training.py 40.2 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2

Mohammad's avatar
Mohammad committed
3
"""Pretrain utilities."""
4
5
6

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
7
import sys
8
9
10
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()
11
12
13
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

Neel Kant's avatar
Neel Kant committed
14
from megatron import get_args
15
from megatron import get_signal_handler
Mohammad's avatar
Mohammad committed
16
17
from megatron import get_timers
from megatron import get_tensorboard_writer
18
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
19
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
20
from megatron import is_last_rank
mohammad's avatar
mohammad committed
21
from megatron import update_num_microbatches
22
from megatron.core import mpu, tensor_parallel
Neel Kant's avatar
Neel Kant committed
23
from megatron import print_rank_0
24
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
25
26
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
27
from megatron.model import Float16Module
28
from megatron.model import ModelType
29
from megatron.model import GPTModel
mohammad's avatar
mohammad committed
30
from megatron.optimizer import get_megatron_optimizer
Mohammad's avatar
Mohammad committed
31
from megatron.initialize import initialize_megatron
32
from megatron.initialize import write_args_to_tensorboard
33
from megatron.initialize import set_jit_fusion_options
34
from megatron.optimizer_param_scheduler import OptimizerParamScheduler
35
36
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.utils import check_adlr_autoresume_termination
37
from megatron.utils import unwrap_model
Vijay Korthikanti's avatar
Vijay Korthikanti committed
38
from megatron.data.data_samplers import build_pretraining_data_loader
mohammad's avatar
mohammad committed
39
from megatron.utils import calc_params_l2_norm
40
from megatron.schedules import get_forward_backward_func
41
from megatron.utils import report_memory
42
from megatron.model.vision.knn_monitor import compute_feature_bank
43

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
44

45
46
47
48
49
50
51
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


52
def pretrain(train_valid_test_dataset_provider,
53
             model_provider,
54
             model_type,
55
             forward_step_func,
56
             process_non_loss_data_func=None,
57
             extra_args_provider=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
58
             args_defaults={}):
59
60
61
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
62
63
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
64
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
65
        4) train the modle using the forward_step_func.
66
67

    Arguments:
68
69
70
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
71
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
72
        model_type: an enum that specifies the type of model being trained.
Mohammad's avatar
Mohammad committed
73
74
75
76
77
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
78
79
80
81
        process_non_loss_data_func: a function to post process outputs of the
            network. It can be used for dumping output tensors (e.g images) to
            tensorboard. It takes `collected data`(list of tensors),
            `current iteration index` and `tensorboard writer` as arguments.
Mohammad's avatar
Mohammad committed
82
83
84
85
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
86
87
    """

88
    # Initalize and get arguments, timers, and Tensorboard writer.
89
90
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
91
92
    # Set pytorch JIT layer fusion options and warmup JIT functions.
    set_jit_fusion_options()
93

94
95
96
97
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
98
    start_time_tensor = torch.cuda.DoubleTensor([_TRAIN_START_TIME])
99
100
101
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
102
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
103
104
105
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

106
    args = get_args()
Mohammad's avatar
Mohammad committed
107
    timers = get_timers()
108
109

    # Model, optimizer, and learning rate.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
110
111
112
    timers('model-and-optimizer-setup', log_level=0).start(barrier=True)
    model, optimizer, opt_param_scheduler = setup_model_and_optimizer(
        model_provider, model_type)
113
    timers('model-and-optimizer-setup').stop()
114
115
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
116
117

    # Data stuff.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
118
119
    timers('train/valid/test-data-iterators-setup', log_level=0).start(
        barrier=True)
120
    if args.virtual_pipeline_model_parallel_size is not None:
121
        all_data_iterators = [
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
122
123
            build_train_valid_test_data_iterators(
                train_valid_test_dataset_provider)
124
125
            for _ in range(len(model))
        ]
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
126
127
128
129
130
131
        train_data_iterator = [data_iterators[0]
                               for data_iterators in all_data_iterators]
        valid_data_iterator = [data_iterators[1]
                               for data_iterators in all_data_iterators]
        test_data_iterator = [data_iterators[2]
                              for data_iterators in all_data_iterators]
132
133
134
135
136
    else:
        train_data_iterator, valid_data_iterator, test_data_iterator \
            = build_train_valid_test_data_iterators(
                train_valid_test_dataset_provider)
    timers('train/valid/test-data-iterators-setup').stop()
mshoeybi's avatar
mshoeybi committed
137
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
138
139

    # Print setup timing.
140
    print_rank_0('done with setup ...')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
141
142
    timers.log(['model-and-optimizer-setup',
                'train/valid/test-data-iterators-setup'], barrier=True)
Mohammad's avatar
Mohammad committed
143
    print_rank_0('training ...')
144
145

    iteration = 0
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
146
147
148
149
150

    if args.dataloader_type == 'cyclic' and args.retro_add_retriever:
        args.train_iters = args.retro_cyclic_train_iters
        print_rank_0("retro cyclic train iters : %d" % args.train_iters)

151
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
152
        iteration = train(forward_step_func,
153
                          model, optimizer, opt_param_scheduler,
154
155
                          train_data_iterator, valid_data_iterator,
                          process_non_loss_data_func)
156
    print_datetime('after training is done')
Mohammad's avatar
Mohammad committed
157

158
159
160
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
161
                                   valid_data_iterator, model,
162
163
                                   iteration, process_non_loss_data_func,
                                   False)
164
165

    if args.save and iteration != 0:
166
        save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
167
168
169
170
171
172

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
173
174
                                   0, process_non_loss_data_func,
                                   True)
175

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
192
193
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
194
195
            iterations += 1
        # Reset
196
        update_num_microbatches(0, consistency_check=False)
197
198
199
200
201
202
203
204
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

205

206
def get_model(model_provider_func, model_type=ModelType.encoder_or_decoder, wrap_with_ddp=True):
207
    """Build the model."""
Mohammad's avatar
Mohammad committed
208
    args = get_args()
209
    args.model_type = model_type
210

211
    # Build model.
212
213
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
       args.virtual_pipeline_model_parallel_size is not None:
214
215
        assert model_type != ModelType.encoder_and_decoder, \
            "Interleaved schedule not supported for model with both encoder and decoder"
216
217
218
        model = []
        for i in range(args.virtual_pipeline_model_parallel_size):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
219
220
221
            # Set pre_process and post_process only after virtual rank is set.
            pre_process = mpu.is_pipeline_first_stage()
            post_process = mpu.is_pipeline_last_stage()
222
            this_model = model_provider_func(
223
224
225
                pre_process=pre_process,
                post_process=post_process
            )
226
            this_model.model_type = model_type
227
            model.append(this_model)
228
    else:
229
230
        pre_process = mpu.is_pipeline_first_stage()
        post_process = mpu.is_pipeline_last_stage()
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
        add_encoder = True
        add_decoder = True
        if model_type == ModelType.encoder_and_decoder:
            if mpu.get_pipeline_model_parallel_world_size() > 1:
                assert args.pipeline_model_parallel_split_rank is not None, \
                    "Split rank needs to be specified for model with both encoder and decoder"
                rank = mpu.get_pipeline_model_parallel_rank()
                split_rank = args.pipeline_model_parallel_split_rank
                world_size = mpu.get_pipeline_model_parallel_world_size()
                pre_process = rank == 0 or rank == split_rank
                post_process = (rank == (split_rank - 1)) or (
                        rank == (world_size - 1))
                add_encoder = mpu.is_pipeline_stage_before_split()
                add_decoder = mpu.is_pipeline_stage_after_split()
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process,
                add_encoder=add_encoder,
                add_decoder=add_decoder)
        else:
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process
            )
        model.model_type = model_type
256

257
258
    if not isinstance(model, list):
        model = [model]
259

260
261
262
263
264
265
    # Disallow training and inference with Transformer Engine
    # for non-GPT models
    args.allow_transformer_engine = all([type(m) == GPTModel for m in model])
    assert args.allow_transformer_engine or args.transformer_impl == 'local', \
        'Transformer Engine is only approved for GPT models'

266
    # Set tensor model parallel attributes if not set.
mohammad's avatar
mohammad committed
267
268
269
    # Only parameters that are already tensor model parallel have these
    # attributes set for them. We should make sure the default attributes
    # are set for all params so the optimizer can use them.
270
271
    for model_module in model:
        for param in model_module.parameters():
272
            tensor_parallel.set_defaults_if_not_set_tensor_model_parallel_attributes(param)
273

274
275
    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
276
        print(' > number of parameters on (tensor, pipeline) '
277
              'model parallel rank ({}, {}): {}'.format(
278
279
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
280
281
            sum([sum([p.nelement() for p in model_module.parameters()])
                 for model_module in model])), flush=True)
282
283

    # GPU allocation.
284
285
    for model_module in model:
        model_module.cuda(torch.cuda.current_device())
286
287

    # Fp16 conversion.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
288
289
    if args.fp16 or args.bf16:
        model = [Float16Module(model_module, args) for model_module in model]
290

291
292
293
294
295
296
    if wrap_with_ddp:
        if args.DDP_impl == 'torch':
            i = torch.cuda.current_device()
            model = [torchDDP(model_module, device_ids=[i], output_device=i,
                              process_group=mpu.get_data_parallel_group())
                     for model_module in model]
297

298
299
300
301
302
        elif args.DDP_impl == 'local':
            model = [LocalDDP(model_module,
                              args.accumulate_allreduce_grads_in_fp32,
                              args.use_contiguous_buffers_in_local_ddp)
                     for model_module in model]
303
304
305
306
            # broad cast params from data parallel src rank to other data parallel ranks
            if args.data_parallel_random_init:
                for model_module in model:
                    model_module.broadcast_params()
307
308
309
        else:
            raise NotImplementedError('Unknown DDP implementation specified: '
                                      '{}. Exiting.'.format(args.DDP_impl))
310

311
    return model
312
313


314
def get_optimizer_param_scheduler(optimizer):
315
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
316
    args = get_args()
317

318
319
320
321
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
Vijay Korthikanti's avatar
Vijay Korthikanti committed
322
323
        lr_decay_steps = args.lr_decay_iters * args.global_batch_size
        wd_incr_steps = args.train_iters * args.global_batch_size
324
        if args.lr_warmup_fraction is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
325
            lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
326
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
327
            lr_warmup_steps = args.lr_warmup_iters * args.global_batch_size
328
329
330
331
332
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
333
        update_train_iters(args)
334
335
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
Vijay Korthikanti's avatar
Vijay Korthikanti committed
336
337
        lr_decay_steps = args.lr_decay_samples
        wd_incr_steps = args.train_samples
338
        if args.lr_warmup_fraction is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
339
            lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
340
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
341
            lr_warmup_steps = args.lr_warmup_samples
342
    else:
343
344
345
        raise Exception(
            'either train-iters or train-samples should be provided.')

346
    opt_param_scheduler = OptimizerParamScheduler(
347
        optimizer,
348
        max_lr=args.lr,
349
        min_lr=args.min_lr,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
350
351
352
        lr_warmup_steps=lr_warmup_steps,
        lr_decay_steps=lr_decay_steps,
        lr_decay_style=args.lr_decay_style,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
353
354
        start_wd=args.start_weight_decay,
        end_wd=args.end_weight_decay,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
355
        wd_incr_steps=wd_incr_steps,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
356
        wd_incr_style=args.weight_decay_incr_style,
357
358
        use_checkpoint_opt_param_scheduler=args.use_checkpoint_opt_param_scheduler,
        override_opt_param_scheduler=args.override_opt_param_scheduler)
359

360
    return opt_param_scheduler
361
362


363
364
365
366
367
def setup_model_and_optimizer(model_provider_func,
                              model_type,
                              no_wd_decay_cond=None,
                              scale_lr_cond=None,
                              lr_mult=1.0):
368
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
369
    args = get_args()
370

371
    model = get_model(model_provider_func, model_type)
372
    unwrapped_model = unwrap_model(model,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
373
                                   (torchDDP, LocalDDP, Float16Module))
Lawrence McAfee's avatar
Lawrence McAfee committed
374

375
    optimizer = get_megatron_optimizer(model, no_wd_decay_cond,
376
                                       scale_lr_cond, lr_mult)
377
    opt_param_scheduler = get_optimizer_param_scheduler(optimizer)
378
379

    if args.load is not None:
380
        timers = get_timers()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
381
        timers('load-checkpoint', log_level=0).start(barrier=True)
382
        args.iteration = load_checkpoint(model, optimizer, opt_param_scheduler)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
383
        timers('load-checkpoint').stop(barrier=True)
384
        timers.log(['load-checkpoint'])
385
386
387
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
388
    # We only support local DDP with multiple micro-batches.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
389
    if len(model) > 1 or mpu.get_pipeline_model_parallel_world_size() > 1:
mohammad's avatar
mohammad committed
390
391
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
392
    # get model without FP16 and/or TorchDDP wrappers
Mostofa Patwary's avatar
Mostofa Patwary committed
393
394
    if args.iteration == 0 and len(unwrapped_model) == 1 \
        and hasattr(unwrapped_model[0], 'init_state_dict_from_bert'):
Mostofa Patwary's avatar
Mostofa Patwary committed
395
        print_rank_0("Initializing ICT from pretrained BERT model")
Mostofa Patwary's avatar
Mostofa Patwary committed
396
        unwrapped_model[0].init_state_dict_from_bert()
Mostofa Patwary's avatar
Mostofa Patwary committed
397
398
        if args.fp16:
            optimizer.reload_model_params()
Neel Kant's avatar
Neel Kant committed
399

400
    return model, optimizer, opt_param_scheduler
401
402


403
def train_step(forward_step_func, data_iterator,
Lawrence McAfee's avatar
Lawrence McAfee committed
404
               model, optimizer, opt_param_scheduler):
405
406
407
408
409
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
410
    if args.DDP_impl == 'local' and args.use_contiguous_buffers_in_local_ddp:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
411
412
        for partition in model:
            partition.zero_grad_buffer()
413
    optimizer.zero_grad()
414

415
    # Forward pass.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
416
417
    timers('forward-backward', log_level=1).start(
        barrier=args.barrier_with_L1_time)
418
    forward_backward_func = get_forward_backward_func()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
419
    fwd_bwd_timers = timers if args.timing_log_level > 1 else None
420
421
    losses_reduced = forward_backward_func(
        forward_step_func, data_iterator, model,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
422
423
        optimizer, fwd_bwd_timers, forward_only=False)
    timers('forward-backward').stop()
424

425
    # Empty unused memory.
Lawrence McAfee's avatar
Lawrence McAfee committed
426
    if args.empty_unused_memory_level >= 1:
427
428
        torch.cuda.empty_cache()

429
    # Reduce gradients.
430
    optimizer.reduce_model_grads(args, timers)
431

Lawrence McAfee's avatar
Lawrence McAfee committed
432
    # Vision gradients.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
433
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
434
435
436
437
        unwrapped_model = unwrap_model(model[0],
                                       (torchDDP, LocalDDP, Float16Module))
        unwrapped_model.cancel_gradients_last_layer(args.curr_iteration)

438
    # Update parameters.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
439
    timers('optimizer', log_level=1).start(barrier=args.barrier_with_L1_time)
Lawrence McAfee's avatar
Lawrence McAfee committed
440
    update_successful, grad_norm, num_zeros_in_grad = optimizer.step(args, timers)
441
442
    timers('optimizer').stop()

443
    # Gather params.
444
    if update_successful:
Lawrence McAfee's avatar
Lawrence McAfee committed
445
        optimizer.gather_model_params(args, timers)
446

Lawrence McAfee's avatar
Lawrence McAfee committed
447
    # Vision momentum.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
448
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
449
450
451
452
        unwrapped_model = unwrap_model(model[0],
                                       (torchDDP, LocalDDP, Float16Module))
        unwrapped_model.update_momentum(args.curr_iteration)

453
    # Update learning rate.
454
    if update_successful:
455
456
457
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
458
        opt_param_scheduler.step(increment=increment)
mohammad's avatar
mohammad committed
459
        skipped_iter = 0
460
461
462
    else:
        skipped_iter = 1

463
    # Empty unused memory.
Lawrence McAfee's avatar
Lawrence McAfee committed
464
    if args.empty_unused_memory_level >= 2:
465
466
        torch.cuda.empty_cache()

467
    if mpu.is_pipeline_last_stage(ignore_virtual=True):
468
469
470
471
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
472
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
473
474
        return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
    return {}, skipped_iter, grad_norm, num_zeros_in_grad
475
476


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
477
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
478
                 loss_scale, report_memory_flag, skipped_iter,
479
                 grad_norm, params_norm, num_zeros_in_grad):
Mohammad's avatar
Mohammad committed
480
481
482
483
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
484

mohammad's avatar
mohammad committed
485
486
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
487
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
488
489
490
491
492
493
494
495
496
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
497
498
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
499
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
500
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
501
    for key in loss_dict:
mohammad's avatar
mohammad committed
502
        if not skipped_iter:
503
504
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
505
506
507
508
509
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
510
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
511
512
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
513
514

    # Logging.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
    timers_to_log = [
        'forward-backward',
        'forward-compute',
        'backward-compute',
        'batch-generator',
        'forward-recv',
        'forward-send',
        'backward-recv',
        'backward-send',
        'forward-send-forward-recv',
        'forward-send-backward-recv',
        'backward-send-forward-recv',
        'backward-send-backward-recv',
        'forward-backward-send-forward-backward-recv',
        'layernorm-grads-all-reduce',
        'embedding-grads-all-reduce',
        'grads-all-reduce',
        'grads-reduce-scatter',
        'params-all-gather',
        'optimizer-copy-to-main-grad',
        'optimizer-unscale-and-check-inf',
        'optimizer-clip-main-grad',
        'optimizer-count-zeros',
        'optimizer-inner-step',
        'optimizer-copy-main-to-model-params',
        'optimizer']
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
541

mohammad's avatar
mohammad committed
542
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
543
544
545
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
546
547
548
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
549
    # Tensorboard values.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
550
551
552
553
554
555
    # Timer requires all the ranks to call.
    if args.log_timers_to_tensorboard and \
       (iteration % args.tensorboard_log_interval == 0):
        timers.write(timers_to_log, writer, iteration,
                     normalizer=total_iterations)
    if writer and (iteration % args.tensorboard_log_interval == 0):
556
557
558
559
560
561
562
563
        if args.log_learning_rate_to_tensorboard:
            writer.add_scalar('learning-rate', learning_rate, iteration)
            writer.add_scalar('learning-rate vs samples', learning_rate,
                              args.consumed_train_samples)
        if args.log_batch_size_to_tensorboard:
            writer.add_scalar('batch-size', batch_size, iteration)
            writer.add_scalar('batch-size vs samples', batch_size,
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
564
        for key in loss_dict:
mohammad's avatar
mohammad committed
565
566
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
567
                              args.consumed_train_samples)
568
569
570
571
        if args.log_loss_scale_to_tensorboard:
            writer.add_scalar('loss-scale', loss_scale, iteration)
            writer.add_scalar('loss-scale vs samples', loss_scale,
                              args.consumed_train_samples)
572
573
574
575
        if args.log_world_size_to_tensorboard:
            writer.add_scalar('world-size', args.world_size, iteration)
            writer.add_scalar('world-size vs samples', args.world_size,
                              args.consumed_train_samples)
576
577
578
579
        if grad_norm is not None:
            writer.add_scalar('grad-norm', grad_norm, iteration)
            writer.add_scalar('grad-norm vs samples', grad_norm,
                              args.consumed_train_samples)
580
581
582
        if num_zeros_in_grad is not None:
            writer.add_scalar('num-zeros', num_zeros_in_grad, iteration)
            writer.add_scalar('num-zeros vs samples', num_zeros_in_grad,
Rewon Child's avatar
Rewon Child committed
583
                              args.consumed_train_samples)
mohammad's avatar
mohammad committed
584
585
586
587
        if params_norm is not None:
            writer.add_scalar('params-norm', params_norm, iteration)
            writer.add_scalar('params-norm vs samples', params_norm,
                              args.consumed_train_samples)
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
        if args.log_memory_to_tensorboard:
            mem_stats = torch.cuda.memory_stats()
            writer.add_scalar(
                "mem-reserved-bytes",
                mem_stats["reserved_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-bytes",
                mem_stats["allocated_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-count",
                mem_stats["allocation.all.current"],
                iteration,
            )
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
605
606

    if iteration % args.log_interval == 0:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
607
        elapsed_time = timers('interval-time').elapsed(barrier=True)
mohammad's avatar
mohammad committed
608
        elapsed_time_per_iteration = elapsed_time / total_iterations
mshoeybi's avatar
mshoeybi committed
609
        if writer:
610
611
612
            if args.log_timers_to_tensorboard:
                writer.add_scalar('iteration-time',
                                  elapsed_time_per_iteration, iteration)
613
614
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
615
        log_string += ' consumed samples: {:12d} |'.format(
616
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
617
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
618
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
619
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
620
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
621
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
622
623
624
625
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
626
627
628
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
629
        log_string += ' loss scale: {:.1f} |'.format(loss_scale)
630
631
        if grad_norm is not None:
            log_string += ' grad norm: {:.3f} |'.format(grad_norm)
632
633
        if num_zeros_in_grad is not None:
            log_string += ' num zeros: {:.1f} |'.format(num_zeros_in_grad)
mohammad's avatar
mohammad committed
634
635
        if params_norm is not None:
            log_string += ' params norm: {:.3f} |'.format(params_norm)
mohammad's avatar
mohammad committed
636
637
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
638
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
639
640
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
641
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
642
        total_loss_dict[nan_iters_key] = 0
643
        print_rank_last(log_string)
644
645
646
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
647
648
649
650
651
652
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


653
def save_checkpoint_and_time(iteration, model, optimizer, opt_param_scheduler):
654
655
656
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
657
    timers('save-checkpoint', log_level=0).start(barrier=True)
658
    save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
659
    timers('save-checkpoint').stop(barrier=True)
660
    timers.log(['save-checkpoint'])
661
662


663
def train(forward_step_func, model, optimizer, opt_param_scheduler,
664
665
          train_data_iterator, valid_data_iterator,
          process_non_loss_data_func):
666
    """Train the model function."""
Mohammad's avatar
Mohammad committed
667
668
    args = get_args()
    timers = get_timers()
669

670
671
672
    # Write args to tensorboard
    write_args_to_tensorboard()

673
    # Turn on training mode which enables dropout.
674
675
    for model_module in model:
        model_module.train()
676
677
678
679
680
681
682

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
683
    timers('interval-time', log_level=0).start(barrier=True)
684
    print_datetime('before the start of training step')
685
686
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
687
        update_num_microbatches(args.consumed_train_samples)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
688
        args.curr_iteration = iteration
689
690
691
692
693
        loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = \
            train_step(forward_step_func,
                       train_data_iterator,
                       model,
                       optimizer,
Lawrence McAfee's avatar
Lawrence McAfee committed
694
                       opt_param_scheduler)
695
        iteration += 1
696
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
697
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
698
                                       get_num_microbatches()
699
700

        # Logging.
701
        loss_scale = optimizer.get_loss_scale().item()
702
703
704
        params_norm = None
        if args.log_params_norm:
            params_norm = calc_params_l2_norm(model)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
705
706
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
707
                                          iteration, loss_scale,
708
                                          report_memory_flag, skipped_iter,
709
                                          grad_norm, params_norm, num_zeros_in_grad)
710
711

        # Autoresume
712
713
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
714
            check_adlr_autoresume_termination(iteration, model, optimizer,
715
                                              opt_param_scheduler)
716
717
718
719
720
721

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
722
                                       valid_data_iterator, model,
723
724
                                       iteration, process_non_loss_data_func,
                                       False)
725

726
727
        # Checkpointing
        saved_checkpoint = False
728
729
730
731
        if args.exit_signal_handler:
            signal_handler = get_signal_handler()
            if any(signal_handler.signals_received()):
                save_checkpoint_and_time(iteration, model, optimizer,
732
                                         opt_param_scheduler)
733
734
735
                print_datetime('exiting program after receiving SIGTERM.')
                sys.exit()

736
737
738
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
739
                                     opt_param_scheduler)
740
741
            saved_checkpoint = True

742
743
744
745
746
747
748
749
750
751
752
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
753
                                             opt_param_scheduler)
754
                print_datetime('exiting program after {} minutes'.format(train_time))
755
756
                sys.exit()

757
        # Exiting based on iterations
758
        if args.exit_interval and iteration % args.exit_interval == 0:
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
759
            if args.save and not saved_checkpoint:
760
                save_checkpoint_and_time(iteration, model, optimizer,
761
                                         opt_param_scheduler)
762
            torch.distributed.barrier()
763
            print_datetime('exiting program at iteration {}'.format(iteration))
Mohammad's avatar
Mohammad committed
764
            sys.exit()
765

766

mohammad's avatar
mohammad committed
767
    return iteration
768
769


770
771
772
773
774
def evaluate(forward_step_func,
             data_iterator,
             model,
             process_non_loss_data_func,
             verbose=False):
775
    """Evaluation."""
Mohammad's avatar
Mohammad committed
776
    args = get_args()
777

Vijay Korthikanti's avatar
Vijay Korthikanti committed
778
779
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
        compute_feature_bank(model)
780

781
    # Turn on evaluation mode which disables dropout.
782
783
    for model_module in model:
        model_module.eval()
784
785
786
787
788
789
790
791
792
793

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
794

795
            forward_backward_func = get_forward_backward_func()
796
797
798
799
            loss_dicts = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True)

800
            # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
801
            if args.empty_unused_memory_level >= 1:
802
803
                torch.cuda.empty_cache()

804
805
806
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                # Reduce across processes.
                for loss_dict in loss_dicts:
807
                    for key in loss_dict:
808
809
                        total_loss_dict[key] = total_loss_dict.get(
                            key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
810

811
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
812
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
813
                                           * get_num_microbatches()
814
815
816
817
818
819
        collected_non_loss_data = None
        if process_non_loss_data_func is not None and is_last_rank():
            collected_non_loss_data = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True, collect_non_loss_data=True)

820
    # Move model back to the train mode.
821
822
    for model_module in model:
        model_module.train()
823
824

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
825
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
826

827
    return total_loss_dict, collected_non_loss_data
828
829
830

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
831
832
                               iteration, process_non_loss_data_func,
                               verbose=False):
833
    """Helper function to evaluate and dump results on screen."""
834
    args = get_args()
Mohammad's avatar
Mohammad committed
835
836
    writer = get_tensorboard_writer()

837
838
839
    total_loss_dict, collected_non_loss_data = evaluate(
        forward_step_func, data_iterator, model,
        process_non_loss_data_func, verbose)
840
841
842
843
844
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
mshoeybi's avatar
mshoeybi committed
845
        if writer:
mohammad's avatar
mohammad committed
846
            writer.add_scalar('{} validation'.format(key),
847
848
                              total_loss_dict[key].item(),
                              iteration)
mohammad's avatar
mohammad committed
849
            writer.add_scalar('{} validation vs samples'.format(key),
850
851
                              total_loss_dict[key].item(),
                              args.consumed_train_samples)
852
            if args.log_validation_ppl_to_tensorboard:
mohammad's avatar
mohammad committed
853
                writer.add_scalar('{} validation ppl'.format(key), ppl,
854
                                  iteration)
mohammad's avatar
mohammad committed
855
                writer.add_scalar('{} validation ppl vs samples'.format(key),
856
                                  ppl, args.consumed_train_samples)
857

858
859
860
    if process_non_loss_data_func is not None and writer and is_last_rank():
        process_non_loss_data_func(collected_non_loss_data, iteration, writer)

861
    length = len(string) + 1
862
863
864
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
865
866


Vijay Korthikanti's avatar
Vijay Korthikanti committed
867
def cyclic_iter(iter):
868
    while True:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
869
        for x in iter:
870
871
            yield x

Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
872
873

def build_train_valid_test_data_loaders(
874
875
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
876
    args = get_args()
877

878
879
880
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
881
882
883

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
884
885
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
886
        args.consumed_train_samples = args.iteration * args.global_batch_size
887
    if args.iteration > 0 and args.consumed_valid_samples == 0:
888
889
890
        if args.train_samples is None:
            args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
                args.eval_iters * args.global_batch_size
891

892
    # Data loader only on rank 0 of each model parallel group.
893
    if mpu.get_tensor_model_parallel_rank() == 0:
894
895

        # Number of train/valid/test samples.
896
897
898
899
900
901
        if args.train_samples:
            train_samples = args.train_samples
        else:
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
                     args.eval_iters
902
        test_iters = args.eval_iters
903
        train_val_test_num_samples = [train_samples,
mohammad's avatar
mohammad committed
904
905
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
906
907
908
909
910
911
912
913
914
915
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
916
917
918
919
920
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
921
922
923
924
925
926
927
928
929
930
931
932
933

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
934
935
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
936
937
938
939
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
940
941
942
943
944
945
946
947
948
949
950
951
952
    return train_dataloader, valid_dataloader, test_dataloader


def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):

    args = get_args()

    # Build loaders.
    train_dataloader, valid_dataloader, test_dataloader = \
        build_train_valid_test_data_loaders(
            build_train_valid_test_datasets_provider)

953
    # Build iterators.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
954
955
956
    dl_type = args.dataloader_type
    assert dl_type in ['single', 'cyclic']

957
    if train_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
958
959
        train_data_iterator = iter(train_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(train_dataloader))
960
961
962
    else:
        train_data_iterator = None

963
    if valid_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
964
965
        valid_data_iterator = iter(valid_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(valid_dataloader))
966
    else:
967
        valid_data_iterator = None
968

969
    if test_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
970
971
        test_data_iterator = iter(test_dataloader) if dl_type == 'single' \
                             else iter(cyclic_iter(test_dataloader))
972
973
974
    else:
        test_data_iterator = None

975
    return train_data_iterator, valid_data_iterator, test_data_iterator