471
            if args.DDP_impl == 'local':
                grad = word_embeddings_weight.main_grad
            else:
                grad = word_embeddings_weight.grad
            torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
Vijay Korthikanti's avatar
Vijay Korthikanti committed
472

Vijay Korthikanti's avatar
Vijay Korthikanti committed
473
474
475
    # All-reduce position_embeddings grad across first (encoder) and split (decoder) 
    # stages to ensure that position embeddings parameters stay in sync.
    # This should only run for T5 models with pipeline parallelism
Vijay Korthikanti's avatar
Vijay Korthikanti committed
476
477
478
479
480
481
    if mpu.is_rank_in_position_embedding_group() and \
            mpu.get_pipeline_model_parallel_world_size() > 1 and \
            args.pipeline_model_parallel_split_rank is not None:
        unwrapped_model = model[0]
        unwrapped_model = unwrap_model(
            unwrapped_model, (torchDDP, LocalDDP, Float16Module))
Vijay Korthikanti's avatar
Vijay Korthikanti committed
482
483
        assert args.DDP_impl == 'local', \
            'T5 model is only supported with local DDP mode'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
484
485
        grad = unwrapped_model.language_model.embedding.position_embeddings.weight.main_grad
        torch.distributed.all_reduce(grad, group=mpu.get_position_embedding_group())
486
    timers('backward-embedding-all-reduce').stop()
487

Vijay Korthikanti's avatar
Vijay Korthikanti committed
488
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
489
490
491
492
493
        unwrapped_model = unwrap_model(model[0],
                                       (torchDDP, LocalDDP, Float16Module))
        unwrapped_model.cancel_gradients_last_layer(args.curr_iteration)


494
495
    # Update parameters.
    timers('optimizer').start()
496
    update_successful, grad_norm, num_zeros_in_grad = optimizer.step()
497
498
    timers('optimizer').stop()

Vijay Korthikanti's avatar
Vijay Korthikanti committed
499
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
500
501
502
503
504
        unwrapped_model = unwrap_model(model[0],
                                       (torchDDP, LocalDDP, Float16Module))
        unwrapped_model.update_momentum(args.curr_iteration)


505
    # Update learning rate.
506
    if update_successful:
507
508
509
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
510
        opt_param_scheduler.step(increment=increment)
mohammad's avatar
mohammad committed
511
        skipped_iter = 0
512
513
514
    else:
        skipped_iter = 1

515
    # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
516
    if args.empty_unused_memory_level >= 2:
517
518
        torch.cuda.empty_cache()

519
    if mpu.is_pipeline_last_stage(ignore_virtual=True):
520
521
522
523
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
524
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
525
526
        return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
    return {}, skipped_iter, grad_norm, num_zeros_in_grad
527
528


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
529
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
530
                 loss_scale, report_memory_flag, skipped_iter,
531
                 grad_norm, params_norm, num_zeros_in_grad):
Mohammad's avatar
Mohammad committed
532
533
534
535
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
536

mohammad's avatar
mohammad committed
537
538
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
539
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
540
541
542
543
544
545
546
547
548
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
549
550
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
551
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
552
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
553
    for key in loss_dict:
mohammad's avatar
mohammad committed
554
        if not skipped_iter:
555
556
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
557
558
559
560
561
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
562
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
563
564
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
565
566
567

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
568

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
569
570
571
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
572
573
574
    add_to_logging('forward-compute')
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
575
    add_to_logging('forward-backward-send-forward-backward-recv')
576
577
578
    add_to_logging('backward-compute')
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
579
    add_to_logging('backward-send-forward-recv')
580
    add_to_logging('backward-send-backward-recv')
581
    add_to_logging('backward-params-all-reduce')
582
    add_to_logging('backward-embedding-all-reduce')
583
    add_to_logging('optimizer-copy-to-main-grad')
mohammad's avatar
mohammad committed
584
    add_to_logging('optimizer-unscale-and-check-inf')
585
586
    add_to_logging('optimizer-clip-main-grad')
    add_to_logging('optimizer-copy-main-to-model-params')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
587
    add_to_logging('optimizer')
mohammad's avatar
mohammad committed
588
    add_to_logging('batch-generator')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
589

mohammad's avatar
mohammad committed
590
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
591
592
593
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
594
595
596
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
597
    # Tensorboard values.
598
599
600
601
602
603
604
605
606
607
    if writer and (iteration % args.tensorboard_log_interval == 0 ) and \
       is_last_rank():
        if args.log_learning_rate_to_tensorboard:
            writer.add_scalar('learning-rate', learning_rate, iteration)
            writer.add_scalar('learning-rate vs samples', learning_rate,
                              args.consumed_train_samples)
        if args.log_batch_size_to_tensorboard:
            writer.add_scalar('batch-size', batch_size, iteration)
            writer.add_scalar('batch-size vs samples', batch_size,
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
608
        for key in loss_dict:
mohammad's avatar
mohammad committed
609
610
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
611
                              args.consumed_train_samples)
612
613
614
615
        if args.log_loss_scale_to_tensorboard:
            writer.add_scalar('loss-scale', loss_scale, iteration)
            writer.add_scalar('loss-scale vs samples', loss_scale,
                              args.consumed_train_samples)
616
617
618
619
        if args.log_world_size_to_tensorboard:
            writer.add_scalar('world-size', args.world_size, iteration)
            writer.add_scalar('world-size vs samples', args.world_size,
                              args.consumed_train_samples)
620
621
622
623
        if grad_norm is not None:
            writer.add_scalar('grad-norm', grad_norm, iteration)
            writer.add_scalar('grad-norm vs samples', grad_norm,
                              args.consumed_train_samples)
624
625
626
        if num_zeros_in_grad is not None:
            writer.add_scalar('num-zeros', num_zeros_in_grad, iteration)
            writer.add_scalar('num-zeros vs samples', num_zeros_in_grad,
Rewon Child's avatar
Rewon Child committed
627
                              args.consumed_train_samples)
mohammad's avatar
mohammad committed
628
629
630
631
        if params_norm is not None:
            writer.add_scalar('params-norm', params_norm, iteration)
            writer.add_scalar('params-norm vs samples', params_norm,
                              args.consumed_train_samples)
632
633
634
        if args.log_timers_to_tensorboard:
            timers.write(timers_to_log, writer, iteration,
                         normalizer=total_iterations)
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
        if args.log_memory_to_tensorboard:
            mem_stats = torch.cuda.memory_stats()
            writer.add_scalar(
                "mem-reserved-bytes",
                mem_stats["reserved_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-bytes",
                mem_stats["allocated_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-count",
                mem_stats["allocation.all.current"],
                iteration,
            )
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
652
653

    if iteration % args.log_interval == 0:
654
        elapsed_time = timers('interval-time').elapsed()
mohammad's avatar
mohammad committed
655
        elapsed_time_per_iteration = elapsed_time / total_iterations
mshoeybi's avatar
mshoeybi committed
656
        if writer:
657
658
659
            if args.log_timers_to_tensorboard:
                writer.add_scalar('iteration-time',
                                  elapsed_time_per_iteration, iteration)
660
661
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
662
        log_string += ' consumed samples: {:12d} |'.format(
663
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
664
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
665
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
666
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
667
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
668
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
669
670
671
672
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
673
674
675
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
676
        log_string += ' loss scale: {:.1f} |'.format(loss_scale)
677
678
        if grad_norm is not None:
            log_string += ' grad norm: {:.3f} |'.format(grad_norm)
679
680
        if num_zeros_in_grad is not None:
            log_string += ' num zeros: {:.1f} |'.format(num_zeros_in_grad)
mohammad's avatar
mohammad committed
681
682
        if params_norm is not None:
            log_string += ' params norm: {:.3f} |'.format(params_norm)
mohammad's avatar
mohammad committed
683
684
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
685
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
686
687
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
688
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
689
        total_loss_dict[nan_iters_key] = 0
690
        print_rank_last(log_string)
691
692
693
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
694
695
696
697
698
699
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


700
def save_checkpoint_and_time(iteration, model, optimizer, opt_param_scheduler):
701
702
703
704
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
    torch.distributed.barrier()
705
    timers('save-checkpoint').start()
706
    save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
707
    torch.distributed.barrier()
708
709
    timers('save-checkpoint').stop()
    timers.log(['save-checkpoint'])
710
711


712
def train(forward_step_func, model, optimizer, opt_param_scheduler,
713
714
          train_data_iterator, valid_data_iterator,
          process_non_loss_data_func):
715
    """Train the model function."""
Mohammad's avatar
Mohammad committed
716
717
    args = get_args()
    timers = get_timers()
718

719
720
721
    # Write args to tensorboard
    write_args_to_tensorboard()

722
    # Turn on training mode which enables dropout.
723
724
    for model_module in model:
        model_module.train()
725
726
727
728
729
730
731

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

732
    timers('interval-time').start()
733
    print_datetime('before the start of training step')
734
735
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
736
        update_num_microbatches(args.consumed_train_samples)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
737
        args.curr_iteration = iteration
738
739
740
741
742
        loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = \
            train_step(forward_step_func,
                       train_data_iterator,
                       model,
                       optimizer,
743
                       opt_param_scheduler)
744
        iteration += 1
745
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
746
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
747
                                       get_num_microbatches()
748
749

        # Logging.
750
        loss_scale = optimizer.get_loss_scale().item()
751
752
753
        params_norm = None
        if args.log_params_norm:
            params_norm = calc_params_l2_norm(model)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
754
755
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
756
                                          iteration, loss_scale,
757
                                          report_memory_flag, skipped_iter,
758
                                          grad_norm, params_norm, num_zeros_in_grad)
759
760

        # Autoresume
761
762
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
763
            check_adlr_autoresume_termination(iteration, model, optimizer,
764
                                              opt_param_scheduler)
765
766
767
768
769
770

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
771
                                       valid_data_iterator, model,
772
773
                                       iteration, process_non_loss_data_func,
                                       False)
774

775
776
        # Checkpointing
        saved_checkpoint = False
777
778
779
780
        if args.exit_signal_handler:
            signal_handler = get_signal_handler()
            if any(signal_handler.signals_received()):
                save_checkpoint_and_time(iteration, model, optimizer,
781
                                         opt_param_scheduler)
782
783
784
                print_datetime('exiting program after receiving SIGTERM.')
                sys.exit()

785
786
787
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
788
                                     opt_param_scheduler)
789
790
            saved_checkpoint = True

791
792
793
794
795
796
797
798
799
800
801
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
802
                                             opt_param_scheduler)
803
                print_datetime('exiting program after {} minutes'.format(train_time))
804
805
                sys.exit()

806
        # Exiting based on iterations
807
        if args.exit_interval and iteration % args.exit_interval == 0:
808
809
            if not saved_checkpoint:
                save_checkpoint_and_time(iteration, model, optimizer,
810
                                         opt_param_scheduler)
811
            torch.distributed.barrier()
812
            print_datetime('exiting program at iteration {}'.format(iteration))
Mohammad's avatar
Mohammad committed
813
            sys.exit()
814

815

mohammad's avatar
mohammad committed
816
    return iteration
817
818


819
820
821
822
823
def evaluate(forward_step_func,
             data_iterator,
             model,
             process_non_loss_data_func,
             verbose=False):
824
    """Evaluation."""
Mohammad's avatar
Mohammad committed
825
    args = get_args()
826

Vijay Korthikanti's avatar
Vijay Korthikanti committed
827
828
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
        compute_feature_bank(model)
829

830
    # Turn on evaluation mode which disables dropout.
831
832
    for model_module in model:
        model_module.eval()
833
834
835
836
837
838
839
840
841
842

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
843

844
            forward_backward_func = get_forward_backward_func()
845
846
847
848
            loss_dicts = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True)

849
            # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
850
            if args.empty_unused_memory_level >= 1:
851
852
                torch.cuda.empty_cache()

853
854
855
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                # Reduce across processes.
                for loss_dict in loss_dicts:
856
                    for key in loss_dict:
857
858
                        total_loss_dict[key] = total_loss_dict.get(
                            key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
859

860
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
861
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
862
                                           * get_num_microbatches()
863
864
865
866
867
868
        collected_non_loss_data = None
        if process_non_loss_data_func is not None and is_last_rank():
            collected_non_loss_data = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True, collect_non_loss_data=True)

869
    # Move model back to the train mode.
870
871
    for model_module in model:
        model_module.train()
872
873

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
874
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
875

876
    return total_loss_dict, collected_non_loss_data
877
878
879

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
880
881
                               iteration, process_non_loss_data_func,
                               verbose=False):
882
    """Helper function to evaluate and dump results on screen."""
883
    args = get_args()
Mohammad's avatar
Mohammad committed
884
885
    writer = get_tensorboard_writer()

886
887
888
    total_loss_dict, collected_non_loss_data = evaluate(
        forward_step_func, data_iterator, model,
        process_non_loss_data_func, verbose)
889
890
891
892
893
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
mshoeybi's avatar
mshoeybi committed
894
        if writer:
mohammad's avatar
mohammad committed
895
            writer.add_scalar('{} validation'.format(key),
896
897
                              total_loss_dict[key].item(),
                              iteration)
mohammad's avatar
mohammad committed
898
            writer.add_scalar('{} validation vs samples'.format(key),
899
900
                              total_loss_dict[key].item(),
                              args.consumed_train_samples)
901
            if args.log_validation_ppl_to_tensorboard:
mohammad's avatar
mohammad committed
902
                writer.add_scalar('{} validation ppl'.format(key), ppl,
903
                                  iteration)
mohammad's avatar
mohammad committed
904
                writer.add_scalar('{} validation ppl vs samples'.format(key),
905
                                  ppl, args.consumed_train_samples)
906

907
908
909
    if process_non_loss_data_func is not None and writer and is_last_rank():
        process_non_loss_data_func(collected_non_loss_data, iteration, writer)

910
    length = len(string) + 1
911
912
913
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
914
915


Vijay Korthikanti's avatar
Vijay Korthikanti committed
916
def cyclic_iter(iter):
917
    while True:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
918
        for x in iter:
919
920
            yield x

921
922
923
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
924
    args = get_args()
925

926
927
928
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
929
930
931

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
932
933
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
934
        args.consumed_train_samples = args.iteration * args.global_batch_size
935
    if args.iteration > 0 and args.consumed_valid_samples == 0:
936
937
938
        if args.train_samples is None:
            args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
                args.eval_iters * args.global_batch_size
939

940
    # Data loader only on rank 0 of each model parallel group.
941
    if mpu.get_tensor_model_parallel_rank() == 0:
942
943

        # Number of train/valid/test samples.
944
945
946
947
948
949
        if args.train_samples:
            train_samples = args.train_samples
        else:
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
                     args.eval_iters
950
        test_iters = args.eval_iters
951
        train_val_test_num_samples = [train_samples,
mohammad's avatar
mohammad committed
952
953
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
954
955
956
957
958
959
960
961
962
963
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
964
965
966
967
968
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
969
970
971
972
973
974
975
976
977
978
979
980
981

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
982
983
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
984
985
986
987
988
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

    # Build iterators.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
989
990
991
    dl_type = args.dataloader_type
    assert dl_type in ['single', 'cyclic']

992
    if train_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
993
994
        train_data_iterator = iter(train_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(train_dataloader))
995
996
997
    else:
        train_data_iterator = None

998
    if valid_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
999
1000
        valid_data_iterator = iter(valid_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(valid_dataloader))
1001
    else:
1002
        valid_data_iterator = None
1003

1004
    if test_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1005
1006
        test_data_iterator = iter(test_dataloader) if dl_type == 'single' \
                             else iter(cyclic_iter(test_dataloader))
1007
1008
1009
    else:
        test_data_iterator = None

1010
    return train_data_iterator, valid_data_iterator, test_data_iterator