training.py 39.7 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
24
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()

25
26
27
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

Neel Kant's avatar
Neel Kant committed
28
from megatron import get_args
29
from megatron import get_signal_handler
Mohammad's avatar
Mohammad committed
30
31
from megatron import get_timers
from megatron import get_tensorboard_writer
32
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
33
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
34
from megatron import is_last_rank
mohammad's avatar
mohammad committed
35
from megatron import update_num_microbatches
36
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
37
from megatron import print_rank_0
38
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
39
40
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
41
from megatron.model import Float16Module
42
from megatron.model import ModelType
mohammad's avatar
mohammad committed
43
from megatron.optimizer import get_megatron_optimizer
Mohammad's avatar
Mohammad committed
44
from megatron.initialize import initialize_megatron
45
from megatron.initialize import write_args_to_tensorboard
46
47
48
from megatron.learning_rates import AnnealingLR
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.utils import check_adlr_autoresume_termination
49
from megatron.utils import unwrap_model
Vijay Korthikanti's avatar
Vijay Korthikanti committed
50
from megatron.data.data_samplers import build_pretraining_data_loader
mohammad's avatar
mohammad committed
51
from megatron.utils import calc_params_l2_norm
52
from megatron.schedules import get_forward_backward_func
53
from megatron.utils import report_memory
54
55


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
56

57
58
59
60
61
62
63
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


64
def pretrain(train_valid_test_dataset_provider,
65
             model_provider,
66
             model_type,
67
68
             forward_step_func,
             extra_args_provider=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
69
             args_defaults={}):
70
71
72
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
73
74
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
75
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
76
        4) train the modle using the forward_step_func.
77
78

    Arguments:
79
80
81
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
82
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
83
        model_type: an enum that specifies the type of model being trained.
Mohammad's avatar
Mohammad committed
84
85
86
87
88
89
90
91
92
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
93
94
    """

95
    # Initalize and get arguments, timers, and Tensorboard writer.
96
97
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
98

99
100
101
102
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
103
    start_time_tensor = torch.cuda.DoubleTensor([_TRAIN_START_TIME])
104
105
106
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
107
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
108
109
110
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

111
    args = get_args()
Mohammad's avatar
Mohammad committed
112
    timers = get_timers()
113
114

    # Model, optimizer, and learning rate.
115
    timers('model-and-optimizer-setup').start()
116
117
    model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider,
                                                               model_type)
118
    timers('model-and-optimizer-setup').stop()
119
120
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
121
122

    # Data stuff.
123
124
    timers('train/valid/test-data-iterators-setup').start()
    if args.virtual_pipeline_model_parallel_size is not None:
125
        all_data_iterators = [
126
127
128
            build_train_valid_test_data_iterators(train_valid_test_dataset_provider)
            for _ in range(len(model))
        ]
129
130
131
        train_data_iterator = [data_iterators[0] for data_iterators in all_data_iterators]
        valid_data_iterator = [data_iterators[1] for data_iterators in all_data_iterators]
        test_data_iterator = [data_iterators[2] for data_iterators in all_data_iterators]
132
133
134
135
136
    else:
        train_data_iterator, valid_data_iterator, test_data_iterator \
            = build_train_valid_test_data_iterators(
                train_valid_test_dataset_provider)
    timers('train/valid/test-data-iterators-setup').stop()
mshoeybi's avatar
mshoeybi committed
137
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
138

139
    # >>>
140
141
142
143
144
    # from lutil import pax
    # pax({
    #     "model / len" : len(model),
    #     # "do_train": args.do_train,
    # })
145
146
    # <<<

Mohammad's avatar
Mohammad committed
147
    # Print setup timing.
148
149
    print_rank_0('done with setup ...')
    timers.log(['model-and-optimizer-setup', 'train/valid/test-data-iterators-setup'])
Mohammad's avatar
Mohammad committed
150
    print_rank_0('training ...')
151
152

    iteration = 0
153
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
154
155
156
        iteration = train(forward_step_func,
                          model, optimizer, lr_scheduler,
                          train_data_iterator, valid_data_iterator)
157
    print_datetime('after training is done')
Mohammad's avatar
Mohammad committed
158

159
160
161
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
162
                                   valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
163
                                   iteration, False)
164
165

    if args.save and iteration != 0:
166
        save_checkpoint(iteration, model, optimizer, lr_scheduler)
167
168
169
170
171
172

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
Mohammad's avatar
Mohammad committed
173
                                   0, True)
174

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
191
192
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
193
194
            iterations += 1
        # Reset
195
        update_num_microbatches(0, consistency_check=False)
196
197
198
199
200
201
202
203
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

204

205
def get_model(model_provider_func, model_type=ModelType.encoder_or_decoder, wrap_with_ddp=True):
206
    """Build the model."""
Mohammad's avatar
Mohammad committed
207
    args = get_args()
208
    args.model_type = model_type
209

210
211
212
213
214
215
216
217
    # >>>
    # from lutil import pax
    # pax({
    #     "pipeline world size" : mpu.get_pipeline_model_parallel_world_size(),
    #     "virtual size" : args.virtual_pipeline_model_parallel_size,
    # })
    # <<<

218
    # Build model.
219
220
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
       args.virtual_pipeline_model_parallel_size is not None:
221
222
        assert model_type != ModelType.encoder_and_decoder, \
            "Interleaved schedule not supported for model with both encoder and decoder"
223
224
225
        model = []
        for i in range(args.virtual_pipeline_model_parallel_size):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
226
227
228
            # Set pre_process and post_process only after virtual rank is set.
            pre_process = mpu.is_pipeline_first_stage()
            post_process = mpu.is_pipeline_last_stage()
229
            this_model = model_provider_func(
230
231
232
                pre_process=pre_process,
                post_process=post_process
            )
233
            this_model.model_type = model_type
234
            model.append(this_model)
235
        # >>>
236
237
238
239
240
        # from lutil import pax
        # pax({
        #     "virtual size" : args.virtual_pipeline_model_parallel_size,
        #     "model" : model,
        # })
241
        # <<<
242
    else:
243
244
        pre_process = mpu.is_pipeline_first_stage()
        post_process = mpu.is_pipeline_last_stage()
245
246
247
248
249
250
251
252
253
254
255
256
        add_encoder = True
        add_decoder = True
        if model_type == ModelType.encoder_and_decoder:
            if mpu.get_pipeline_model_parallel_world_size() > 1:
                assert args.pipeline_model_parallel_split_rank is not None, \
                    "Split rank needs to be specified for model with both encoder and decoder"
                rank = mpu.get_pipeline_model_parallel_rank()
                split_rank = args.pipeline_model_parallel_split_rank
                world_size = mpu.get_pipeline_model_parallel_world_size()
                pre_process = rank == 0 or rank == split_rank
                post_process = (rank == (split_rank - 1)) or (
                        rank == (world_size - 1))
257
258
259
260
                # >>>
                add_encoder = mpu.is_pipeline_stage_before_split() # args)
                add_decoder = mpu.is_pipeline_stage_after_split() # args)
                # <<<
261
262
263
264
265
266
267
268
269
270
271
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process,
                add_encoder=add_encoder,
                add_decoder=add_decoder)
        else:
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process
            )
        model.model_type = model_type
272

273
274
    if not isinstance(model, list):
        model = [model]
275

276
    # Set tensor model parallel attributes if not set.
mohammad's avatar
mohammad committed
277
278
279
    # Only parameters that are already tensor model parallel have these
    # attributes set for them. We should make sure the default attributes
    # are set for all params so the optimizer can use them.
280
281
282
    for model_module in model:
        for param in model_module.parameters():
            mpu.set_defaults_if_not_set_tensor_model_parallel_attributes(param)
283

284
285
    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
286
        print(' > number of parameters on (tensor, pipeline) '
287
              'model parallel rank ({}, {}): {}'.format(
288
289
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
290
291
            sum([sum([p.nelement() for p in model_module.parameters()])
                 for model_module in model])), flush=True)
292
293

    # GPU allocation.
294
295
    for model_module in model:
        model_module.cuda(torch.cuda.current_device())
296
297

    # Fp16 conversion.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
298
299
    if args.fp16 or args.bf16:
        model = [Float16Module(model_module, args) for model_module in model]
300

301
302
303
304
305
306
    if wrap_with_ddp:
        if args.DDP_impl == 'torch':
            i = torch.cuda.current_device()
            model = [torchDDP(model_module, device_ids=[i], output_device=i,
                              process_group=mpu.get_data_parallel_group())
                     for model_module in model]
307

308
309
310
311
312
        elif args.DDP_impl == 'local':
            model = [LocalDDP(model_module,
                              args.accumulate_allreduce_grads_in_fp32,
                              args.use_contiguous_buffers_in_local_ddp)
                     for model_module in model]
313
314
315
316
            # broad cast params from data parallel src rank to other data parallel ranks
            if args.data_parallel_random_init:
                for model_module in model:
                    model_module.broadcast_params()
317
318
319
        else:
            raise NotImplementedError('Unknown DDP implementation specified: '
                                      '{}. Exiting.'.format(args.DDP_impl))
320

321
    return model
322
323


Mohammad's avatar
Mohammad committed
324
def get_learning_rate_scheduler(optimizer):
325
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
326
    args = get_args()
327

328
329
330
331
332
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
        decay_steps = args.lr_decay_iters * args.global_batch_size
333
334
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
335
336
        else:
            warmup_steps = args.lr_warmup_iters * args.global_batch_size
337
338
339
340
341
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
342
        update_train_iters(args)
343
344
345
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
        decay_steps = args.lr_decay_samples
346
347
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
348
349
        else:
            warmup_steps = args.lr_warmup_samples
350
    else:
351
352
353
        raise Exception(
            'either train-iters or train-samples should be provided.')

354
355
    lr_scheduler = AnnealingLR(
        optimizer,
356
        max_lr=args.lr,
357
        min_lr=args.min_lr,
358
359
        warmup_steps=warmup_steps,
        decay_steps=decay_steps,
360
        decay_style=args.lr_decay_style,
361
362
363
364
365
366
        use_checkpoint_lr_scheduler=args.use_checkpoint_lr_scheduler,
        override_lr_scheduler=args.override_lr_scheduler)

    return lr_scheduler


367
def setup_model_and_optimizer(model_provider_func, model_type):
368
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
369
    args = get_args()
370

371
    model = get_model(model_provider_func, model_type)
372

373
    # >>>
374
375
376
377
378
379
380
381
382
383
384
385
    # if mpu.get_tensor_model_parallel_rank() == 0:
    #     from lutil import pax
    #     pax({
    #         # "model" : model,
    #         "model" : [
    #             sum(t.nelement() for t in m.parameters())
    #             for m in model
    #         ],
    #     })
    # else:
    #     torch.distributed.barrier()
    #     exit(0)
386
387
    # <<<

388
    unwrapped_model = unwrap_model(model,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
389
                                   (torchDDP, LocalDDP, Float16Module))
390
391
    optimizer = get_megatron_optimizer(unwrapped_model)

Mohammad's avatar
Mohammad committed
392
    lr_scheduler = get_learning_rate_scheduler(optimizer)
393
394

    if args.load is not None:
395
396
397
398
        timers = get_timers()
        # Extra barrier is added to make sure all ranks report the
        # max time.
        torch.distributed.barrier()
399
        timers('load-checkpoint').start()
400
        args.iteration = load_checkpoint(model, optimizer, lr_scheduler)
401
        torch.distributed.barrier()
402
403
        timers('load-checkpoint').stop()
        timers.log(['load-checkpoint'])
404
405
406
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
407
    # We only support local DDP with multiple micro-batches.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
408
    if len(model) > 1 or mpu.get_pipeline_model_parallel_world_size() > 1:
mohammad's avatar
mohammad committed
409
410
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
411
    # get model without FP16 and/or TorchDDP wrappers
Mostofa Patwary's avatar
Mostofa Patwary committed
412
413
    if args.iteration == 0 and len(unwrapped_model) == 1 \
        and hasattr(unwrapped_model[0], 'init_state_dict_from_bert'):
Mostofa Patwary's avatar
Mostofa Patwary committed
414
        print_rank_0("Initializing ICT from pretrained BERT model")
Mostofa Patwary's avatar
Mostofa Patwary committed
415
        unwrapped_model[0].init_state_dict_from_bert()
Mostofa Patwary's avatar
Mostofa Patwary committed
416
417
        if args.fp16:
            optimizer.reload_model_params()
Neel Kant's avatar
Neel Kant committed
418

419
420
421
    return model, optimizer, lr_scheduler


422
423
424
425
426
427
428
def train_step(forward_step_func, data_iterator,
               model, optimizer, lr_scheduler):
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
429
    if args.DDP_impl == 'local' and args.use_contiguous_buffers_in_local_ddp:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
430
431
        for partition in model:
            partition.zero_grad_buffer()
432
    optimizer.zero_grad()
433

434
    forward_backward_func = get_forward_backward_func()
435
436
437
    losses_reduced = forward_backward_func(
        forward_step_func, data_iterator, model,
        optimizer, timers, forward_only=False)
438

439
    # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
440
    if args.empty_unused_memory_level >= 1:
441
442
        torch.cuda.empty_cache()

443
444
    # All-reduce if needed.
    if args.DDP_impl == 'local':
445
        timers('backward-params-all-reduce').start()
446
        for model_module in model:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
447
            model_module.allreduce_gradients()
448
        timers('backward-params-all-reduce').stop()
449

450
451
452
453
    # All-reduce word_embeddings' grad across first and last stages to ensure
    # that word_embeddings parameters stay in sync.
    # This should only run for models that support pipelined model parallelism
    # (BERT and GPT-2).
454
    timers('backward-embedding-all-reduce').start()
455
    if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
456
            mpu.get_pipeline_model_parallel_world_size() > 1:
457
458
459
460
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            unwrapped_model = model[0]
        elif mpu.is_pipeline_last_stage(ignore_virtual=True):
            unwrapped_model = model[-1]
461
462
        else:  # We do not support the interleaved schedule for T5 yet.
            unwrapped_model = model[0]
463
        unwrapped_model = unwrap_model(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
464
            unwrapped_model, (torchDDP, LocalDDP, Float16Module))
465

466
467
        if unwrapped_model.share_word_embeddings:
            word_embeddings_weight = unwrapped_model.word_embeddings_weight()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
468
469
470
471
472
            if args.DDP_impl == 'local':
                grad = word_embeddings_weight.main_grad
            else:
                grad = word_embeddings_weight.grad
            torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
Vijay Korthikanti's avatar
Vijay Korthikanti committed
473

Vijay Korthikanti's avatar
Vijay Korthikanti committed
474
475
476
    # All-reduce position_embeddings grad across first (encoder) and split (decoder) 
    # stages to ensure that position embeddings parameters stay in sync.
    # This should only run for T5 models with pipeline parallelism
Vijay Korthikanti's avatar
Vijay Korthikanti committed
477
478
479
480
481
482
    if mpu.is_rank_in_position_embedding_group() and \
            mpu.get_pipeline_model_parallel_world_size() > 1 and \
            args.pipeline_model_parallel_split_rank is not None:
        unwrapped_model = model[0]
        unwrapped_model = unwrap_model(
            unwrapped_model, (torchDDP, LocalDDP, Float16Module))
Vijay Korthikanti's avatar
Vijay Korthikanti committed
483
484
        assert args.DDP_impl == 'local', \
            'T5 model is only supported with local DDP mode'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
485
486
        grad = unwrapped_model.language_model.embedding.position_embeddings.weight.main_grad
        torch.distributed.all_reduce(grad, group=mpu.get_position_embedding_group())
487
    timers('backward-embedding-all-reduce').stop()
488

489
490
    # Update parameters.
    timers('optimizer').start()
491
    update_successful, grad_norm, num_zeros_in_grad = optimizer.step()
492
493
494
    timers('optimizer').stop()

    # Update learning rate.
495
    if update_successful:
496
497
498
499
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
        lr_scheduler.step(increment=increment)
mohammad's avatar
mohammad committed
500
        skipped_iter = 0
501
502
503
    else:
        skipped_iter = 1

504
    # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
505
    if args.empty_unused_memory_level >= 2:
506
507
        torch.cuda.empty_cache()

508
    if mpu.is_pipeline_last_stage(ignore_virtual=True):
509
510
511
512
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
513
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
514
515
        return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
    return {}, skipped_iter, grad_norm, num_zeros_in_grad
516
517


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
518
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
519
                 loss_scale, report_memory_flag, skipped_iter,
520
                 grad_norm, params_norm, num_zeros_in_grad):
Mohammad's avatar
Mohammad committed
521
522
523
524
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
525

mohammad's avatar
mohammad committed
526
527
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
528
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
529
530
531
532
533
534
535
536
537
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
538
539
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
540
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
541
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
542
    for key in loss_dict:
mohammad's avatar
mohammad committed
543
        if not skipped_iter:
544
545
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
546
547
548
549
550
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
551
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
552
553
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
554
555
556

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
557

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
558
559
560
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
561
562
563
    add_to_logging('forward-compute')
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
564
    add_to_logging('forward-backward-send-forward-backward-recv')
565
566
567
    add_to_logging('backward-compute')
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
568
    add_to_logging('backward-send-forward-recv')
569
    add_to_logging('backward-send-backward-recv')
570
    add_to_logging('backward-params-all-reduce')
571
    add_to_logging('backward-embedding-all-reduce')
572
    add_to_logging('optimizer-copy-to-main-grad')
mohammad's avatar
mohammad committed
573
    add_to_logging('optimizer-unscale-and-check-inf')
574
575
    add_to_logging('optimizer-clip-main-grad')
    add_to_logging('optimizer-copy-main-to-model-params')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
576
    add_to_logging('optimizer')
mohammad's avatar
mohammad committed
577
    add_to_logging('batch-generator')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
578

mohammad's avatar
mohammad committed
579
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
580
581
582
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
583
584
585
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
586
    # Tensorboard values.
587
588
589
590
591
592
593
594
595
596
    if writer and (iteration % args.tensorboard_log_interval == 0 ) and \
       is_last_rank():
        if args.log_learning_rate_to_tensorboard:
            writer.add_scalar('learning-rate', learning_rate, iteration)
            writer.add_scalar('learning-rate vs samples', learning_rate,
                              args.consumed_train_samples)
        if args.log_batch_size_to_tensorboard:
            writer.add_scalar('batch-size', batch_size, iteration)
            writer.add_scalar('batch-size vs samples', batch_size,
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
597
        for key in loss_dict:
mohammad's avatar
mohammad committed
598
599
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
600
                              args.consumed_train_samples)
601
602
603
604
        if args.log_loss_scale_to_tensorboard:
            writer.add_scalar('loss-scale', loss_scale, iteration)
            writer.add_scalar('loss-scale vs samples', loss_scale,
                              args.consumed_train_samples)
605
606
607
608
        if args.log_world_size_to_tensorboard:
            writer.add_scalar('world-size', args.world_size, iteration)
            writer.add_scalar('world-size vs samples', args.world_size,
                              args.consumed_train_samples)
609
610
611
612
        if grad_norm is not None:
            writer.add_scalar('grad-norm', grad_norm, iteration)
            writer.add_scalar('grad-norm vs samples', grad_norm,
                              args.consumed_train_samples)
613
614
615
        if num_zeros_in_grad is not None:
            writer.add_scalar('num-zeros', num_zeros_in_grad, iteration)
            writer.add_scalar('num-zeros vs samples', num_zeros_in_grad,
Rewon Child's avatar
Rewon Child committed
616
                              args.consumed_train_samples)
mohammad's avatar
mohammad committed
617
618
619
620
        if params_norm is not None:
            writer.add_scalar('params-norm', params_norm, iteration)
            writer.add_scalar('params-norm vs samples', params_norm,
                              args.consumed_train_samples)
621
622
623
        if args.log_timers_to_tensorboard:
            timers.write(timers_to_log, writer, iteration,
                         normalizer=total_iterations)
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
        if args.log_memory_to_tensorboard:
            mem_stats = torch.cuda.memory_stats()
            writer.add_scalar(
                "mem-reserved-bytes",
                mem_stats["reserved_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-bytes",
                mem_stats["allocated_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-count",
                mem_stats["allocation.all.current"],
                iteration,
            )
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
641
642

    if iteration % args.log_interval == 0:
643
        elapsed_time = timers('interval-time').elapsed()
mohammad's avatar
mohammad committed
644
        elapsed_time_per_iteration = elapsed_time / total_iterations
mshoeybi's avatar
mshoeybi committed
645
        if writer:
646
647
648
            if args.log_timers_to_tensorboard:
                writer.add_scalar('iteration-time',
                                  elapsed_time_per_iteration, iteration)
649
650
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
651
        log_string += ' consumed samples: {:12d} |'.format(
652
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
653
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
654
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
655
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
656
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
657
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
658
659
660
661
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
662
663
664
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
665
        log_string += ' loss scale: {:.1f} |'.format(loss_scale)
666
667
        if grad_norm is not None:
            log_string += ' grad norm: {:.3f} |'.format(grad_norm)
668
669
        if num_zeros_in_grad is not None:
            log_string += ' num zeros: {:.1f} |'.format(num_zeros_in_grad)
mohammad's avatar
mohammad committed
670
671
        if params_norm is not None:
            log_string += ' params norm: {:.3f} |'.format(params_norm)
mohammad's avatar
mohammad committed
672
673
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
674
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
675
676
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
677
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
678
        total_loss_dict[nan_iters_key] = 0
679
        print_rank_last(log_string)
680
681
682
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
683
684
685
686
687
688
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


689
690
691
692
693
def save_checkpoint_and_time(iteration, model, optimizer, lr_scheduler):
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
    torch.distributed.barrier()
694
    timers('save-checkpoint').start()
695
696
    save_checkpoint(iteration, model, optimizer, lr_scheduler)
    torch.distributed.barrier()
697
698
    timers('save-checkpoint').stop()
    timers.log(['save-checkpoint'])
699
700


701
def train(forward_step_func, model, optimizer, lr_scheduler,
702
          train_data_iterator, valid_data_iterator):
703
    """Train the model function."""
Mohammad's avatar
Mohammad committed
704
705
    args = get_args()
    timers = get_timers()
706

707
708
709
    # Write args to tensorboard
    write_args_to_tensorboard()

710
    # Turn on training mode which enables dropout.
711
712
    for model_module in model:
        model_module.train()
713
714
715
716
717
718
719

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

720
    timers('interval-time').start()
721
    print_datetime('before the start of training step')
722
723
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
724
        update_num_microbatches(args.consumed_train_samples)
725
726
727
728
729
730
        loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = \
            train_step(forward_step_func,
                       train_data_iterator,
                       model,
                       optimizer,
                       lr_scheduler)
731
        iteration += 1
732
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
733
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
734
                                       get_num_microbatches()
735
736

        # Logging.
737
        loss_scale = optimizer.get_loss_scale().item()
738
739
740
        params_norm = None
        if args.log_params_norm:
            params_norm = calc_params_l2_norm(model)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
741
742
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
743
                                          iteration, loss_scale,
744
                                          report_memory_flag, skipped_iter,
745
                                          grad_norm, params_norm, num_zeros_in_grad)
746
747

        # Autoresume
748
749
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
750
            check_adlr_autoresume_termination(iteration, model, optimizer,
751
                                              lr_scheduler)
752
753
754
755
756
757

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
758
                                       valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
759
                                       iteration, False)
760

761
762
        # Checkpointing
        saved_checkpoint = False
763
764
765
766
767
768
769
770
        if args.exit_signal_handler:
            signal_handler = get_signal_handler()
            if any(signal_handler.signals_received()):
                save_checkpoint_and_time(iteration, model, optimizer,
                                         lr_scheduler)
                print_datetime('exiting program after receiving SIGTERM.')
                sys.exit()

771
772
773
774
775
776
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
                                     lr_scheduler)
            saved_checkpoint = True

777
778
779
780
781
782
783
784
785
786
787
788
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
                                             lr_scheduler)
789
                print_datetime('exiting program after {} minutes'.format(train_time))
790
791
                sys.exit()

792
        # Exiting based on iterations
793
        if args.exit_interval and iteration % args.exit_interval == 0:
794
795
796
            if not saved_checkpoint:
                save_checkpoint_and_time(iteration, model, optimizer,
                                         lr_scheduler)
797
            torch.distributed.barrier()
798
            print_datetime('exiting program at iteration {}'.format(iteration))
Mohammad's avatar
Mohammad committed
799
            sys.exit()
800

801

mohammad's avatar
mohammad committed
802
    return iteration
803
804


Mohammad's avatar
Mohammad committed
805
def evaluate(forward_step_func, data_iterator, model, verbose=False):
806
    """Evaluation."""
Mohammad's avatar
Mohammad committed
807
    args = get_args()
808
809

    # Turn on evaluation mode which disables dropout.
810
811
    for model_module in model:
        model_module.eval()
812
813
814
815
816
817
818
819
820
821

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
822

823
            forward_backward_func = get_forward_backward_func()
824
825
826
827
            loss_dicts = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True)

828
            # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
829
            if args.empty_unused_memory_level >= 1:
830
831
                torch.cuda.empty_cache()

832
833
834
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                # Reduce across processes.
                for loss_dict in loss_dicts:
835
                    for key in loss_dict:
836
837
                        total_loss_dict[key] = total_loss_dict.get(
                            key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
838

839
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
840
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
841
                                           * get_num_microbatches()
842
    # Move model back to the train mode.
843
844
    for model_module in model:
        model_module.train()
845
846

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
847
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
848
849
850
851
852

    return total_loss_dict

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
Mohammad's avatar
Mohammad committed
853
                               iteration, verbose=False):
854
    """Helper function to evaluate and dump results on screen."""
855
    args = get_args()
Mohammad's avatar
Mohammad committed
856
857
858
    writer = get_tensorboard_writer()

    total_loss_dict = evaluate(forward_step_func, data_iterator, model, verbose)
859
860
861
862
863
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
mshoeybi's avatar
mshoeybi committed
864
        if writer:
mohammad's avatar
mohammad committed
865
            writer.add_scalar('{} validation'.format(key),
866
867
                              total_loss_dict[key].item(),
                              iteration)
mohammad's avatar
mohammad committed
868
            writer.add_scalar('{} validation vs samples'.format(key),
869
870
                              total_loss_dict[key].item(),
                              args.consumed_train_samples)
871
            if args.log_validation_ppl_to_tensorboard:
mohammad's avatar
mohammad committed
872
                writer.add_scalar('{} validation ppl'.format(key), ppl,
873
                                  iteration)
mohammad's avatar
mohammad committed
874
                writer.add_scalar('{} validation ppl vs samples'.format(key),
875
                                  ppl, args.consumed_train_samples)
876
877

    length = len(string) + 1
878
879
880
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
881
882


Vijay Korthikanti's avatar
Vijay Korthikanti committed
883
def cyclic_iter(iter):
884
    while True:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
885
        for x in iter:
886
887
            yield x

888
889
890
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
891
    args = get_args()
892

893
894
895
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
896
897
898

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
899
900
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
901
        args.consumed_train_samples = args.iteration * args.global_batch_size
902
    if args.iteration > 0 and args.consumed_valid_samples == 0:
903
904
905
        if args.train_samples is None:
            args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
                args.eval_iters * args.global_batch_size
906

907
    # Data loader only on rank 0 of each model parallel group.
908
    if mpu.get_tensor_model_parallel_rank() == 0:
909
910

        # Number of train/valid/test samples.
911
912
913
914
915
916
        if args.train_samples:
            train_samples = args.train_samples
        else:
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
                     args.eval_iters
917
        test_iters = args.eval_iters
918
        train_val_test_num_samples = [train_samples,
mohammad's avatar
mohammad committed
919
920
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
921
922
923
924
925
926
927
928
929
930
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
931
932
933
934
935
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
936
937
938
939
940
941
942
943
944
945
946
947
948

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
949
950
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
951
952
953
954
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

955
    # >>>
956
957
    # from lutil import pax
    # pax({"hi": "there"})
958
    # <<<
Vijay Korthikanti's avatar
Vijay Korthikanti committed
959

960
    # Build iterators.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
961
962
963
    dl_type = args.dataloader_type
    assert dl_type in ['single', 'cyclic']

964
    if train_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
965
966
        train_data_iterator = iter(train_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(train_dataloader))
967
968
969
    else:
        train_data_iterator = None

970
    if valid_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
971
972
        valid_data_iterator = iter(valid_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(valid_dataloader))
973
    else:
974
        valid_data_iterator = None
975

976
    if test_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
977
978
        test_data_iterator = iter(test_dataloader) if dl_type == 'single' \
                             else iter(cyclic_iter(test_dataloader))
979
980
981
    else:
        test_data_iterator = None

982
    return train_data_iterator, valid_data_iterator, test_data_iterator