training.py 39.8 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()
24
25
26
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

Neel Kant's avatar
Neel Kant committed
27
from megatron import get_args
28
from megatron import get_signal_handler
Mohammad's avatar
Mohammad committed
29
30
from megatron import get_timers
from megatron import get_tensorboard_writer
31
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
32
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
33
from megatron import is_last_rank
mohammad's avatar
mohammad committed
34
from megatron import update_num_microbatches
35
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
36
from megatron import print_rank_0
37
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
38
39
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
40
from megatron.model import Float16Module
41
from megatron.model import ModelType
mohammad's avatar
mohammad committed
42
from megatron.optimizer import get_megatron_optimizer
Mohammad's avatar
Mohammad committed
43
from megatron.initialize import initialize_megatron
44
from megatron.initialize import write_args_to_tensorboard
45
from megatron.initialize import set_jit_fusion_options
46
from megatron.optimizer_param_scheduler import OptimizerParamScheduler
47
48
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.utils import check_adlr_autoresume_termination
49
from megatron.utils import unwrap_model
Vijay Korthikanti's avatar
Vijay Korthikanti committed
50
from megatron.data.data_samplers import build_pretraining_data_loader
mohammad's avatar
mohammad committed
51
from megatron.utils import calc_params_l2_norm
52
from megatron.schedules import get_forward_backward_func
53
from megatron.utils import report_memory
54
from megatron.model.vision.knn_monitor import compute_feature_bank
55

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
56

57
58
59
60
61
62
63
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


64
def pretrain(train_valid_test_dataset_provider,
65
             model_provider,
66
             model_type,
67
             forward_step_func,
68
             process_non_loss_data_func=None,
69
             extra_args_provider=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
70
             args_defaults={}):
71
72
73
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
74
75
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
76
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
77
        4) train the modle using the forward_step_func.
78
79

    Arguments:
80
81
82
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
83
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
84
        model_type: an enum that specifies the type of model being trained.
Mohammad's avatar
Mohammad committed
85
86
87
88
89
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
90
91
92
93
        process_non_loss_data_func: a function to post process outputs of the
            network. It can be used for dumping output tensors (e.g images) to
            tensorboard. It takes `collected data`(list of tensors),
            `current iteration index` and `tensorboard writer` as arguments.
Mohammad's avatar
Mohammad committed
94
95
96
97
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
98
99
    """

100
    # Initalize and get arguments, timers, and Tensorboard writer.
101
102
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
103
104
    # Set pytorch JIT layer fusion options and warmup JIT functions.
    set_jit_fusion_options()
105

106
107
108
109
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
110
    start_time_tensor = torch.cuda.DoubleTensor([_TRAIN_START_TIME])
111
112
113
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
114
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
115
116
117
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

118
    args = get_args()
Mohammad's avatar
Mohammad committed
119
    timers = get_timers()
120
121

    # Model, optimizer, and learning rate.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
122
123
124
    timers('model-and-optimizer-setup', log_level=0).start(barrier=True)
    model, optimizer, opt_param_scheduler = setup_model_and_optimizer(
        model_provider, model_type)
125
    timers('model-and-optimizer-setup').stop()
126
127
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
128
129

    # Data stuff.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
130
131
    timers('train/valid/test-data-iterators-setup', log_level=0).start(
        barrier=True)
132
    if args.virtual_pipeline_model_parallel_size is not None:
133
        all_data_iterators = [
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
134
135
            build_train_valid_test_data_iterators(
                train_valid_test_dataset_provider)
136
137
            for _ in range(len(model))
        ]
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
138
139
140
141
142
143
        train_data_iterator = [data_iterators[0]
                               for data_iterators in all_data_iterators]
        valid_data_iterator = [data_iterators[1]
                               for data_iterators in all_data_iterators]
        test_data_iterator = [data_iterators[2]
                              for data_iterators in all_data_iterators]
144
145
146
147
148
    else:
        train_data_iterator, valid_data_iterator, test_data_iterator \
            = build_train_valid_test_data_iterators(
                train_valid_test_dataset_provider)
    timers('train/valid/test-data-iterators-setup').stop()
mshoeybi's avatar
mshoeybi committed
149
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
150
151

    # Print setup timing.
152
    print_rank_0('done with setup ...')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
153
154
    timers.log(['model-and-optimizer-setup',
                'train/valid/test-data-iterators-setup'], barrier=True)
Mohammad's avatar
Mohammad committed
155
    print_rank_0('training ...')
156
157

    iteration = 0
158
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
159
        iteration = train(forward_step_func,
160
                          model, optimizer, opt_param_scheduler,
161
162
                          train_data_iterator, valid_data_iterator,
                          process_non_loss_data_func)
163
    print_datetime('after training is done')
Mohammad's avatar
Mohammad committed
164

165
166
167
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
168
                                   valid_data_iterator, model,
169
170
                                   iteration, process_non_loss_data_func,
                                   False)
171
172

    if args.save and iteration != 0:
173
        save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
174
175
176
177
178
179

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
180
181
                                   0, process_non_loss_data_func,
                                   True)
182

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
199
200
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
201
202
            iterations += 1
        # Reset
203
        update_num_microbatches(0, consistency_check=False)
204
205
206
207
208
209
210
211
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

212

213
def get_model(model_provider_func, model_type=ModelType.encoder_or_decoder, wrap_with_ddp=True):
214
    """Build the model."""
Mohammad's avatar
Mohammad committed
215
    args = get_args()
216
    args.model_type = model_type
217

218
    # Build model.
219
220
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
       args.virtual_pipeline_model_parallel_size is not None:
221
222
        assert model_type != ModelType.encoder_and_decoder, \
            "Interleaved schedule not supported for model with both encoder and decoder"
223
224
225
        model = []
        for i in range(args.virtual_pipeline_model_parallel_size):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
226
227
228
            # Set pre_process and post_process only after virtual rank is set.
            pre_process = mpu.is_pipeline_first_stage()
            post_process = mpu.is_pipeline_last_stage()
229
            this_model = model_provider_func(
230
231
232
                pre_process=pre_process,
                post_process=post_process
            )
233
            this_model.model_type = model_type
234
            model.append(this_model)
235
    else:
236
237
        pre_process = mpu.is_pipeline_first_stage()
        post_process = mpu.is_pipeline_last_stage()
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
        add_encoder = True
        add_decoder = True
        if model_type == ModelType.encoder_and_decoder:
            if mpu.get_pipeline_model_parallel_world_size() > 1:
                assert args.pipeline_model_parallel_split_rank is not None, \
                    "Split rank needs to be specified for model with both encoder and decoder"
                rank = mpu.get_pipeline_model_parallel_rank()
                split_rank = args.pipeline_model_parallel_split_rank
                world_size = mpu.get_pipeline_model_parallel_world_size()
                pre_process = rank == 0 or rank == split_rank
                post_process = (rank == (split_rank - 1)) or (
                        rank == (world_size - 1))
                add_encoder = mpu.is_pipeline_stage_before_split()
                add_decoder = mpu.is_pipeline_stage_after_split()
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process,
                add_encoder=add_encoder,
                add_decoder=add_decoder)
        else:
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process
            )
        model.model_type = model_type
263

264
265
    if not isinstance(model, list):
        model = [model]
266

267
    # Set tensor model parallel attributes if not set.
mohammad's avatar
mohammad committed
268
269
270
    # Only parameters that are already tensor model parallel have these
    # attributes set for them. We should make sure the default attributes
    # are set for all params so the optimizer can use them.
271
272
273
    for model_module in model:
        for param in model_module.parameters():
            mpu.set_defaults_if_not_set_tensor_model_parallel_attributes(param)
274

275
276
    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
277
        print(' > number of parameters on (tensor, pipeline) '
278
              'model parallel rank ({}, {}): {}'.format(
279
280
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
281
282
            sum([sum([p.nelement() for p in model_module.parameters()])
                 for model_module in model])), flush=True)
283
284

    # GPU allocation.
285
286
    for model_module in model:
        model_module.cuda(torch.cuda.current_device())
287
288

    # Fp16 conversion.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
289
290
    if args.fp16 or args.bf16:
        model = [Float16Module(model_module, args) for model_module in model]
291

292
293
294
295
296
297
    if wrap_with_ddp:
        if args.DDP_impl == 'torch':
            i = torch.cuda.current_device()
            model = [torchDDP(model_module, device_ids=[i], output_device=i,
                              process_group=mpu.get_data_parallel_group())
                     for model_module in model]
298

299
300
301
302
303
        elif args.DDP_impl == 'local':
            model = [LocalDDP(model_module,
                              args.accumulate_allreduce_grads_in_fp32,
                              args.use_contiguous_buffers_in_local_ddp)
                     for model_module in model]
304
305
306
307
            # broad cast params from data parallel src rank to other data parallel ranks
            if args.data_parallel_random_init:
                for model_module in model:
                    model_module.broadcast_params()
308
309
310
        else:
            raise NotImplementedError('Unknown DDP implementation specified: '
                                      '{}. Exiting.'.format(args.DDP_impl))
311

312
    return model
313
314


315
def get_optimizer_param_scheduler(optimizer):
316
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
317
    args = get_args()
318

319
320
321
322
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
Vijay Korthikanti's avatar
Vijay Korthikanti committed
323
324
        lr_decay_steps = args.lr_decay_iters * args.global_batch_size
        wd_incr_steps = args.train_iters * args.global_batch_size
325
        if args.lr_warmup_fraction is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
326
            lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
327
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
328
            lr_warmup_steps = args.lr_warmup_iters * args.global_batch_size
329
330
331
332
333
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
334
        update_train_iters(args)
335
336
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
Vijay Korthikanti's avatar
Vijay Korthikanti committed
337
338
        lr_decay_steps = args.lr_decay_samples
        wd_incr_steps = args.train_samples
339
        if args.lr_warmup_fraction is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
340
            lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
341
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
342
            lr_warmup_steps = args.lr_warmup_samples
343
    else:
344
345
346
        raise Exception(
            'either train-iters or train-samples should be provided.')

347
    opt_param_scheduler = OptimizerParamScheduler(
348
        optimizer,
349
        max_lr=args.lr,
350
        min_lr=args.min_lr,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
351
352
353
        lr_warmup_steps=lr_warmup_steps,
        lr_decay_steps=lr_decay_steps,
        lr_decay_style=args.lr_decay_style,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
354
355
        start_wd=args.start_weight_decay,
        end_wd=args.end_weight_decay,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
356
        wd_incr_steps=wd_incr_steps,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
357
        wd_incr_style=args.weight_decay_incr_style,
358
359
        use_checkpoint_opt_param_scheduler=args.use_checkpoint_opt_param_scheduler,
        override_opt_param_scheduler=args.override_opt_param_scheduler)
360

361
    return opt_param_scheduler
362
363


364
365
366
367
368
def setup_model_and_optimizer(model_provider_func,
                              model_type,
                              no_wd_decay_cond=None,
                              scale_lr_cond=None,
                              lr_mult=1.0):
369
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
370
    args = get_args()
371

372
    model = get_model(model_provider_func, model_type)
373
    unwrapped_model = unwrap_model(model,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
374
                                   (torchDDP, LocalDDP, Float16Module))
Lawrence McAfee's avatar
Lawrence McAfee committed
375

376
    optimizer = get_megatron_optimizer(model, no_wd_decay_cond,
377
                                       scale_lr_cond, lr_mult)
378
    opt_param_scheduler = get_optimizer_param_scheduler(optimizer)
379
380

    if args.load is not None:
381
        timers = get_timers()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
382
        timers('load-checkpoint', log_level=0).start(barrier=True)
383
        args.iteration = load_checkpoint(model, optimizer, opt_param_scheduler)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
384
        timers('load-checkpoint').stop(barrier=True)
385
        timers.log(['load-checkpoint'])
386
387
388
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
389
    # We only support local DDP with multiple micro-batches.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
390
    if len(model) > 1 or mpu.get_pipeline_model_parallel_world_size() > 1:
mohammad's avatar
mohammad committed
391
392
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
393
    # get model without FP16 and/or TorchDDP wrappers
Mostofa Patwary's avatar
Mostofa Patwary committed
394
395
    if args.iteration == 0 and len(unwrapped_model) == 1 \
        and hasattr(unwrapped_model[0], 'init_state_dict_from_bert'):
Mostofa Patwary's avatar
Mostofa Patwary committed
396
        print_rank_0("Initializing ICT from pretrained BERT model")
Mostofa Patwary's avatar
Mostofa Patwary committed
397
        unwrapped_model[0].init_state_dict_from_bert()
Mostofa Patwary's avatar
Mostofa Patwary committed
398
399
        if args.fp16:
            optimizer.reload_model_params()
Neel Kant's avatar
Neel Kant committed
400

401
    return model, optimizer, opt_param_scheduler
402
403


404
def train_step(forward_step_func, data_iterator,
Lawrence McAfee's avatar
Lawrence McAfee committed
405
               model, optimizer, opt_param_scheduler):
406
407
408
409
410
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
411
    if args.DDP_impl == 'local' and args.use_contiguous_buffers_in_local_ddp:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
412
413
        for partition in model:
            partition.zero_grad_buffer()
414
    optimizer.zero_grad()
415

416
    # Forward pass.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
417
418
    timers('forward-backward', log_level=1).start(
        barrier=args.barrier_with_L1_time)
419
    forward_backward_func = get_forward_backward_func()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
420
    fwd_bwd_timers = timers if args.timing_log_level > 1 else None
421
422
    losses_reduced = forward_backward_func(
        forward_step_func, data_iterator, model,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
423
424
        optimizer, fwd_bwd_timers, forward_only=False)
    timers('forward-backward').stop()
425

426
    # Empty unused memory.
Lawrence McAfee's avatar
Lawrence McAfee committed
427
    if args.empty_unused_memory_level >= 1:
428
429
        torch.cuda.empty_cache()

430
    # Reduce gradients.
431
    optimizer.reduce_model_grads(args, timers)
432

Lawrence McAfee's avatar
Lawrence McAfee committed
433
    # Vision gradients.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
434
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
435
436
437
438
        unwrapped_model = unwrap_model(model[0],
                                       (torchDDP, LocalDDP, Float16Module))
        unwrapped_model.cancel_gradients_last_layer(args.curr_iteration)

439
    # Update parameters.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
440
    timers('optimizer', log_level=1).start(barrier=args.barrier_with_L1_time)
Lawrence McAfee's avatar
Lawrence McAfee committed
441
    update_successful, grad_norm, num_zeros_in_grad = optimizer.step(args, timers)
442
443
    timers('optimizer').stop()

444
    # Gather params.
445
    if update_successful:
Lawrence McAfee's avatar
Lawrence McAfee committed
446
        optimizer.gather_model_params(args, timers)
447

Lawrence McAfee's avatar
Lawrence McAfee committed
448
    # Vision momentum.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
449
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
450
451
452
453
        unwrapped_model = unwrap_model(model[0],
                                       (torchDDP, LocalDDP, Float16Module))
        unwrapped_model.update_momentum(args.curr_iteration)

454
    # Update learning rate.
455
    if update_successful:
456
457
458
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
459
        opt_param_scheduler.step(increment=increment)
mohammad's avatar
mohammad committed
460
        skipped_iter = 0
461
462
463
    else:
        skipped_iter = 1

464
    # Empty unused memory.
Lawrence McAfee's avatar
Lawrence McAfee committed
465
    if args.empty_unused_memory_level >= 2:
466
467
        torch.cuda.empty_cache()

468
    if mpu.is_pipeline_last_stage(ignore_virtual=True):
469
470
471
472
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
473
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
474
475
        return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
    return {}, skipped_iter, grad_norm, num_zeros_in_grad
476
477


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
478
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
479
                 loss_scale, report_memory_flag, skipped_iter,
480
                 grad_norm, params_norm, num_zeros_in_grad):
Mohammad's avatar
Mohammad committed
481
482
483
484
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
485

mohammad's avatar
mohammad committed
486
487
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
488
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
489
490
491
492
493
494
495
496
497
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
498
499
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
500
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
501
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
502
    for key in loss_dict:
mohammad's avatar
mohammad committed
503
        if not skipped_iter:
504
505
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
506
507
508
509
510
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
511
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
512
513
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
514
515

    # Logging.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
    timers_to_log = [
        'forward-backward',
        'forward-compute',
        'backward-compute',
        'batch-generator',
        'forward-recv',
        'forward-send',
        'backward-recv',
        'backward-send',
        'forward-send-forward-recv',
        'forward-send-backward-recv',
        'backward-send-forward-recv',
        'backward-send-backward-recv',
        'forward-backward-send-forward-backward-recv',
        'layernorm-grads-all-reduce',
        'embedding-grads-all-reduce',
        'grads-all-reduce',
        'grads-reduce-scatter',
        'params-all-gather',
        'optimizer-copy-to-main-grad',
        'optimizer-unscale-and-check-inf',
        'optimizer-clip-main-grad',
        'optimizer-count-zeros',
        'optimizer-inner-step',
        'optimizer-copy-main-to-model-params',
        'optimizer']
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
542

mohammad's avatar
mohammad committed
543
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
544
545
546
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
547
548
549
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
550
    # Tensorboard values.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
551
552
553
554
555
556
    # Timer requires all the ranks to call.
    if args.log_timers_to_tensorboard and \
       (iteration % args.tensorboard_log_interval == 0):
        timers.write(timers_to_log, writer, iteration,
                     normalizer=total_iterations)
    if writer and (iteration % args.tensorboard_log_interval == 0):
557
558
559
560
561
562
563
564
        if args.log_learning_rate_to_tensorboard:
            writer.add_scalar('learning-rate', learning_rate, iteration)
            writer.add_scalar('learning-rate vs samples', learning_rate,
                              args.consumed_train_samples)
        if args.log_batch_size_to_tensorboard:
            writer.add_scalar('batch-size', batch_size, iteration)
            writer.add_scalar('batch-size vs samples', batch_size,
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
565
        for key in loss_dict:
mohammad's avatar
mohammad committed
566
567
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
568
                              args.consumed_train_samples)
569
570
571
572
        if args.log_loss_scale_to_tensorboard:
            writer.add_scalar('loss-scale', loss_scale, iteration)
            writer.add_scalar('loss-scale vs samples', loss_scale,
                              args.consumed_train_samples)
573
574
575
576
        if args.log_world_size_to_tensorboard:
            writer.add_scalar('world-size', args.world_size, iteration)
            writer.add_scalar('world-size vs samples', args.world_size,
                              args.consumed_train_samples)
577
578
579
580
        if grad_norm is not None:
            writer.add_scalar('grad-norm', grad_norm, iteration)
            writer.add_scalar('grad-norm vs samples', grad_norm,
                              args.consumed_train_samples)
581
582
583
        if num_zeros_in_grad is not None:
            writer.add_scalar('num-zeros', num_zeros_in_grad, iteration)
            writer.add_scalar('num-zeros vs samples', num_zeros_in_grad,
Rewon Child's avatar
Rewon Child committed
584
                              args.consumed_train_samples)
mohammad's avatar
mohammad committed
585
586
587
588
        if params_norm is not None:
            writer.add_scalar('params-norm', params_norm, iteration)
            writer.add_scalar('params-norm vs samples', params_norm,
                              args.consumed_train_samples)
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
        if args.log_memory_to_tensorboard:
            mem_stats = torch.cuda.memory_stats()
            writer.add_scalar(
                "mem-reserved-bytes",
                mem_stats["reserved_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-bytes",
                mem_stats["allocated_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-count",
                mem_stats["allocation.all.current"],
                iteration,
            )
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
606
607

    if iteration % args.log_interval == 0:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
608
        elapsed_time = timers('interval-time').elapsed(barrier=True)
mohammad's avatar
mohammad committed
609
        elapsed_time_per_iteration = elapsed_time / total_iterations
mshoeybi's avatar
mshoeybi committed
610
        if writer:
611
612
613
            if args.log_timers_to_tensorboard:
                writer.add_scalar('iteration-time',
                                  elapsed_time_per_iteration, iteration)
614
615
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
616
        log_string += ' consumed samples: {:12d} |'.format(
617
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
618
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
619
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
620
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
621
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
622
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
623
624
625
626
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
627
628
629
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
630
        log_string += ' loss scale: {:.1f} |'.format(loss_scale)
631
632
        if grad_norm is not None:
            log_string += ' grad norm: {:.3f} |'.format(grad_norm)
633
634
        if num_zeros_in_grad is not None:
            log_string += ' num zeros: {:.1f} |'.format(num_zeros_in_grad)
mohammad's avatar
mohammad committed
635
636
        if params_norm is not None:
            log_string += ' params norm: {:.3f} |'.format(params_norm)
mohammad's avatar
mohammad committed
637
638
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
639
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
640
641
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
642
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
643
        total_loss_dict[nan_iters_key] = 0
644
        print_rank_last(log_string)
645
646
647
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
648
649
650
651
652
653
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


654
def save_checkpoint_and_time(iteration, model, optimizer, opt_param_scheduler):
655
656
657
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
658
    timers('save-checkpoint', log_level=0).start(barrier=True)
659
    save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
660
    timers('save-checkpoint').stop(barrier=True)
661
    timers.log(['save-checkpoint'])
662
663


664
def train(forward_step_func, model, optimizer, opt_param_scheduler,
665
666
          train_data_iterator, valid_data_iterator,
          process_non_loss_data_func):
667
    """Train the model function."""
Mohammad's avatar
Mohammad committed
668
669
    args = get_args()
    timers = get_timers()
670

671
672
673
    # Write args to tensorboard
    write_args_to_tensorboard()

674
    # Turn on training mode which enables dropout.
675
676
    for model_module in model:
        model_module.train()
677
678
679
680
681
682
683

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
684
    timers('interval-time', log_level=0).start(barrier=True)
685
    print_datetime('before the start of training step')
686
687
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
688
        update_num_microbatches(args.consumed_train_samples)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
689
        args.curr_iteration = iteration
690
691
692
693
694
        loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = \
            train_step(forward_step_func,
                       train_data_iterator,
                       model,
                       optimizer,
Lawrence McAfee's avatar
Lawrence McAfee committed
695
                       opt_param_scheduler)
696
        iteration += 1
697
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
698
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
699
                                       get_num_microbatches()
700
701

        # Logging.
702
        loss_scale = optimizer.get_loss_scale().item()
703
704
705
        params_norm = None
        if args.log_params_norm:
            params_norm = calc_params_l2_norm(model)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
706
707
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
708
                                          iteration, loss_scale,
709
                                          report_memory_flag, skipped_iter,
710
                                          grad_norm, params_norm, num_zeros_in_grad)
711
712

        # Autoresume
713
714
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
715
            check_adlr_autoresume_termination(iteration, model, optimizer,
716
                                              opt_param_scheduler)
717
718
719
720
721
722

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
723
                                       valid_data_iterator, model,
724
725
                                       iteration, process_non_loss_data_func,
                                       False)
726

727
728
        # Checkpointing
        saved_checkpoint = False
729
730
731
732
        if args.exit_signal_handler:
            signal_handler = get_signal_handler()
            if any(signal_handler.signals_received()):
                save_checkpoint_and_time(iteration, model, optimizer,
733
                                         opt_param_scheduler)
734
735
736
                print_datetime('exiting program after receiving SIGTERM.')
                sys.exit()

737
738
739
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
740
                                     opt_param_scheduler)
741
742
            saved_checkpoint = True

743
744
745
746
747
748
749
750
751
752
753
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
754
                                             opt_param_scheduler)
755
                print_datetime('exiting program after {} minutes'.format(train_time))
756
757
                sys.exit()

758
        # Exiting based on iterations
759
        if args.exit_interval and iteration % args.exit_interval == 0:
760
761
            if not saved_checkpoint:
                save_checkpoint_and_time(iteration, model, optimizer,
762
                                         opt_param_scheduler)
763
            torch.distributed.barrier()
764
            print_datetime('exiting program at iteration {}'.format(iteration))
Mohammad's avatar
Mohammad committed
765
            sys.exit()
766

767

mohammad's avatar
mohammad committed
768
    return iteration
769
770


771
772
773
774
775
def evaluate(forward_step_func,
             data_iterator,
             model,
             process_non_loss_data_func,
             verbose=False):
776
    """Evaluation."""
Mohammad's avatar
Mohammad committed
777
    args = get_args()
778

Vijay Korthikanti's avatar
Vijay Korthikanti committed
779
780
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
        compute_feature_bank(model)
781

782
    # Turn on evaluation mode which disables dropout.
783
784
    for model_module in model:
        model_module.eval()
785
786
787
788
789
790
791
792
793
794

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
795

796
            forward_backward_func = get_forward_backward_func()
797
798
799
800
            loss_dicts = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True)

801
            # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
802
            if args.empty_unused_memory_level >= 1:
803
804
                torch.cuda.empty_cache()

805
806
807
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                # Reduce across processes.
                for loss_dict in loss_dicts:
808
                    for key in loss_dict:
809
810
                        total_loss_dict[key] = total_loss_dict.get(
                            key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
811

812
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
813
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
814
                                           * get_num_microbatches()
815
816
817
818
819
820
        collected_non_loss_data = None
        if process_non_loss_data_func is not None and is_last_rank():
            collected_non_loss_data = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True, collect_non_loss_data=True)

821
    # Move model back to the train mode.
822
823
    for model_module in model:
        model_module.train()
824
825

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
826
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
827

828
    return total_loss_dict, collected_non_loss_data
829
830
831

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
832
833
                               iteration, process_non_loss_data_func,
                               verbose=False):
834
    """Helper function to evaluate and dump results on screen."""
835
    args = get_args()
Mohammad's avatar
Mohammad committed
836
837
    writer = get_tensorboard_writer()

838
839
840
    total_loss_dict, collected_non_loss_data = evaluate(
        forward_step_func, data_iterator, model,
        process_non_loss_data_func, verbose)
841
842
843
844
845
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
mshoeybi's avatar
mshoeybi committed
846
        if writer:
mohammad's avatar
mohammad committed
847
            writer.add_scalar('{} validation'.format(key),
848
849
                              total_loss_dict[key].item(),
                              iteration)
mohammad's avatar
mohammad committed
850
            writer.add_scalar('{} validation vs samples'.format(key),
851
852
                              total_loss_dict[key].item(),
                              args.consumed_train_samples)
853
            if args.log_validation_ppl_to_tensorboard:
mohammad's avatar
mohammad committed
854
                writer.add_scalar('{} validation ppl'.format(key), ppl,
855
                                  iteration)
mohammad's avatar
mohammad committed
856
                writer.add_scalar('{} validation ppl vs samples'.format(key),
857
                                  ppl, args.consumed_train_samples)
858

859
860
861
    if process_non_loss_data_func is not None and writer and is_last_rank():
        process_non_loss_data_func(collected_non_loss_data, iteration, writer)

862
    length = len(string) + 1
863
864
865
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
866
867


Vijay Korthikanti's avatar
Vijay Korthikanti committed
868
def cyclic_iter(iter):
869
    while True:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
870
        for x in iter:
871
872
            yield x

873
874
875
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
876
    args = get_args()
877

878
879
880
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
881
882
883

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
884
885
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
886
        args.consumed_train_samples = args.iteration * args.global_batch_size
887
    if args.iteration > 0 and args.consumed_valid_samples == 0:
888
889
890
        if args.train_samples is None:
            args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
                args.eval_iters * args.global_batch_size
891

892
    # Data loader only on rank 0 of each model parallel group.
893
    if mpu.get_tensor_model_parallel_rank() == 0:
894
895

        # Number of train/valid/test samples.
896
897
898
899
900
901
        if args.train_samples:
            train_samples = args.train_samples
        else:
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
                     args.eval_iters
902
        test_iters = args.eval_iters
903
        train_val_test_num_samples = [train_samples,
mohammad's avatar
mohammad committed
904
905
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
906
907
908
909
910
911
912
913
914
915
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
916
917
918
919
920
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
921
922
923
924
925
926
927
928
929
930
931
932
933

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
934
935
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
936
937
938
939
940
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

    # Build iterators.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
941
942
943
    dl_type = args.dataloader_type
    assert dl_type in ['single', 'cyclic']

944
    if train_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
945
946
        train_data_iterator = iter(train_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(train_dataloader))
947
948
949
    else:
        train_data_iterator = None

950
    if valid_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
951
952
        valid_data_iterator = iter(valid_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(valid_dataloader))
953
    else:
954
        valid_data_iterator = None
955

956
    if test_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
957
958
        test_data_iterator = iter(test_dataloader) if dl_type == 'single' \
                             else iter(cyclic_iter(test_dataloader))
959
960
961
    else:
        test_data_iterator = None

962
    return train_data_iterator, valid_data_iterator, test_data_iterator