training.py 39.1 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
24
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()

25
26
27
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

Neel Kant's avatar
Neel Kant committed
28
from megatron import get_args
29
from megatron import get_signal_handler
Mohammad's avatar
Mohammad committed
30
31
from megatron import get_timers
from megatron import get_tensorboard_writer
32
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
33
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
34
from megatron import is_last_rank
mohammad's avatar
mohammad committed
35
from megatron import update_num_microbatches
36
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
37
from megatron import print_rank_0
38
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
39
40
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
41
from megatron.model import Float16Module
42
from megatron.model import ModelType
mohammad's avatar
mohammad committed
43
from megatron.optimizer import get_megatron_optimizer
Mohammad's avatar
Mohammad committed
44
from megatron.initialize import initialize_megatron
45
from megatron.initialize import write_args_to_tensorboard
46
47
48
from megatron.learning_rates import AnnealingLR
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.utils import check_adlr_autoresume_termination
49
from megatron.utils import unwrap_model
Vijay Korthikanti's avatar
Vijay Korthikanti committed
50
from megatron.data.data_samplers import build_pretraining_data_loader
mohammad's avatar
mohammad committed
51
from megatron.utils import calc_params_l2_norm
52
from megatron.schedules import get_forward_backward_func
53
from megatron.utils import report_memory
54
55


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
56

57
58
59
60
61
62
63
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


64
def pretrain(train_valid_test_dataset_provider,
65
             model_provider,
66
             model_type,
67
68
             forward_step_func,
             extra_args_provider=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
69
             args_defaults={}):
70
71
72
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
73
74
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
75
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
76
        4) train the modle using the forward_step_func.
77
78

    Arguments:
79
80
81
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
82
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
83
        model_type: an enum that specifies the type of model being trained.
Mohammad's avatar
Mohammad committed
84
85
86
87
88
89
90
91
92
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
93
94
    """

95
    # Initalize and get arguments, timers, and Tensorboard writer.
96
97
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
98

99
100
101
102
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
103
    start_time_tensor = torch.cuda.DoubleTensor([_TRAIN_START_TIME])
104
105
106
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
107
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
108
109
110
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

111
    args = get_args()
Mohammad's avatar
Mohammad committed
112
    timers = get_timers()
113
114

    # Model, optimizer, and learning rate.
115
    timers('model-and-optimizer-setup').start()
116
117
    model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider,
                                                               model_type)
118
    timers('model-and-optimizer-setup').stop()
119
120
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
121
122

    # Data stuff.
123
124
    timers('train/valid/test-data-iterators-setup').start()
    if args.virtual_pipeline_model_parallel_size is not None:
125
        all_data_iterators = [
126
127
128
            build_train_valid_test_data_iterators(train_valid_test_dataset_provider)
            for _ in range(len(model))
        ]
129
130
131
        train_data_iterator = [data_iterators[0] for data_iterators in all_data_iterators]
        valid_data_iterator = [data_iterators[1] for data_iterators in all_data_iterators]
        test_data_iterator = [data_iterators[2] for data_iterators in all_data_iterators]
132
133
134
135
136
    else:
        train_data_iterator, valid_data_iterator, test_data_iterator \
            = build_train_valid_test_data_iterators(
                train_valid_test_dataset_provider)
    timers('train/valid/test-data-iterators-setup').stop()
mshoeybi's avatar
mshoeybi committed
137
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
138

139
140
141
142
143
144
145
146
    # >>>
    from lutil import pax
    pax({
        "model / len" : len(model),
        # "do_train": args.do_train,
    })
    # <<<

Mohammad's avatar
Mohammad committed
147
    # Print setup timing.
148
149
    print_rank_0('done with setup ...')
    timers.log(['model-and-optimizer-setup', 'train/valid/test-data-iterators-setup'])
Mohammad's avatar
Mohammad committed
150
    print_rank_0('training ...')
151
152

    iteration = 0
153
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
154
155
156
        iteration = train(forward_step_func,
                          model, optimizer, lr_scheduler,
                          train_data_iterator, valid_data_iterator)
157
    print_datetime('after training is done')
Mohammad's avatar
Mohammad committed
158

159
160
161
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
162
                                   valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
163
                                   iteration, False)
164
165

    if args.save and iteration != 0:
166
        save_checkpoint(iteration, model, optimizer, lr_scheduler)
167
168
169
170
171
172

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
Mohammad's avatar
Mohammad committed
173
                                   0, True)
174

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
191
192
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
193
194
            iterations += 1
        # Reset
195
        update_num_microbatches(0, consistency_check=False)
196
197
198
199
200
201
202
203
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

204

205
def get_model(model_provider_func, model_type=ModelType.encoder_or_decoder, wrap_with_ddp=True):
206
    """Build the model."""
Mohammad's avatar
Mohammad committed
207
    args = get_args()
208
    args.model_type = model_type
209

210
211
212
213
214
215
216
217
    # >>>
    # from lutil import pax
    # pax({
    #     "pipeline world size" : mpu.get_pipeline_model_parallel_world_size(),
    #     "virtual size" : args.virtual_pipeline_model_parallel_size,
    # })
    # <<<

218
    # Build model.
219
220
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
       args.virtual_pipeline_model_parallel_size is not None:
221
222
        assert model_type != ModelType.encoder_and_decoder, \
            "Interleaved schedule not supported for model with both encoder and decoder"
223
224
225
        model = []
        for i in range(args.virtual_pipeline_model_parallel_size):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
226
227
228
            # Set pre_process and post_process only after virtual rank is set.
            pre_process = mpu.is_pipeline_first_stage()
            post_process = mpu.is_pipeline_last_stage()
229
            this_model = model_provider_func(
230
231
232
                pre_process=pre_process,
                post_process=post_process
            )
233
            this_model.model_type = model_type
234
            model.append(this_model)
235
236
237
238
239
240
241
        # >>>
        from lutil import pax
        pax({
            "virtual size" : args.virtual_pipeline_model_parallel_size,
            "model" : model,
        })
        # <<<
242
    else:
243
244
        pre_process = mpu.is_pipeline_first_stage()
        post_process = mpu.is_pipeline_last_stage()
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
        add_encoder = True
        add_decoder = True
        if model_type == ModelType.encoder_and_decoder:
            if mpu.get_pipeline_model_parallel_world_size() > 1:
                assert args.pipeline_model_parallel_split_rank is not None, \
                    "Split rank needs to be specified for model with both encoder and decoder"
                rank = mpu.get_pipeline_model_parallel_rank()
                split_rank = args.pipeline_model_parallel_split_rank
                world_size = mpu.get_pipeline_model_parallel_world_size()
                pre_process = rank == 0 or rank == split_rank
                post_process = (rank == (split_rank - 1)) or (
                        rank == (world_size - 1))
                add_encoder = mpu.is_pipeline_stage_before_split()
                add_decoder = mpu.is_pipeline_stage_after_split()
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process,
                add_encoder=add_encoder,
                add_decoder=add_decoder)
        else:
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process
            )
        model.model_type = model_type
270

271
272
    if not isinstance(model, list):
        model = [model]
273

274
    # Set tensor model parallel attributes if not set.
mohammad's avatar
mohammad committed
275
276
277
    # Only parameters that are already tensor model parallel have these
    # attributes set for them. We should make sure the default attributes
    # are set for all params so the optimizer can use them.
278
279
280
    for model_module in model:
        for param in model_module.parameters():
            mpu.set_defaults_if_not_set_tensor_model_parallel_attributes(param)
281

282
283
    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
284
        print(' > number of parameters on (tensor, pipeline) '
285
              'model parallel rank ({}, {}): {}'.format(
286
287
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
288
289
            sum([sum([p.nelement() for p in model_module.parameters()])
                 for model_module in model])), flush=True)
290
291

    # GPU allocation.
292
293
    for model_module in model:
        model_module.cuda(torch.cuda.current_device())
294
295

    # Fp16 conversion.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
296
297
    if args.fp16 or args.bf16:
        model = [Float16Module(model_module, args) for model_module in model]
298

299
300
301
302
303
304
    if wrap_with_ddp:
        if args.DDP_impl == 'torch':
            i = torch.cuda.current_device()
            model = [torchDDP(model_module, device_ids=[i], output_device=i,
                              process_group=mpu.get_data_parallel_group())
                     for model_module in model]
305

306
307
308
309
310
311
312
313
314
        elif args.DDP_impl == 'local':
            model = [LocalDDP(model_module,
                              args.accumulate_allreduce_grads_in_fp32,
                              args.use_contiguous_buffers_in_local_ddp)
                     for model_module in model]

        else:
            raise NotImplementedError('Unknown DDP implementation specified: '
                                      '{}. Exiting.'.format(args.DDP_impl))
315

316
    return model
317
318


Mohammad's avatar
Mohammad committed
319
def get_learning_rate_scheduler(optimizer):
320
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
321
    args = get_args()
322

323
324
325
326
327
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
        decay_steps = args.lr_decay_iters * args.global_batch_size
328
329
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
330
331
        else:
            warmup_steps = args.lr_warmup_iters * args.global_batch_size
332
333
334
335
336
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
337
        update_train_iters(args)
338
339
340
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
        decay_steps = args.lr_decay_samples
341
342
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
343
344
        else:
            warmup_steps = args.lr_warmup_samples
345
    else:
346
347
348
        raise Exception(
            'either train-iters or train-samples should be provided.')

349
350
    lr_scheduler = AnnealingLR(
        optimizer,
351
        max_lr=args.lr,
352
        min_lr=args.min_lr,
353
354
        warmup_steps=warmup_steps,
        decay_steps=decay_steps,
355
        decay_style=args.lr_decay_style,
356
357
358
359
360
361
        use_checkpoint_lr_scheduler=args.use_checkpoint_lr_scheduler,
        override_lr_scheduler=args.override_lr_scheduler)

    return lr_scheduler


362
def setup_model_and_optimizer(model_provider_func, model_type):
363
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
364
    args = get_args()
365

366
    model = get_model(model_provider_func, model_type)
367

368
369
370
371
372
    # >>>
    from lutil import pax
    pax({"model": model})
    # <<<

373
    unwrapped_model = unwrap_model(model,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
374
                                   (torchDDP, LocalDDP, Float16Module))
375
376
    optimizer = get_megatron_optimizer(unwrapped_model)

Mohammad's avatar
Mohammad committed
377
    lr_scheduler = get_learning_rate_scheduler(optimizer)
378
379

    if args.load is not None:
380
381
382
383
        timers = get_timers()
        # Extra barrier is added to make sure all ranks report the
        # max time.
        torch.distributed.barrier()
384
        timers('load-checkpoint').start()
385
        args.iteration = load_checkpoint(model, optimizer, lr_scheduler)
386
        torch.distributed.barrier()
387
388
        timers('load-checkpoint').stop()
        timers.log(['load-checkpoint'])
389
390
391
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
392
    # We only support local DDP with multiple micro-batches.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
393
    if len(model) > 1 or mpu.get_pipeline_model_parallel_world_size() > 1:
mohammad's avatar
mohammad committed
394
395
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
396
    # get model without FP16 and/or TorchDDP wrappers
Mostofa Patwary's avatar
Mostofa Patwary committed
397
398
    if args.iteration == 0 and len(unwrapped_model) == 1 \
        and hasattr(unwrapped_model[0], 'init_state_dict_from_bert'):
Mostofa Patwary's avatar
Mostofa Patwary committed
399
        print_rank_0("Initializing ICT from pretrained BERT model")
Mostofa Patwary's avatar
Mostofa Patwary committed
400
        unwrapped_model[0].init_state_dict_from_bert()
Mostofa Patwary's avatar
Mostofa Patwary committed
401
402
        if args.fp16:
            optimizer.reload_model_params()
Neel Kant's avatar
Neel Kant committed
403

404
405
406
    return model, optimizer, lr_scheduler


407
408
409
410
411
412
413
def train_step(forward_step_func, data_iterator,
               model, optimizer, lr_scheduler):
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
414
    if args.DDP_impl == 'local' and args.use_contiguous_buffers_in_local_ddp:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
415
416
        for partition in model:
            partition.zero_grad_buffer()
417
    optimizer.zero_grad()
418

419
    forward_backward_func = get_forward_backward_func()
420
421
422
    losses_reduced = forward_backward_func(
        forward_step_func, data_iterator, model,
        optimizer, timers, forward_only=False)
423

424
    # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
425
    if args.empty_unused_memory_level >= 1:
426
427
        torch.cuda.empty_cache()

428
429
    # All-reduce if needed.
    if args.DDP_impl == 'local':
430
        timers('backward-params-all-reduce').start()
431
        for model_module in model:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
432
            model_module.allreduce_gradients()
433
        timers('backward-params-all-reduce').stop()
434

435
436
437
438
    # All-reduce word_embeddings' grad across first and last stages to ensure
    # that word_embeddings parameters stay in sync.
    # This should only run for models that support pipelined model parallelism
    # (BERT and GPT-2).
439
    timers('backward-embedding-all-reduce').start()
440
    if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
441
            mpu.get_pipeline_model_parallel_world_size() > 1:
442
443
444
445
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            unwrapped_model = model[0]
        elif mpu.is_pipeline_last_stage(ignore_virtual=True):
            unwrapped_model = model[-1]
446
447
        else:  # We do not support the interleaved schedule for T5 yet.
            unwrapped_model = model[0]
448
        unwrapped_model = unwrap_model(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
449
            unwrapped_model, (torchDDP, LocalDDP, Float16Module))
450

451
452
        if unwrapped_model.share_word_embeddings:
            word_embeddings_weight = unwrapped_model.word_embeddings_weight()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
453
454
455
456
457
            if args.DDP_impl == 'local':
                grad = word_embeddings_weight.main_grad
            else:
                grad = word_embeddings_weight.grad
            torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
Vijay Korthikanti's avatar
Vijay Korthikanti committed
458

Vijay Korthikanti's avatar
Vijay Korthikanti committed
459
460
461
    # All-reduce position_embeddings grad across first (encoder) and split (decoder) 
    # stages to ensure that position embeddings parameters stay in sync.
    # This should only run for T5 models with pipeline parallelism
Vijay Korthikanti's avatar
Vijay Korthikanti committed
462
463
464
465
466
467
    if mpu.is_rank_in_position_embedding_group() and \
            mpu.get_pipeline_model_parallel_world_size() > 1 and \
            args.pipeline_model_parallel_split_rank is not None:
        unwrapped_model = model[0]
        unwrapped_model = unwrap_model(
            unwrapped_model, (torchDDP, LocalDDP, Float16Module))
Vijay Korthikanti's avatar
Vijay Korthikanti committed
468
469
        assert args.DDP_impl == 'local', \
            'T5 model is only supported with local DDP mode'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
470
471
        grad = unwrapped_model.language_model.embedding.position_embeddings.weight.main_grad
        torch.distributed.all_reduce(grad, group=mpu.get_position_embedding_group())
472
    timers('backward-embedding-all-reduce').stop()
473

474
475
    # Update parameters.
    timers('optimizer').start()
476
    update_successful, grad_norm, num_zeros_in_grad = optimizer.step()
477
478
479
    timers('optimizer').stop()

    # Update learning rate.
480
    if update_successful:
481
482
483
484
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
        lr_scheduler.step(increment=increment)
mohammad's avatar
mohammad committed
485
        skipped_iter = 0
486
487
488
    else:
        skipped_iter = 1

489
    # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
490
    if args.empty_unused_memory_level >= 2:
491
492
        torch.cuda.empty_cache()

493
    if mpu.is_pipeline_last_stage(ignore_virtual=True):
494
495
496
497
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
498
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
499
500
        return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
    return {}, skipped_iter, grad_norm, num_zeros_in_grad
501
502


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
503
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
504
                 loss_scale, report_memory_flag, skipped_iter,
505
                 grad_norm, params_norm, num_zeros_in_grad):
Mohammad's avatar
Mohammad committed
506
507
508
509
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
510

mohammad's avatar
mohammad committed
511
512
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
513
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
514
515
516
517
518
519
520
521
522
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
523
524
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
525
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
526
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
527
    for key in loss_dict:
mohammad's avatar
mohammad committed
528
        if not skipped_iter:
529
530
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
531
532
533
534
535
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
536
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
537
538
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
539
540
541

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
542

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
543
544
545
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
546
547
548
    add_to_logging('forward-compute')
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
549
    add_to_logging('forward-backward-send-forward-backward-recv')
550
551
552
    add_to_logging('backward-compute')
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
553
    add_to_logging('backward-send-forward-recv')
554
    add_to_logging('backward-send-backward-recv')
555
    add_to_logging('backward-params-all-reduce')
556
    add_to_logging('backward-embedding-all-reduce')
557
    add_to_logging('optimizer-copy-to-main-grad')
mohammad's avatar
mohammad committed
558
    add_to_logging('optimizer-unscale-and-check-inf')
559
560
    add_to_logging('optimizer-clip-main-grad')
    add_to_logging('optimizer-copy-main-to-model-params')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
561
    add_to_logging('optimizer')
mohammad's avatar
mohammad committed
562
    add_to_logging('batch-generator')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
563

mohammad's avatar
mohammad committed
564
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
565
566
567
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
568
569
570
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
571
    # Tensorboard values.
572
573
574
575
576
577
578
579
580
581
    if writer and (iteration % args.tensorboard_log_interval == 0 ) and \
       is_last_rank():
        if args.log_learning_rate_to_tensorboard:
            writer.add_scalar('learning-rate', learning_rate, iteration)
            writer.add_scalar('learning-rate vs samples', learning_rate,
                              args.consumed_train_samples)
        if args.log_batch_size_to_tensorboard:
            writer.add_scalar('batch-size', batch_size, iteration)
            writer.add_scalar('batch-size vs samples', batch_size,
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
582
        for key in loss_dict:
mohammad's avatar
mohammad committed
583
584
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
585
                              args.consumed_train_samples)
586
587
588
589
        if args.log_loss_scale_to_tensorboard:
            writer.add_scalar('loss-scale', loss_scale, iteration)
            writer.add_scalar('loss-scale vs samples', loss_scale,
                              args.consumed_train_samples)
590
591
592
593
        if args.log_world_size_to_tensorboard:
            writer.add_scalar('world-size', args.world_size, iteration)
            writer.add_scalar('world-size vs samples', args.world_size,
                              args.consumed_train_samples)
594
595
596
597
        if grad_norm is not None:
            writer.add_scalar('grad-norm', grad_norm, iteration)
            writer.add_scalar('grad-norm vs samples', grad_norm,
                              args.consumed_train_samples)
598
599
600
        if num_zeros_in_grad is not None:
            writer.add_scalar('num-zeros', num_zeros_in_grad, iteration)
            writer.add_scalar('num-zeros vs samples', num_zeros_in_grad,
Rewon Child's avatar
Rewon Child committed
601
                              args.consumed_train_samples)
mohammad's avatar
mohammad committed
602
603
604
605
        if params_norm is not None:
            writer.add_scalar('params-norm', params_norm, iteration)
            writer.add_scalar('params-norm vs samples', params_norm,
                              args.consumed_train_samples)
606
607
608
        if args.log_timers_to_tensorboard:
            timers.write(timers_to_log, writer, iteration,
                         normalizer=total_iterations)
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
        if args.log_memory_to_tensorboard:
            mem_stats = torch.cuda.memory_stats()
            writer.add_scalar(
                "mem-reserved-bytes",
                mem_stats["reserved_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-bytes",
                mem_stats["allocated_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-count",
                mem_stats["allocation.all.current"],
                iteration,
            )
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
626
627

    if iteration % args.log_interval == 0:
628
        elapsed_time = timers('interval-time').elapsed()
mohammad's avatar
mohammad committed
629
        elapsed_time_per_iteration = elapsed_time / total_iterations
mshoeybi's avatar
mshoeybi committed
630
        if writer:
631
632
633
            if args.log_timers_to_tensorboard:
                writer.add_scalar('iteration-time',
                                  elapsed_time_per_iteration, iteration)
634
635
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
636
        log_string += ' consumed samples: {:12d} |'.format(
637
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
638
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
639
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
640
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
641
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
642
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
643
644
645
646
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
647
648
649
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
650
        log_string += ' loss scale: {:.1f} |'.format(loss_scale)
651
652
        if grad_norm is not None:
            log_string += ' grad norm: {:.3f} |'.format(grad_norm)
653
654
        if num_zeros_in_grad is not None:
            log_string += ' num zeros: {:.1f} |'.format(num_zeros_in_grad)
mohammad's avatar
mohammad committed
655
656
        if params_norm is not None:
            log_string += ' params norm: {:.3f} |'.format(params_norm)
mohammad's avatar
mohammad committed
657
658
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
659
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
660
661
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
662
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
663
        total_loss_dict[nan_iters_key] = 0
664
        print_rank_last(log_string)
665
666
667
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
668
669
670
671
672
673
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


674
675
676
677
678
def save_checkpoint_and_time(iteration, model, optimizer, lr_scheduler):
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
    torch.distributed.barrier()
679
    timers('save-checkpoint').start()
680
681
    save_checkpoint(iteration, model, optimizer, lr_scheduler)
    torch.distributed.barrier()
682
683
    timers('save-checkpoint').stop()
    timers.log(['save-checkpoint'])
684
685


686
def train(forward_step_func, model, optimizer, lr_scheduler,
687
          train_data_iterator, valid_data_iterator):
688
    """Train the model function."""
Mohammad's avatar
Mohammad committed
689
690
    args = get_args()
    timers = get_timers()
691

692
693
694
    # Write args to tensorboard
    write_args_to_tensorboard()

695
    # Turn on training mode which enables dropout.
696
697
    for model_module in model:
        model_module.train()
698
699
700
701
702
703
704

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

705
    timers('interval-time').start()
706
    print_datetime('before the start of training step')
707
708
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
709
        update_num_microbatches(args.consumed_train_samples)
710
711
712
713
714
715
        loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = \
            train_step(forward_step_func,
                       train_data_iterator,
                       model,
                       optimizer,
                       lr_scheduler)
716
        iteration += 1
717
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
718
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
719
                                       get_num_microbatches()
720
721

        # Logging.
722
        loss_scale = optimizer.get_loss_scale().item()
723
724
725
        params_norm = None
        if args.log_params_norm:
            params_norm = calc_params_l2_norm(model)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
726
727
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
728
                                          iteration, loss_scale,
729
                                          report_memory_flag, skipped_iter,
730
                                          grad_norm, params_norm, num_zeros_in_grad)
731
732

        # Autoresume
733
734
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
735
            check_adlr_autoresume_termination(iteration, model, optimizer,
736
                                              lr_scheduler)
737
738
739
740
741
742

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
743
                                       valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
744
                                       iteration, False)
745

746
747
        # Checkpointing
        saved_checkpoint = False
748
749
750
751
752
753
754
755
        if args.exit_signal_handler:
            signal_handler = get_signal_handler()
            if any(signal_handler.signals_received()):
                save_checkpoint_and_time(iteration, model, optimizer,
                                         lr_scheduler)
                print_datetime('exiting program after receiving SIGTERM.')
                sys.exit()

756
757
758
759
760
761
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
                                     lr_scheduler)
            saved_checkpoint = True

762
763
764
765
766
767
768
769
770
771
772
773
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
                                             lr_scheduler)
774
                print_datetime('exiting program after {} minutes'.format(train_time))
775
776
                sys.exit()

777
        # Exiting based on iterations
778
        if args.exit_interval and iteration % args.exit_interval == 0:
779
780
781
            if not saved_checkpoint:
                save_checkpoint_and_time(iteration, model, optimizer,
                                         lr_scheduler)
782
            torch.distributed.barrier()
783
            print_datetime('exiting program at iteration {}'.format(iteration))
Mohammad's avatar
Mohammad committed
784
            sys.exit()
785

786

mohammad's avatar
mohammad committed
787
    return iteration
788
789


Mohammad's avatar
Mohammad committed
790
def evaluate(forward_step_func, data_iterator, model, verbose=False):
791
    """Evaluation."""
Mohammad's avatar
Mohammad committed
792
    args = get_args()
793
794

    # Turn on evaluation mode which disables dropout.
795
796
    for model_module in model:
        model_module.eval()
797
798
799
800
801
802
803
804
805
806

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
807

808
            forward_backward_func = get_forward_backward_func()
809
810
811
812
            loss_dicts = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True)

813
            # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
814
            if args.empty_unused_memory_level >= 1:
815
816
                torch.cuda.empty_cache()

817
818
819
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                # Reduce across processes.
                for loss_dict in loss_dicts:
820
                    for key in loss_dict:
821
822
                        total_loss_dict[key] = total_loss_dict.get(
                            key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
823

824
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
825
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
826
                                           * get_num_microbatches()
827
    # Move model back to the train mode.
828
829
    for model_module in model:
        model_module.train()
830
831

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
832
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
833
834
835
836
837

    return total_loss_dict

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
Mohammad's avatar
Mohammad committed
838
                               iteration, verbose=False):
839
    """Helper function to evaluate and dump results on screen."""
840
    args = get_args()
Mohammad's avatar
Mohammad committed
841
842
843
    writer = get_tensorboard_writer()

    total_loss_dict = evaluate(forward_step_func, data_iterator, model, verbose)
844
845
846
847
848
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
mshoeybi's avatar
mshoeybi committed
849
        if writer:
mohammad's avatar
mohammad committed
850
            writer.add_scalar('{} validation'.format(key),
851
852
                              total_loss_dict[key].item(),
                              iteration)
mohammad's avatar
mohammad committed
853
            writer.add_scalar('{} validation vs samples'.format(key),
854
855
                              total_loss_dict[key].item(),
                              args.consumed_train_samples)
856
            if args.log_validation_ppl_to_tensorboard:
mohammad's avatar
mohammad committed
857
                writer.add_scalar('{} validation ppl'.format(key), ppl,
858
                                  iteration)
mohammad's avatar
mohammad committed
859
                writer.add_scalar('{} validation ppl vs samples'.format(key),
860
                                  ppl, args.consumed_train_samples)
861
862

    length = len(string) + 1
863
864
865
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
866
867


Vijay Korthikanti's avatar
Vijay Korthikanti committed
868
def cyclic_iter(iter):
869
    while True:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
870
        for x in iter:
871
872
            yield x

873
874
875
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
876
    args = get_args()
877

878
879
880
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
881
882
883

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
884
885
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
886
        args.consumed_train_samples = args.iteration * args.global_batch_size
887
    if args.iteration > 0 and args.consumed_valid_samples == 0:
888
889
890
        if args.train_samples is None:
            args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
                args.eval_iters * args.global_batch_size
891

892
    # Data loader only on rank 0 of each model parallel group.
893
    if mpu.get_tensor_model_parallel_rank() == 0:
894
895

        # Number of train/valid/test samples.
896
897
898
899
900
901
        if args.train_samples:
            train_samples = args.train_samples
        else:
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
                     args.eval_iters
902
        test_iters = args.eval_iters
903
        train_val_test_num_samples = [train_samples,
mohammad's avatar
mohammad committed
904
905
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
906
907
908
909
910
911
912
913
914
915
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
916
917
918
919
920
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
921
922
923
924
925
926
927
928
929
930
931
932
933

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
934
935
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
936
937
938
939
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

940
941
942
943
    # >>>
    from lutil import pax
    pax({"hi": "there"})
    # <<<
Vijay Korthikanti's avatar
Vijay Korthikanti committed
944

945
    # Build iterators.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
946
947
948
    dl_type = args.dataloader_type
    assert dl_type in ['single', 'cyclic']

949
    if train_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
950
951
        train_data_iterator = iter(train_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(train_dataloader))
952
953
954
    else:
        train_data_iterator = None

955
    if valid_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
956
957
        valid_data_iterator = iter(valid_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(valid_dataloader))
958
    else:
959
        valid_data_iterator = None
960

961
    if test_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
962
963
        test_data_iterator = iter(test_dataloader) if dl_type == 'single' \
                             else iter(cyclic_iter(test_dataloader))
964
965
966
    else:
        test_data_iterator = None

967
    return train_data_iterator, valid_data_iterator, test_data_iterator