training.py 38 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
24
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()

25
26
27
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

Neel Kant's avatar
Neel Kant committed
28
from megatron import get_args
Mohammad's avatar
Mohammad committed
29
30
from megatron import get_timers
from megatron import get_tensorboard_writer
31
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
32
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
33
from megatron import is_last_rank
mohammad's avatar
mohammad committed
34
from megatron import update_num_microbatches
35
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
36
from megatron import print_rank_0
37
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
38
39
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
40
from megatron.model import Float16Module
mohammad's avatar
mohammad committed
41
from megatron.optimizer import get_megatron_optimizer
Mohammad's avatar
Mohammad committed
42
from megatron.initialize import initialize_megatron
43
from megatron.initialize import write_args_to_tensorboard
44
45
46
from megatron.learning_rates import AnnealingLR
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.utils import check_adlr_autoresume_termination
47
from megatron.utils import unwrap_model
Vijay Korthikanti's avatar
Vijay Korthikanti committed
48
from megatron.data.data_samplers import build_pretraining_data_loader
mohammad's avatar
mohammad committed
49
from megatron.utils import calc_params_l2_norm
50
from megatron.schedules import forward_backward_no_pipelining
51
from megatron.schedules import forward_backward_pipelining_without_interleaving
52
from megatron.schedules import forward_backward_pipelining_with_interleaving
53
from megatron.utils import report_memory
54
55


56
57
58
59
60
61
62
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


63
def pretrain(train_valid_test_dataset_provider,
64
             model_provider,
65
66
             forward_step_func,
             extra_args_provider=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
67
             args_defaults={}):
68
69
70
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
71
72
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
73
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
74
        4) train the modle using the forward_step_func.
75
76

    Arguments:
77
78
79
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
80
81
82
83
84
85
86
87
88
89
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
90
91
    """

92
    # Initalize and get arguments, timers, and Tensorboard writer.
93
94
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
95

96
97
98
99
100
101
102
103
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
    start_time_tensor = torch.cuda.FloatTensor([_TRAIN_START_TIME])
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
104
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
105
106
107
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

108
    args = get_args()
Mohammad's avatar
Mohammad committed
109
    timers = get_timers()
110
111

    # Model, optimizer, and learning rate.
112
    timers('model-and-optimizer-setup').start()
Mohammad's avatar
Mohammad committed
113
    model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider)
114
    timers('model-and-optimizer-setup').stop()
115
116
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
117
118

    # Data stuff.
119
120
    timers('train/valid/test-data-iterators-setup').start()
    if args.virtual_pipeline_model_parallel_size is not None:
121
        all_data_iterators = [
122
123
124
            build_train_valid_test_data_iterators(train_valid_test_dataset_provider)
            for _ in range(len(model))
        ]
125
126
127
        train_data_iterator = [data_iterators[0] for data_iterators in all_data_iterators]
        valid_data_iterator = [data_iterators[1] for data_iterators in all_data_iterators]
        test_data_iterator = [data_iterators[2] for data_iterators in all_data_iterators]
128
129
130
131
132
    else:
        train_data_iterator, valid_data_iterator, test_data_iterator \
            = build_train_valid_test_data_iterators(
                train_valid_test_dataset_provider)
    timers('train/valid/test-data-iterators-setup').stop()
mshoeybi's avatar
mshoeybi committed
133
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
134
135

    # Print setup timing.
136
137
    print_rank_0('done with setup ...')
    timers.log(['model-and-optimizer-setup', 'train/valid/test-data-iterators-setup'])
Mohammad's avatar
Mohammad committed
138
    print_rank_0('training ...')
139
140

    iteration = 0
zihanl's avatar
zihanl committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
    if not args.run_dialog:
        # original pre-training for GPT
        if args.do_train and args.train_iters > 0:
            iteration = train(forward_step_func,
                            model, optimizer, lr_scheduler,
                            train_data_iterator, valid_data_iterator)
        print_datetime('after training is done')

        if args.do_valid:
            prefix = 'the end of training for val data'
            evaluate_and_print_results(prefix, forward_step_func,
                                    valid_data_iterator, model,
                                    iteration, False)

        if args.save and iteration != 0:
            save_checkpoint(iteration, model, optimizer, lr_scheduler)

        if args.do_test:
            # Run on test data.
            prefix = 'the end of training for test data'
            evaluate_and_print_results(prefix, forward_step_func,
                                    test_data_iterator, model,
                                    0, True)
    
    else:
        # training for dialog/control model
        timers('interval-time').start() # start timers('interval-time') here to avoid it from starting multiple times
        for e in range(args.num_epoch):
            print_rank_0('> training on epoch %d' % (e+1))

            if args.do_train and args.train_iters > 0:
                iteration += train(forward_step_func,
                                model, optimizer, lr_scheduler,
                                train_data_iterator, valid_data_iterator)
            print_datetime('after training is done')

            if args.do_valid:
                prefix = 'the end of training for val data'
                evaluate_and_print_results(prefix, forward_step_func,
                                        valid_data_iterator, model,
                                        iteration, False)

            if e >= 8 and e <= 13 and args.save and iteration != 0:
                save_checkpoint(iteration, model, optimizer, lr_scheduler)

            if args.do_test:
                # Run on test data.
                prefix = 'the end of training for test data'
                evaluate_and_print_results(prefix, forward_step_func,
                                        test_data_iterator, model,
                                        0, True)
192

193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
209
210
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
211
212
            iterations += 1
        # Reset
213
        update_num_microbatches(0, consistency_check=False)
214
215
216
217
218
219
220
221
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

222

Mohammad's avatar
Mohammad committed
223
def get_model(model_provider_func):
224
    """Build the model."""
Mohammad's avatar
Mohammad committed
225
    args = get_args()
226

227
    # Build model.
228
229
230
231
232
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
       args.virtual_pipeline_model_parallel_size is not None:
        model = []
        for i in range(args.virtual_pipeline_model_parallel_size):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
233
234
235
            # Set pre_process and post_process only after virtual rank is set.
            pre_process = mpu.is_pipeline_first_stage()
            post_process = mpu.is_pipeline_last_stage()
236
            this_model = model_provider_func(
237
238
239
                pre_process=pre_process,
                post_process=post_process
            )
240
            model.append(this_model)
241
    else:
242
243
        pre_process = mpu.is_pipeline_first_stage()
        post_process = mpu.is_pipeline_last_stage()
244
245
246
247
248
        model = model_provider_func(
            pre_process=pre_process,
            post_process=post_process
        )

249
250
    if not isinstance(model, list):
        model = [model]
251

252
    # Set tensor model parallel attributes if not set.
mohammad's avatar
mohammad committed
253
254
255
    # Only parameters that are already tensor model parallel have these
    # attributes set for them. We should make sure the default attributes
    # are set for all params so the optimizer can use them.
256
257
258
    for model_module in model:
        for param in model_module.parameters():
            mpu.set_defaults_if_not_set_tensor_model_parallel_attributes(param)
259

260
261
    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
262
        print(' > number of parameters on (tensor, pipeline) '
263
              'model parallel rank ({}, {}): {}'.format(
264
265
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
266
267
            sum([sum([p.nelement() for p in model_module.parameters()])
                 for model_module in model])), flush=True)
268
269

    # GPU allocation.
270
271
    for model_module in model:
        model_module.cuda(torch.cuda.current_device())
272
273

    # Fp16 conversion.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
274
275
    if args.fp16 or args.bf16:
        model = [Float16Module(model_module, args) for model_module in model]
276
277
278

    if args.DDP_impl == 'torch':
        i = torch.cuda.current_device()
279
280
281
        model = [torchDDP(model_module, device_ids=[i], output_device=i,
                          process_group=mpu.get_data_parallel_group())
                 for model_module in model]
282
        return model
283

284
    if args.DDP_impl == 'local':
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
285
286
287
288
        model = [LocalDDP(model_module,
                          args.accumulate_allreduce_grads_in_fp32,
                          args.use_contiguous_buffers_in_ddp)
                 for model_module in model]
289
290
        return model

291
    raise NotImplementedError('Unknown DDP implementation specified: {}. '
292
                              'Exiting.'.format(args.DDP_impl))
293
294


Mohammad's avatar
Mohammad committed
295
def get_learning_rate_scheduler(optimizer):
296
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
297
    args = get_args()
298

299
300
301
302
303
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
        decay_steps = args.lr_decay_iters * args.global_batch_size
304
305
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
306
307
        else:
            warmup_steps = args.lr_warmup_iters * args.global_batch_size
308
309
310
311
312
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
313
        update_train_iters(args)
314
315
316
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
        decay_steps = args.lr_decay_samples
317
318
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
319
320
        else:
            warmup_steps = args.lr_warmup_samples
321
    else:
322
323
324
        raise Exception(
            'either train-iters or train-samples should be provided.')

325
326
    lr_scheduler = AnnealingLR(
        optimizer,
327
        max_lr=args.lr,
328
        min_lr=args.min_lr,
329
330
        warmup_steps=warmup_steps,
        decay_steps=decay_steps,
331
        decay_style=args.lr_decay_style,
332
333
334
335
336
337
        use_checkpoint_lr_scheduler=args.use_checkpoint_lr_scheduler,
        override_lr_scheduler=args.override_lr_scheduler)

    return lr_scheduler


Mohammad's avatar
Mohammad committed
338
def setup_model_and_optimizer(model_provider_func):
339
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
340
    args = get_args()
341

Mohammad's avatar
Mohammad committed
342
    model = get_model(model_provider_func)
343

344
    unwrapped_model = unwrap_model(model,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
345
                                   (torchDDP, LocalDDP, Float16Module))
346
347
    optimizer = get_megatron_optimizer(unwrapped_model)

Mohammad's avatar
Mohammad committed
348
    lr_scheduler = get_learning_rate_scheduler(optimizer)
349
350

    if args.load is not None:
351
352
353
354
        timers = get_timers()
        # Extra barrier is added to make sure all ranks report the
        # max time.
        torch.distributed.barrier()
355
        timers('load-checkpoint').start()
356
        args.iteration = load_checkpoint(model, optimizer, lr_scheduler)
357
358
        # need to set train_samples to None
        args.train_samples = None
359
        torch.distributed.barrier()
360
361
        timers('load-checkpoint').stop()
        timers.log(['load-checkpoint'])
362
363
364
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
365
    # We only support local DDP with multiple micro-batches.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
366
    if len(model) > 1 or mpu.get_pipeline_model_parallel_world_size() > 1:
mohammad's avatar
mohammad committed
367
368
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
369
    # get model without FP16 and/or TorchDDP wrappers
Mostofa Patwary's avatar
Mostofa Patwary committed
370
371
    if args.iteration == 0 and len(unwrapped_model) == 1 \
        and hasattr(unwrapped_model[0], 'init_state_dict_from_bert'):
Mostofa Patwary's avatar
Mostofa Patwary committed
372
        print_rank_0("Initializing ICT from pretrained BERT model")
Mostofa Patwary's avatar
Mostofa Patwary committed
373
        unwrapped_model[0].init_state_dict_from_bert()
Mostofa Patwary's avatar
Mostofa Patwary committed
374
375
        if args.fp16:
            optimizer.reload_model_params()
Neel Kant's avatar
Neel Kant committed
376

377
378
379
    return model, optimizer, lr_scheduler


380
381
382
383
384
385
386
def train_step(forward_step_func, data_iterator,
               model, optimizer, lr_scheduler):
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
387
388
389
390
391
    if args.DDP_impl == 'local' and args.use_contiguous_buffers_in_ddp:
        for partition in model:
            partition.zero_grad_buffer()
    else:
        optimizer.zero_grad()
392
393

    if mpu.get_pipeline_model_parallel_world_size() > 1:
394
395
        if args.virtual_pipeline_model_parallel_size is not None:
            forward_backward_func = forward_backward_pipelining_with_interleaving
396
397
398
            assert get_num_microbatches() % args.pipeline_model_parallel_size == 0, \
                'number of microbatches is not divisible by pipeline-parallel ' \
                'size when using interleaved schedule'
399
        else:
400
            forward_backward_func = forward_backward_pipelining_without_interleaving
401
    else:
402
403
404
405
        forward_backward_func = forward_backward_no_pipelining
    losses_reduced = forward_backward_func(
        forward_step_func, data_iterator, model,
        optimizer, timers, forward_only=False)
406
407
408

    # All-reduce if needed.
    if args.DDP_impl == 'local':
409
        timers('backward-params-all-reduce').start()
410
        for model_module in model:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
411
            model_module.allreduce_gradients()
412
        timers('backward-params-all-reduce').stop()
413

414
415
416
417
    # All-reduce word_embeddings' grad across first and last stages to ensure
    # that word_embeddings parameters stay in sync.
    # This should only run for models that support pipelined model parallelism
    # (BERT and GPT-2).
418
    timers('backward-embedding-all-reduce').start()
419
420
    if (mpu.is_pipeline_first_stage(ignore_virtual=True) or
        mpu.is_pipeline_last_stage(ignore_virtual=True)) and \
421
            mpu.get_pipeline_model_parallel_world_size() > 1:
422
423
424
425
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            unwrapped_model = model[0]
        elif mpu.is_pipeline_last_stage(ignore_virtual=True):
            unwrapped_model = model[-1]
426
        unwrapped_model = unwrap_model(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
427
            unwrapped_model, (torchDDP, LocalDDP, Float16Module))
428

429
430
        if unwrapped_model.share_word_embeddings:
            word_embeddings_weight = unwrapped_model.word_embeddings_weight()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
431
432
433
434
435
            if args.DDP_impl == 'local':
                grad = word_embeddings_weight.main_grad
            else:
                grad = word_embeddings_weight.grad
            torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
436
    timers('backward-embedding-all-reduce').stop()
437

438
439
    # Update parameters.
    timers('optimizer').start()
440
    update_successful, grad_norm, num_zeros_in_grad = optimizer.step()
441
442
443
    timers('optimizer').stop()

    # Update learning rate.
444
    if update_successful:
445
446
447
448
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
        lr_scheduler.step(increment=increment)
mohammad's avatar
mohammad committed
449
        skipped_iter = 0
450
451
452
    else:
        skipped_iter = 1

453
    if mpu.is_pipeline_last_stage(ignore_virtual=True):
454
455
456
457
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
458
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
459
460
        return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
    return {}, skipped_iter, grad_norm, num_zeros_in_grad
461
462


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
463
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
464
                 loss_scale, report_memory_flag, skipped_iter,
465
                 grad_norm, params_norm, num_zeros_in_grad):
Mohammad's avatar
Mohammad committed
466
467
468
469
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
470

mohammad's avatar
mohammad committed
471
472
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
473
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
474
475
476
477
478
479
480
481
482
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
483
484
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
485
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
486
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
487
    for key in loss_dict:
mohammad's avatar
mohammad committed
488
        if not skipped_iter:
489
490
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
491
492
493
494
495
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
496
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
497
498
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
499
500
501

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
502

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
503
504
505
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
506
507
508
    add_to_logging('forward-compute')
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
509
    add_to_logging('forward-backward-send-forward-backward-recv')
510
511
512
    add_to_logging('backward-compute')
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
513
    add_to_logging('backward-send-forward-recv')
514
    add_to_logging('backward-send-backward-recv')
515
    add_to_logging('backward-params-all-reduce')
516
    add_to_logging('backward-embedding-all-reduce')
517
    add_to_logging('optimizer-copy-to-main-grad')
mohammad's avatar
mohammad committed
518
    add_to_logging('optimizer-unscale-and-check-inf')
519
520
    add_to_logging('optimizer-clip-main-grad')
    add_to_logging('optimizer-copy-main-to-model-params')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
521
    add_to_logging('optimizer')
mohammad's avatar
mohammad committed
522
    add_to_logging('batch-generator')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
523

mohammad's avatar
mohammad committed
524
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
525
526
527
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
528
529
530
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
531
    # Tensorboard values.
532
533
534
535
536
537
538
539
540
541
    if writer and (iteration % args.tensorboard_log_interval == 0 ) and \
       is_last_rank():
        if args.log_learning_rate_to_tensorboard:
            writer.add_scalar('learning-rate', learning_rate, iteration)
            writer.add_scalar('learning-rate vs samples', learning_rate,
                              args.consumed_train_samples)
        if args.log_batch_size_to_tensorboard:
            writer.add_scalar('batch-size', batch_size, iteration)
            writer.add_scalar('batch-size vs samples', batch_size,
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
542
        for key in loss_dict:
mohammad's avatar
mohammad committed
543
544
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
545
                              args.consumed_train_samples)
546
547
548
549
        if args.log_loss_scale_to_tensorboard:
            writer.add_scalar('loss-scale', loss_scale, iteration)
            writer.add_scalar('loss-scale vs samples', loss_scale,
                              args.consumed_train_samples)
550
551
552
553
        if grad_norm is not None:
            writer.add_scalar('grad-norm', grad_norm, iteration)
            writer.add_scalar('grad-norm vs samples', grad_norm,
                              args.consumed_train_samples)
554
555
556
        if num_zeros_in_grad is not None:
            writer.add_scalar('num-zeros', num_zeros_in_grad, iteration)
            writer.add_scalar('num-zeros vs samples', num_zeros_in_grad,
Rewon Child's avatar
Rewon Child committed
557
                              args.consumed_train_samples)
mohammad's avatar
mohammad committed
558
559
560
561
        if params_norm is not None:
            writer.add_scalar('params-norm', params_norm, iteration)
            writer.add_scalar('params-norm vs samples', params_norm,
                              args.consumed_train_samples)
562
563
564
        if args.log_timers_to_tensorboard:
            timers.write(timers_to_log, writer, iteration,
                         normalizer=total_iterations)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
565
566

    if iteration % args.log_interval == 0:
567
        elapsed_time = timers('interval-time').elapsed()
mohammad's avatar
mohammad committed
568
        elapsed_time_per_iteration = elapsed_time / total_iterations
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
569
        if writer and torch.distributed.get_rank() == 0:
570
571
572
            if args.log_timers_to_tensorboard:
                writer.add_scalar('iteration-time',
                                  elapsed_time_per_iteration, iteration)
573
574
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
575
        log_string += ' consumed samples: {:12d} |'.format(
576
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
577
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
578
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
579
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
580
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
581
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
582
583
584
585
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
586
587
588
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
589
        log_string += ' loss scale: {:.1f} |'.format(loss_scale)
590
591
        if grad_norm is not None:
            log_string += ' grad norm: {:.3f} |'.format(grad_norm)
592
593
        if num_zeros_in_grad is not None:
            log_string += ' num zeros: {:.1f} |'.format(num_zeros_in_grad)
mohammad's avatar
mohammad committed
594
595
        if params_norm is not None:
            log_string += ' params norm: {:.3f} |'.format(params_norm)
mohammad's avatar
mohammad committed
596
597
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
598
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
599
600
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
601
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
602
        total_loss_dict[nan_iters_key] = 0
603
        print_rank_last(log_string)
604
605
606
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
607
608
609
610
611
612
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


613
614
615
616
617
def save_checkpoint_and_time(iteration, model, optimizer, lr_scheduler):
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
    torch.distributed.barrier()
618
    timers('save-checkpoint').start()
619
620
    save_checkpoint(iteration, model, optimizer, lr_scheduler)
    torch.distributed.barrier()
621
622
    timers('save-checkpoint').stop()
    timers.log(['save-checkpoint'])
623
624


625
def train(forward_step_func, model, optimizer, lr_scheduler,
626
          train_data_iterator, valid_data_iterator):
627
    """Train the model function."""
Mohammad's avatar
Mohammad committed
628
629
    args = get_args()
    timers = get_timers()
630

631
632
633
    # Write args to tensorboard
    write_args_to_tensorboard()

634
    # Turn on training mode which enables dropout.
635
636
    for model_module in model:
        model_module.train()
637
638
639
640
641
642
643

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

zihanl's avatar
zihanl committed
644
645
646
    if not args.run_dialog:
        timers('interval-time').start()

647
    print_datetime('before the start of training step')
648
649
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
650
        update_num_microbatches(args.consumed_train_samples)
651
652
653
654
655
656
        loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = \
            train_step(forward_step_func,
                       train_data_iterator,
                       model,
                       optimizer,
                       lr_scheduler)
657
        iteration += 1
658
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
659
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
660
                                       get_num_microbatches()
661
662

        # Logging.
663
        loss_scale = optimizer.get_loss_scale().item()
664
665
666
        params_norm = None
        if args.log_params_norm:
            params_norm = calc_params_l2_norm(model)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
667
668
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
669
                                          iteration, loss_scale,
670
                                          report_memory_flag, skipped_iter,
671
                                          grad_norm, params_norm, num_zeros_in_grad)
672
673

        # Autoresume
674
675
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
676
            check_adlr_autoresume_termination(iteration, model, optimizer,
677
                                              lr_scheduler)
678
679
680
681
682
683

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
684
                                       valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
685
                                       iteration, False)
686

687
688
689
690
691
692
693
694
        # Checkpointing
        saved_checkpoint = False
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
                                     lr_scheduler)
            saved_checkpoint = True

695
696
697
698
699
700
701
702
703
704
705
706
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
                                             lr_scheduler)
707
                print_datetime('exiting program after {} minutes'.format(train_time))
708
709
                sys.exit()

710
        # Exiting based on iterations
711
        if args.exit_interval and iteration % args.exit_interval == 0:
712
713
714
            if not saved_checkpoint:
                save_checkpoint_and_time(iteration, model, optimizer,
                                         lr_scheduler)
715
            torch.distributed.barrier()
716
            print_datetime('exiting program at iteration {}'.format(iteration))
Mohammad's avatar
Mohammad committed
717
            sys.exit()
718

719

mohammad's avatar
mohammad committed
720
    return iteration
721
722


Mohammad's avatar
Mohammad committed
723
def evaluate(forward_step_func, data_iterator, model, verbose=False):
724
    """Evaluation."""
Mohammad's avatar
Mohammad committed
725
    args = get_args()
726
727

    # Turn on evaluation mode which disables dropout.
728
729
    for model_module in model:
        model_module.eval()
730
731
732
733
734
735
736
737
738
739

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
740

741
742
743
            if mpu.get_pipeline_model_parallel_world_size() > 1:
                if args.virtual_pipeline_model_parallel_size is not None:
                    forward_backward_func = forward_backward_pipelining_with_interleaving
744
                else:
745
                    forward_backward_func = forward_backward_pipelining_without_interleaving
746
747
748
749
750
751
752
753
754
            else:
                forward_backward_func = forward_backward_no_pipelining
            loss_dicts = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True)

            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                # Reduce across processes.
                for loss_dict in loss_dicts:
755
                    for key in loss_dict:
756
757
                        total_loss_dict[key] = total_loss_dict.get(
                            key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
758

759
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
760
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
761
                                           * get_num_microbatches()
762
    # Move model back to the train mode.
763
764
    for model_module in model:
        model_module.train()
765
766

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
767
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
768
769
770
771
772

    return total_loss_dict

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
Mohammad's avatar
Mohammad committed
773
                               iteration, verbose=False):
774
    """Helper function to evaluate and dump results on screen."""
775
    args = get_args()
Mohammad's avatar
Mohammad committed
776
777
778
    writer = get_tensorboard_writer()

    total_loss_dict = evaluate(forward_step_func, data_iterator, model, verbose)
779
780
781
782
783
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
784
        if writer and is_last_rank():
mohammad's avatar
mohammad committed
785
            writer.add_scalar('{} validation'.format(key),
786
787
                              total_loss_dict[key].item(),
                              iteration)
mohammad's avatar
mohammad committed
788
            writer.add_scalar('{} validation vs samples'.format(key),
789
790
                              total_loss_dict[key].item(),
                              args.consumed_train_samples)
791
            if args.log_validation_ppl_to_tensorboard:
mohammad's avatar
mohammad committed
792
                writer.add_scalar('{} validation ppl'.format(key), ppl,
793
                                  iteration)
mohammad's avatar
mohammad committed
794
                writer.add_scalar('{} validation ppl vs samples'.format(key),
795
                                  ppl, args.consumed_train_samples)
796
797

    length = len(string) + 1
798
799
800
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
801
802


Vijay Korthikanti's avatar
Vijay Korthikanti committed
803
def cyclic_iter(iter):
804
    while True:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
805
        for x in iter:
806
807
            yield x

808
809
810
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
811
    args = get_args()
812

813
814
815
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
816
817
818

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
819
820
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
821
        args.consumed_train_samples = args.iteration * args.global_batch_size
822
    if args.iteration > 0 and args.consumed_valid_samples == 0:
823
824
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
825
        args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
mohammad's avatar
mohammad committed
826
            args.eval_iters * args.global_batch_size
827

828
829
830
831
832
    if args.run_dialog:
        args.consumed_train_samples = 0
        args.consumed_valid_samples = 0
        args.iteration = 0

833
    # Data loader only on rank 0 of each model parallel group.
834
    if mpu.get_tensor_model_parallel_rank() == 0:
835
836
837
838
839
840
841
842
843
844
845
846
847
        
        if args.run_dialog:
            # Build the datasets.
            train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider()

            print_rank_0(' > datasets target sizes:')
            train_size = len(train_ds)
            valid_size = len(valid_ds)
            test_size = len(test_ds)
            print_rank_0('    train:      {}'.format(train_size))
            print_rank_0('    validation: {}'.format(valid_size))
            print_rank_0('    test:       {}'.format(test_size))

zihanl's avatar
zihanl committed
848
849
850
851
            batch_size = args.micro_batch_size * args.data_parallel_size
            args.train_iters = train_size // batch_size + 1
            args.eval_iters = valid_size // batch_size + 1
            args.test_iters = test_size // batch_size + 1
852

853
        else:
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
            # Number of train/valid/test samples.
            if args.train_samples:
                train_samples = args.train_samples
            else:
                train_samples = args.train_iters * args.global_batch_size
            eval_iters = (args.train_iters // args.eval_interval + 1) * \
                        args.eval_iters
            test_iters = args.eval_iters
            train_val_test_num_samples = [train_samples,
                                        eval_iters * args.global_batch_size,
                                        test_iters * args.global_batch_size]
            print_rank_0(' > datasets target sizes (minimum size):')
            print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
            print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
            print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

            # Build the datasets.
            train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
                train_val_test_num_samples)
873
874

        # Build dataloders.
875
876
877
878
879
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
880
881
882
883
884
885
886
887
888
889
890
891
892

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
893
894
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
895
896
897
898
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

Vijay Korthikanti's avatar
Vijay Korthikanti committed
899

900
    # Build iterators.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
901
902
903
    dl_type = args.dataloader_type
    assert dl_type in ['single', 'cyclic']

904
    if train_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
905
906
        train_data_iterator = iter(train_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(train_dataloader))
907
908
909
    else:
        train_data_iterator = None

910
    if valid_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
911
912
        valid_data_iterator = iter(valid_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(valid_dataloader))
913
    else:
914
        valid_data_iterator = None
915

916
    if test_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
917
918
        test_data_iterator = iter(test_dataloader) if dl_type == 'single' \
                             else iter(cyclic_iter(test_dataloader))
919
920
921
    else:
        test_data_iterator = None

922
    return train_data_iterator, valid_data_iterator, test_data_iterator