training.py 37.6 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
24
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()

25
26
27
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

Neel Kant's avatar
Neel Kant committed
28
from megatron import get_args
29
from megatron import get_signal_handler
Mohammad's avatar
Mohammad committed
30
31
from megatron import get_timers
from megatron import get_tensorboard_writer
32
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
33
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
34
from megatron import is_last_rank
mohammad's avatar
mohammad committed
35
from megatron import update_num_microbatches
36
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
37
from megatron import print_rank_0
38
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
39
40
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
41
from megatron.model import Float16Module
42
from megatron.model import ModelType
mohammad's avatar
mohammad committed
43
from megatron.optimizer import get_megatron_optimizer
Mohammad's avatar
Mohammad committed
44
from megatron.initialize import initialize_megatron
45
from megatron.initialize import write_args_to_tensorboard
46
47
48
from megatron.learning_rates import AnnealingLR
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.utils import check_adlr_autoresume_termination
49
from megatron.utils import unwrap_model
Vijay Korthikanti's avatar
Vijay Korthikanti committed
50
from megatron.data.data_samplers import build_pretraining_data_loader
mohammad's avatar
mohammad committed
51
from megatron.utils import calc_params_l2_norm
52
from megatron.schedules import get_forward_backward_func
53
from megatron.utils import report_memory
54
55


56
57
58
59
60
61
62
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


63
def pretrain(train_valid_test_dataset_provider,
64
             model_provider,
65
             model_type,
66
67
             forward_step_func,
             extra_args_provider=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
68
             args_defaults={}):
69
70
71
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
72
73
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
74
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
75
        4) train the modle using the forward_step_func.
76
77

    Arguments:
78
79
80
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
81
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
82
        model_type: an enum that specifies the type of model being trained.
Mohammad's avatar
Mohammad committed
83
84
85
86
87
88
89
90
91
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
92
93
    """

94
    # Initalize and get arguments, timers, and Tensorboard writer.
95
96
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
97

98
99
100
101
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
102
    start_time_tensor = torch.cuda.DoubleTensor([_TRAIN_START_TIME])
103
104
105
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
106
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
107
108
109
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

110
    args = get_args()
Mohammad's avatar
Mohammad committed
111
    timers = get_timers()
112
113

    # Model, optimizer, and learning rate.
114
    timers('model-and-optimizer-setup').start()
115
116
    model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider,
                                                               model_type)
117
    timers('model-and-optimizer-setup').stop()
118
119
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
120
121

    # Data stuff.
122
123
    timers('train/valid/test-data-iterators-setup').start()
    if args.virtual_pipeline_model_parallel_size is not None:
124
        all_data_iterators = [
125
126
127
            build_train_valid_test_data_iterators(train_valid_test_dataset_provider)
            for _ in range(len(model))
        ]
128
129
130
        train_data_iterator = [data_iterators[0] for data_iterators in all_data_iterators]
        valid_data_iterator = [data_iterators[1] for data_iterators in all_data_iterators]
        test_data_iterator = [data_iterators[2] for data_iterators in all_data_iterators]
131
132
133
134
135
    else:
        train_data_iterator, valid_data_iterator, test_data_iterator \
            = build_train_valid_test_data_iterators(
                train_valid_test_dataset_provider)
    timers('train/valid/test-data-iterators-setup').stop()
mshoeybi's avatar
mshoeybi committed
136
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
137
138

    # Print setup timing.
139
140
    print_rank_0('done with setup ...')
    timers.log(['model-and-optimizer-setup', 'train/valid/test-data-iterators-setup'])
Mohammad's avatar
Mohammad committed
141
    print_rank_0('training ...')
142
143

    iteration = 0
zihanl's avatar
zihanl committed
144
145
    if args.do_train and args.train_iters > 0:
        iteration = train(forward_step_func,
mohammad's avatar
mohammad committed
146
147
                          model, optimizer, lr_scheduler,
                          train_data_iterator, valid_data_iterator)
zihanl's avatar
zihanl committed
148
149
150
151
152
    print_datetime('after training is done')

    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
153
                                   valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
154
                                   iteration, False)
zihanl's avatar
zihanl committed
155
156
157
158
159
160
161
162

    if args.save and iteration != 0:
        save_checkpoint(iteration, model, optimizer, lr_scheduler)

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
163
                                   test_data_iterator, model,
Mohammad's avatar
Mohammad committed
164
                                   0, True)
zihanl's avatar
zihanl committed
165

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
182
183
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
184
185
            iterations += 1
        # Reset
186
        update_num_microbatches(0, consistency_check=False)
187
188
189
190
191
192
193
194
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

195

196
def get_model(model_provider_func, model_type=ModelType.encoder_or_decoder, wrap_with_ddp=True):
197
    """Build the model."""
Mohammad's avatar
Mohammad committed
198
    args = get_args()
199
    args.model_type = model_type
200

201
    # Build model.
202
203
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
       args.virtual_pipeline_model_parallel_size is not None:
204
205
        assert model_type != ModelType.encoder_and_decoder, \
            "Interleaved schedule not supported for model with both encoder and decoder"
206
207
208
        model = []
        for i in range(args.virtual_pipeline_model_parallel_size):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
209
210
211
            # Set pre_process and post_process only after virtual rank is set.
            pre_process = mpu.is_pipeline_first_stage()
            post_process = mpu.is_pipeline_last_stage()
212
            this_model = model_provider_func(
213
214
215
                pre_process=pre_process,
                post_process=post_process
            )
216
            this_model.model_type = model_type
217
            model.append(this_model)
218
    else:
219
220
        pre_process = mpu.is_pipeline_first_stage()
        post_process = mpu.is_pipeline_last_stage()
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
        add_encoder = True
        add_decoder = True
        if model_type == ModelType.encoder_and_decoder:
            if mpu.get_pipeline_model_parallel_world_size() > 1:
                assert args.pipeline_model_parallel_split_rank is not None, \
                    "Split rank needs to be specified for model with both encoder and decoder"
                rank = mpu.get_pipeline_model_parallel_rank()
                split_rank = args.pipeline_model_parallel_split_rank
                world_size = mpu.get_pipeline_model_parallel_world_size()
                pre_process = rank == 0 or rank == split_rank
                post_process = (rank == (split_rank - 1)) or (
                        rank == (world_size - 1))
                add_encoder = mpu.is_pipeline_stage_before_split()
                add_decoder = mpu.is_pipeline_stage_after_split()
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process,
                add_encoder=add_encoder,
                add_decoder=add_decoder)
        else:
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process
            )
        model.model_type = model_type
246

247
248
    if not isinstance(model, list):
        model = [model]
249

250
    # Set tensor model parallel attributes if not set.
mohammad's avatar
mohammad committed
251
252
253
    # Only parameters that are already tensor model parallel have these
    # attributes set for them. We should make sure the default attributes
    # are set for all params so the optimizer can use them.
254
255
256
    for model_module in model:
        for param in model_module.parameters():
            mpu.set_defaults_if_not_set_tensor_model_parallel_attributes(param)
257

258
259
    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
260
        print(' > number of parameters on (tensor, pipeline) '
261
              'model parallel rank ({}, {}): {}'.format(
262
263
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
264
265
            sum([sum([p.nelement() for p in model_module.parameters()])
                 for model_module in model])), flush=True)
266
267

    # GPU allocation.
268
269
    for model_module in model:
        model_module.cuda(torch.cuda.current_device())
270
271

    # Fp16 conversion.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
272
273
    if args.fp16 or args.bf16:
        model = [Float16Module(model_module, args) for model_module in model]
274

275
276
277
278
279
280
    if wrap_with_ddp:
        if args.DDP_impl == 'torch':
            i = torch.cuda.current_device()
            model = [torchDDP(model_module, device_ids=[i], output_device=i,
                              process_group=mpu.get_data_parallel_group())
                     for model_module in model]
281

282
283
284
285
286
        elif args.DDP_impl == 'local':
            model = [LocalDDP(model_module,
                              args.accumulate_allreduce_grads_in_fp32,
                              args.use_contiguous_buffers_in_local_ddp)
                     for model_module in model]
287

288
289
290
        else:
            raise NotImplementedError('Unknown DDP implementation specified: '
                                      '{}. Exiting.'.format(args.DDP_impl))
291

292
    return model
293
294


Mohammad's avatar
Mohammad committed
295
def get_learning_rate_scheduler(optimizer):
296
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
297
    args = get_args()
298

299
300
301
302
303
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
        decay_steps = args.lr_decay_iters * args.global_batch_size
304
305
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
306
307
        else:
            warmup_steps = args.lr_warmup_iters * args.global_batch_size
308
309
310
311
312
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
313
        update_train_iters(args)
314
315
316
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
        decay_steps = args.lr_decay_samples
317
318
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
319
320
        else:
            warmup_steps = args.lr_warmup_samples
321
    else:
322
323
324
        raise Exception(
            'either train-iters or train-samples should be provided.')

325
326
    lr_scheduler = AnnealingLR(
        optimizer,
327
        max_lr=args.lr,
328
        min_lr=args.min_lr,
329
330
        warmup_steps=warmup_steps,
        decay_steps=decay_steps,
331
        decay_style=args.lr_decay_style,
332
333
334
335
336
337
        use_checkpoint_lr_scheduler=args.use_checkpoint_lr_scheduler,
        override_lr_scheduler=args.override_lr_scheduler)

    return lr_scheduler


338
def setup_model_and_optimizer(model_provider_func, model_type):
339
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
340
    args = get_args()
341

342
    model = get_model(model_provider_func, model_type)
343

344
    unwrapped_model = unwrap_model(model,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
345
                                   (torchDDP, LocalDDP, Float16Module))
346
347
    optimizer = get_megatron_optimizer(unwrapped_model)

Mohammad's avatar
Mohammad committed
348
    lr_scheduler = get_learning_rate_scheduler(optimizer)
349
350

    if args.load is not None:
351
352
353
354
        timers = get_timers()
        # Extra barrier is added to make sure all ranks report the
        # max time.
        torch.distributed.barrier()
355
        timers('load-checkpoint').start()
356
        args.iteration = load_checkpoint(model, optimizer, lr_scheduler)
357
        torch.distributed.barrier()
358
359
        timers('load-checkpoint').stop()
        timers.log(['load-checkpoint'])
360
361
362
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
363
    # We only support local DDP with multiple micro-batches.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
364
    if len(model) > 1 or mpu.get_pipeline_model_parallel_world_size() > 1:
mohammad's avatar
mohammad committed
365
366
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
367
    # get model without FP16 and/or TorchDDP wrappers
Mostofa Patwary's avatar
Mostofa Patwary committed
368
369
    if args.iteration == 0 and len(unwrapped_model) == 1 \
        and hasattr(unwrapped_model[0], 'init_state_dict_from_bert'):
Mostofa Patwary's avatar
Mostofa Patwary committed
370
        print_rank_0("Initializing ICT from pretrained BERT model")
Mostofa Patwary's avatar
Mostofa Patwary committed
371
        unwrapped_model[0].init_state_dict_from_bert()
Mostofa Patwary's avatar
Mostofa Patwary committed
372
373
        if args.fp16:
            optimizer.reload_model_params()
Neel Kant's avatar
Neel Kant committed
374

375
376
377
    return model, optimizer, lr_scheduler


378
379
380
381
382
383
384
def train_step(forward_step_func, data_iterator,
               model, optimizer, lr_scheduler):
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
385
    if args.DDP_impl == 'local' and args.use_contiguous_buffers_in_local_ddp:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
386
387
        for partition in model:
            partition.zero_grad_buffer()
388
    optimizer.zero_grad()
389

390
    forward_backward_func = get_forward_backward_func()
391
392
393
    losses_reduced = forward_backward_func(
        forward_step_func, data_iterator, model,
        optimizer, timers, forward_only=False)
394

395
    # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
396
    if args.empty_unused_memory_level >= 1:
397
398
        torch.cuda.empty_cache()

399
400
    # All-reduce if needed.
    if args.DDP_impl == 'local':
401
        timers('backward-params-all-reduce').start()
402
        for model_module in model:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
403
            model_module.allreduce_gradients()
404
        timers('backward-params-all-reduce').stop()
405

406
407
408
409
    # All-reduce word_embeddings' grad across first and last stages to ensure
    # that word_embeddings parameters stay in sync.
    # This should only run for models that support pipelined model parallelism
    # (BERT and GPT-2).
410
    timers('backward-embedding-all-reduce').start()
411
    if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
412
            mpu.get_pipeline_model_parallel_world_size() > 1:
413
414
415
416
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            unwrapped_model = model[0]
        elif mpu.is_pipeline_last_stage(ignore_virtual=True):
            unwrapped_model = model[-1]
417
418
        else:  # We do not support the interleaved schedule for T5 yet.
            unwrapped_model = model[0]
419
        unwrapped_model = unwrap_model(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
420
            unwrapped_model, (torchDDP, LocalDDP, Float16Module))
421

422
423
        if unwrapped_model.share_word_embeddings:
            word_embeddings_weight = unwrapped_model.word_embeddings_weight()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
424
425
426
427
428
            if args.DDP_impl == 'local':
                grad = word_embeddings_weight.main_grad
            else:
                grad = word_embeddings_weight.grad
            torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
429
    timers('backward-embedding-all-reduce').stop()
430

431
432
    # Update parameters.
    timers('optimizer').start()
433
    update_successful, grad_norm, num_zeros_in_grad = optimizer.step()
434
435
436
    timers('optimizer').stop()

    # Update learning rate.
437
    if update_successful:
438
439
440
441
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
        lr_scheduler.step(increment=increment)
mohammad's avatar
mohammad committed
442
        skipped_iter = 0
443
444
445
    else:
        skipped_iter = 1

446
    # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
447
    if args.empty_unused_memory_level >= 2:
448
449
        torch.cuda.empty_cache()

450
    if mpu.is_pipeline_last_stage(ignore_virtual=True):
451
452
453
454
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
455
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
456
457
        return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
    return {}, skipped_iter, grad_norm, num_zeros_in_grad
458
459


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
460
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
461
                 loss_scale, report_memory_flag, skipped_iter,
462
                 grad_norm, params_norm, num_zeros_in_grad):
Mohammad's avatar
Mohammad committed
463
464
465
466
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
467

mohammad's avatar
mohammad committed
468
469
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
470
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
471
472
473
474
475
476
477
478
479
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
480
481
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
482
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
483
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
484
    for key in loss_dict:
mohammad's avatar
mohammad committed
485
        if not skipped_iter:
486
487
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
488
489
490
491
492
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
493
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
494
495
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
496
497
498

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
499

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
500
501
502
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
503
504
505
    add_to_logging('forward-compute')
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
506
    add_to_logging('forward-backward-send-forward-backward-recv')
507
508
509
    add_to_logging('backward-compute')
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
510
    add_to_logging('backward-send-forward-recv')
511
    add_to_logging('backward-send-backward-recv')
512
    add_to_logging('backward-params-all-reduce')
513
    add_to_logging('backward-embedding-all-reduce')
514
    add_to_logging('optimizer-copy-to-main-grad')
mohammad's avatar
mohammad committed
515
    add_to_logging('optimizer-unscale-and-check-inf')
516
517
    add_to_logging('optimizer-clip-main-grad')
    add_to_logging('optimizer-copy-main-to-model-params')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
518
    add_to_logging('optimizer')
mohammad's avatar
mohammad committed
519
    add_to_logging('batch-generator')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
520

mohammad's avatar
mohammad committed
521
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
522
523
524
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
525
526
527
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
528
    # Tensorboard values.
529
530
531
532
533
534
535
536
537
538
    if writer and (iteration % args.tensorboard_log_interval == 0 ) and \
       is_last_rank():
        if args.log_learning_rate_to_tensorboard:
            writer.add_scalar('learning-rate', learning_rate, iteration)
            writer.add_scalar('learning-rate vs samples', learning_rate,
                              args.consumed_train_samples)
        if args.log_batch_size_to_tensorboard:
            writer.add_scalar('batch-size', batch_size, iteration)
            writer.add_scalar('batch-size vs samples', batch_size,
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
539
        for key in loss_dict:
mohammad's avatar
mohammad committed
540
541
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
542
                              args.consumed_train_samples)
543
544
545
546
        if args.log_loss_scale_to_tensorboard:
            writer.add_scalar('loss-scale', loss_scale, iteration)
            writer.add_scalar('loss-scale vs samples', loss_scale,
                              args.consumed_train_samples)
547
548
549
550
        if args.log_world_size_to_tensorboard:
            writer.add_scalar('world-size', args.world_size, iteration)
            writer.add_scalar('world-size vs samples', args.world_size,
                              args.consumed_train_samples)
551
552
553
554
        if grad_norm is not None:
            writer.add_scalar('grad-norm', grad_norm, iteration)
            writer.add_scalar('grad-norm vs samples', grad_norm,
                              args.consumed_train_samples)
555
556
557
        if num_zeros_in_grad is not None:
            writer.add_scalar('num-zeros', num_zeros_in_grad, iteration)
            writer.add_scalar('num-zeros vs samples', num_zeros_in_grad,
Rewon Child's avatar
Rewon Child committed
558
                              args.consumed_train_samples)
mohammad's avatar
mohammad committed
559
560
561
562
        if params_norm is not None:
            writer.add_scalar('params-norm', params_norm, iteration)
            writer.add_scalar('params-norm vs samples', params_norm,
                              args.consumed_train_samples)
563
564
565
        if args.log_timers_to_tensorboard:
            timers.write(timers_to_log, writer, iteration,
                         normalizer=total_iterations)
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
        if args.log_memory_to_tensorboard:
            mem_stats = torch.cuda.memory_stats()
            writer.add_scalar(
                "mem-reserved-bytes",
                mem_stats["reserved_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-bytes",
                mem_stats["allocated_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-count",
                mem_stats["allocation.all.current"],
                iteration,
            )
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
583
584

    if iteration % args.log_interval == 0:
585
        elapsed_time = timers('interval-time').elapsed()
mohammad's avatar
mohammad committed
586
        elapsed_time_per_iteration = elapsed_time / total_iterations
mshoeybi's avatar
mshoeybi committed
587
        if writer:
588
589
590
            if args.log_timers_to_tensorboard:
                writer.add_scalar('iteration-time',
                                  elapsed_time_per_iteration, iteration)
591
592
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
593
        log_string += ' consumed samples: {:12d} |'.format(
594
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
595
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
596
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
597
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
598
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
599
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
600
601
602
603
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
604
605
606
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
607
        log_string += ' loss scale: {:.1f} |'.format(loss_scale)
608
609
        if grad_norm is not None:
            log_string += ' grad norm: {:.3f} |'.format(grad_norm)
610
611
        if num_zeros_in_grad is not None:
            log_string += ' num zeros: {:.1f} |'.format(num_zeros_in_grad)
mohammad's avatar
mohammad committed
612
613
        if params_norm is not None:
            log_string += ' params norm: {:.3f} |'.format(params_norm)
mohammad's avatar
mohammad committed
614
615
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
616
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
617
618
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
619
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
620
        total_loss_dict[nan_iters_key] = 0
621
        print_rank_last(log_string)
622
623
624
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
625
626
627
628
629
630
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


631
632
633
634
635
def save_checkpoint_and_time(iteration, model, optimizer, lr_scheduler):
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
    torch.distributed.barrier()
636
    timers('save-checkpoint').start()
637
638
    save_checkpoint(iteration, model, optimizer, lr_scheduler)
    torch.distributed.barrier()
639
640
    timers('save-checkpoint').stop()
    timers.log(['save-checkpoint'])
641
642


643
def train(forward_step_func, model, optimizer, lr_scheduler,
644
          train_data_iterator, valid_data_iterator):
645
    """Train the model function."""
Mohammad's avatar
Mohammad committed
646
647
    args = get_args()
    timers = get_timers()
648

649
650
651
    # Write args to tensorboard
    write_args_to_tensorboard()

652
    # Turn on training mode which enables dropout.
653
654
    for model_module in model:
        model_module.train()
655
656
657
658
659
660
661

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

zihanl's avatar
zihanl committed
662
    timers('interval-time').start()
663
    print_datetime('before the start of training step')
664
665
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
666
        update_num_microbatches(args.consumed_train_samples)
667
668
669
670
671
672
        loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = \
            train_step(forward_step_func,
                       train_data_iterator,
                       model,
                       optimizer,
                       lr_scheduler)
673
        iteration += 1
674
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
675
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
676
                                       get_num_microbatches()
677
678

        # Logging.
679
        loss_scale = optimizer.get_loss_scale().item()
680
681
682
        params_norm = None
        if args.log_params_norm:
            params_norm = calc_params_l2_norm(model)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
683
684
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
685
                                          iteration, loss_scale,
686
                                          report_memory_flag, skipped_iter,
687
                                          grad_norm, params_norm, num_zeros_in_grad)
688
689

        # Autoresume
690
691
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
692
            check_adlr_autoresume_termination(iteration, model, optimizer,
693
                                              lr_scheduler)
694
695
696
697
698
699

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
700
                                       valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
701
                                       iteration, False)
702

703
704
        # Checkpointing
        saved_checkpoint = False
705
706
707
708
709
710
711
712
        if args.exit_signal_handler:
            signal_handler = get_signal_handler()
            if any(signal_handler.signals_received()):
                save_checkpoint_and_time(iteration, model, optimizer,
                                         lr_scheduler)
                print_datetime('exiting program after receiving SIGTERM.')
                sys.exit()

713
714
715
716
717
718
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
                                     lr_scheduler)
            saved_checkpoint = True

719
720
721
722
723
724
725
726
727
728
729
730
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
                                             lr_scheduler)
731
                print_datetime('exiting program after {} minutes'.format(train_time))
732
733
                sys.exit()

734
        # Exiting based on iterations
735
        if args.exit_interval and iteration % args.exit_interval == 0:
736
737
738
            if not saved_checkpoint:
                save_checkpoint_and_time(iteration, model, optimizer,
                                         lr_scheduler)
739
            torch.distributed.barrier()
740
            print_datetime('exiting program at iteration {}'.format(iteration))
Mohammad's avatar
Mohammad committed
741
            sys.exit()
742

743

mohammad's avatar
mohammad committed
744
    return iteration
745
746


Mohammad's avatar
Mohammad committed
747
def evaluate(forward_step_func, data_iterator, model, verbose=False):
748
    """Evaluation."""
Mohammad's avatar
Mohammad committed
749
    args = get_args()
750
751

    # Turn on evaluation mode which disables dropout.
752
753
    for model_module in model:
        model_module.eval()
754
755
756
757
758
759
760
761
762
763

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
764

765
            forward_backward_func = get_forward_backward_func()
766
767
768
769
            loss_dicts = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True)

770
            # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
771
            if args.empty_unused_memory_level >= 1:
772
773
                torch.cuda.empty_cache()

774
775
776
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                # Reduce across processes.
                for loss_dict in loss_dicts:
777
                    for key in loss_dict:
778
779
                        total_loss_dict[key] = total_loss_dict.get(
                            key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
780

781
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
782
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
783
                                           * get_num_microbatches()
784
    # Move model back to the train mode.
785
786
    for model_module in model:
        model_module.train()
787
788

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
789
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
790
791
792
793
794

    return total_loss_dict

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
Mohammad's avatar
Mohammad committed
795
                               iteration, verbose=False):
796
    """Helper function to evaluate and dump results on screen."""
797
    args = get_args()
Mohammad's avatar
Mohammad committed
798
799
800
    writer = get_tensorboard_writer()

    total_loss_dict = evaluate(forward_step_func, data_iterator, model, verbose)
801
802
803
804
805
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
mshoeybi's avatar
mshoeybi committed
806
        if writer:
mohammad's avatar
mohammad committed
807
            writer.add_scalar('{} validation'.format(key),
808
809
                              total_loss_dict[key].item(),
                              iteration)
mohammad's avatar
mohammad committed
810
            writer.add_scalar('{} validation vs samples'.format(key),
811
812
                              total_loss_dict[key].item(),
                              args.consumed_train_samples)
813
            if args.log_validation_ppl_to_tensorboard:
mohammad's avatar
mohammad committed
814
                writer.add_scalar('{} validation ppl'.format(key), ppl,
815
                                  iteration)
mohammad's avatar
mohammad committed
816
                writer.add_scalar('{} validation ppl vs samples'.format(key),
817
                                  ppl, args.consumed_train_samples)
818
819

    length = len(string) + 1
820
821
822
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
823
824


Vijay Korthikanti's avatar
Vijay Korthikanti committed
825
def cyclic_iter(iter):
826
    while True:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
827
        for x in iter:
828
829
            yield x

830
831
832
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
833
    args = get_args()
834

835
836
837
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
838
839
840

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
841
842
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
843
        args.consumed_train_samples = args.iteration * args.global_batch_size
844
    if args.iteration > 0 and args.consumed_valid_samples == 0:
845
846
847
        if args.train_samples is None:
            args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
                args.eval_iters * args.global_batch_size
848

849
    # Data loader only on rank 0 of each model parallel group.
850
    if mpu.get_tensor_model_parallel_rank() == 0:
851
        
zihanl's avatar
zihanl committed
852
853
854
        # Number of train/valid/test samples.
        if args.train_samples:
            train_samples = args.train_samples
855
        else:
zihanl's avatar
zihanl committed
856
857
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
zihanl's avatar
zihanl committed
858
                     args.eval_iters
zihanl's avatar
zihanl committed
859
860
        test_iters = args.eval_iters
        train_val_test_num_samples = [train_samples,
mohammad's avatar
mohammad committed
861
862
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
zihanl's avatar
zihanl committed
863
864
865
866
867
868
869
870
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)
871
872

        # Build dataloders.
873
874
875
876
877
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
878
879
880
881
882
883
884
885
886
887
888
889
890

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
891
892
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
893
894
895
896
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

Vijay Korthikanti's avatar
Vijay Korthikanti committed
897

898
    # Build iterators.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
899
900
901
    dl_type = args.dataloader_type
    assert dl_type in ['single', 'cyclic']

902
    if train_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
903
904
        train_data_iterator = iter(train_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(train_dataloader))
905
906
907
    else:
        train_data_iterator = None

908
    if valid_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
909
910
        valid_data_iterator = iter(valid_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(valid_dataloader))
911
    else:
912
        valid_data_iterator = None
913

914
    if test_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
915
916
        test_data_iterator = iter(test_dataloader) if dl_type == 'single' \
                             else iter(cyclic_iter(test_dataloader))
917
918
919
    else:
        test_data_iterator = None

920
    return train_data_iterator, valid_data_iterator, test_data_iterator