training.py 39.7 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2

Mohammad's avatar
Mohammad committed
3
"""Pretrain utilities."""
4
5
6

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
7
import sys
8
9
10
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()
11
12
13
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

Neel Kant's avatar
Neel Kant committed
14
from megatron import get_args
15
from megatron import get_signal_handler
Mohammad's avatar
Mohammad committed
16
17
from megatron import get_timers
from megatron import get_tensorboard_writer
18
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
19
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
20
from megatron import is_last_rank
mohammad's avatar
mohammad committed
21
from megatron import update_num_microbatches
22
from megatron.core import mpu, tensor_parallel
Neel Kant's avatar
Neel Kant committed
23
from megatron import print_rank_0
24
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
25
26
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
27
from megatron.model import Float16Module
28
from megatron.model import ModelType
29
from megatron.model import GPTModel
mohammad's avatar
mohammad committed
30
from megatron.optimizer import get_megatron_optimizer
Mohammad's avatar
Mohammad committed
31
from megatron.initialize import initialize_megatron
32
from megatron.initialize import write_args_to_tensorboard
33
from megatron.initialize import set_jit_fusion_options
34
from megatron.optimizer_param_scheduler import OptimizerParamScheduler
35
36
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.utils import check_adlr_autoresume_termination
37
from megatron.utils import unwrap_model
Vijay Korthikanti's avatar
Vijay Korthikanti committed
38
from megatron.data.data_samplers import build_pretraining_data_loader
mohammad's avatar
mohammad committed
39
from megatron.utils import calc_params_l2_norm
40
from megatron.schedules import get_forward_backward_func
41
from megatron.utils import report_memory
42
from megatron.model.vision.knn_monitor import compute_feature_bank
43

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
44

45
46
47
48
49
50
51
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


52
def pretrain(train_valid_test_dataset_provider,
53
             model_provider,
54
             model_type,
55
             forward_step_func,
56
             process_non_loss_data_func=None,
57
             extra_args_provider=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
58
             args_defaults={}):
59
60
61
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
62
63
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
64
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
65
        4) train the modle using the forward_step_func.
66
67

    Arguments:
68
69
70
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
71
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
72
        model_type: an enum that specifies the type of model being trained.
Mohammad's avatar
Mohammad committed
73
74
75
76
77
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
78
79
80
81
        process_non_loss_data_func: a function to post process outputs of the
            network. It can be used for dumping output tensors (e.g images) to
            tensorboard. It takes `collected data`(list of tensors),
            `current iteration index` and `tensorboard writer` as arguments.
Mohammad's avatar
Mohammad committed
82
83
84
85
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
86
87
    """

88
    # Initalize and get arguments, timers, and Tensorboard writer.
89
90
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
91
92
    # Set pytorch JIT layer fusion options and warmup JIT functions.
    set_jit_fusion_options()
93

94
95
96
97
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
98
    start_time_tensor = torch.cuda.DoubleTensor([_TRAIN_START_TIME])
99
100
101
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
102
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
103
104
105
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

106
    args = get_args()
Mohammad's avatar
Mohammad committed
107
    timers = get_timers()
108
109

    # Model, optimizer, and learning rate.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
110
111
112
    timers('model-and-optimizer-setup', log_level=0).start(barrier=True)
    model, optimizer, opt_param_scheduler = setup_model_and_optimizer(
        model_provider, model_type)
113
    timers('model-and-optimizer-setup').stop()
114
115
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
116
117

    # Data stuff.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
118
119
    timers('train/valid/test-data-iterators-setup', log_level=0).start(
        barrier=True)
120
    if args.virtual_pipeline_model_parallel_size is not None:
121
        all_data_iterators = [
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
122
123
            build_train_valid_test_data_iterators(
                train_valid_test_dataset_provider)
124
125
            for _ in range(len(model))
        ]
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
126
127
128
129
130
131
        train_data_iterator = [data_iterators[0]
                               for data_iterators in all_data_iterators]
        valid_data_iterator = [data_iterators[1]
                               for data_iterators in all_data_iterators]
        test_data_iterator = [data_iterators[2]
                              for data_iterators in all_data_iterators]
132
133
134
135
136
    else:
        train_data_iterator, valid_data_iterator, test_data_iterator \
            = build_train_valid_test_data_iterators(
                train_valid_test_dataset_provider)
    timers('train/valid/test-data-iterators-setup').stop()
mshoeybi's avatar
mshoeybi committed
137
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
138
139

    # Print setup timing.
140
    print_rank_0('done with setup ...')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
141
142
    timers.log(['model-and-optimizer-setup',
                'train/valid/test-data-iterators-setup'], barrier=True)
Mohammad's avatar
Mohammad committed
143
    print_rank_0('training ...')
144
145

    iteration = 0
146
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
147
        iteration = train(forward_step_func,
148
                          model, optimizer, opt_param_scheduler,
149
150
                          train_data_iterator, valid_data_iterator,
                          process_non_loss_data_func)
151
    print_datetime('after training is done')
Mohammad's avatar
Mohammad committed
152

153
154
155
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
156
                                   valid_data_iterator, model,
157
158
                                   iteration, process_non_loss_data_func,
                                   False)
159
160

    if args.save and iteration != 0:
161
        save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
162
163
164
165
166
167

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
168
169
                                   0, process_non_loss_data_func,
                                   True)
170

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
187
188
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
189
190
            iterations += 1
        # Reset
191
        update_num_microbatches(0, consistency_check=False)
192
193
194
195
196
197
198
199
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

200

201
def get_model(model_provider_func, model_type=ModelType.encoder_or_decoder, wrap_with_ddp=True):
202
    """Build the model."""
Mohammad's avatar
Mohammad committed
203
    args = get_args()
204
    args.model_type = model_type
205

206
    # Build model.
207
208
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
       args.virtual_pipeline_model_parallel_size is not None:
209
210
        assert model_type != ModelType.encoder_and_decoder, \
            "Interleaved schedule not supported for model with both encoder and decoder"
211
212
213
        model = []
        for i in range(args.virtual_pipeline_model_parallel_size):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
214
215
216
            # Set pre_process and post_process only after virtual rank is set.
            pre_process = mpu.is_pipeline_first_stage()
            post_process = mpu.is_pipeline_last_stage()
217
            this_model = model_provider_func(
218
219
220
                pre_process=pre_process,
                post_process=post_process
            )
221
            this_model.model_type = model_type
222
            model.append(this_model)
223
    else:
224
225
        pre_process = mpu.is_pipeline_first_stage()
        post_process = mpu.is_pipeline_last_stage()
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
        add_encoder = True
        add_decoder = True
        if model_type == ModelType.encoder_and_decoder:
            if mpu.get_pipeline_model_parallel_world_size() > 1:
                assert args.pipeline_model_parallel_split_rank is not None, \
                    "Split rank needs to be specified for model with both encoder and decoder"
                rank = mpu.get_pipeline_model_parallel_rank()
                split_rank = args.pipeline_model_parallel_split_rank
                world_size = mpu.get_pipeline_model_parallel_world_size()
                pre_process = rank == 0 or rank == split_rank
                post_process = (rank == (split_rank - 1)) or (
                        rank == (world_size - 1))
                add_encoder = mpu.is_pipeline_stage_before_split()
                add_decoder = mpu.is_pipeline_stage_after_split()
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process,
                add_encoder=add_encoder,
                add_decoder=add_decoder)
        else:
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process
            )
        model.model_type = model_type
251

252
253
    if not isinstance(model, list):
        model = [model]
254

255
256
257
258
259
260
    # Disallow training and inference with Transformer Engine
    # for non-GPT models
    args.allow_transformer_engine = all([type(m) == GPTModel for m in model])
    assert args.allow_transformer_engine or args.transformer_impl == 'local', \
        'Transformer Engine is only approved for GPT models'

261
    # Set tensor model parallel attributes if not set.
mohammad's avatar
mohammad committed
262
263
264
    # Only parameters that are already tensor model parallel have these
    # attributes set for them. We should make sure the default attributes
    # are set for all params so the optimizer can use them.
265
266
    for model_module in model:
        for param in model_module.parameters():
267
            tensor_parallel.set_defaults_if_not_set_tensor_model_parallel_attributes(param)
268

269
270
    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
271
        print(' > number of parameters on (tensor, pipeline) '
272
              'model parallel rank ({}, {}): {}'.format(
273
274
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
275
276
            sum([sum([p.nelement() for p in model_module.parameters()])
                 for model_module in model])), flush=True)
277
278

    # GPU allocation.
279
280
    for model_module in model:
        model_module.cuda(torch.cuda.current_device())
281
282

    # Fp16 conversion.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
283
284
    if args.fp16 or args.bf16:
        model = [Float16Module(model_module, args) for model_module in model]
285

286
287
288
289
290
291
    if wrap_with_ddp:
        if args.DDP_impl == 'torch':
            i = torch.cuda.current_device()
            model = [torchDDP(model_module, device_ids=[i], output_device=i,
                              process_group=mpu.get_data_parallel_group())
                     for model_module in model]
292

293
294
295
296
297
        elif args.DDP_impl == 'local':
            model = [LocalDDP(model_module,
                              args.accumulate_allreduce_grads_in_fp32,
                              args.use_contiguous_buffers_in_local_ddp)
                     for model_module in model]
298
299
300
301
            # broad cast params from data parallel src rank to other data parallel ranks
            if args.data_parallel_random_init:
                for model_module in model:
                    model_module.broadcast_params()
302
303
304
        else:
            raise NotImplementedError('Unknown DDP implementation specified: '
                                      '{}. Exiting.'.format(args.DDP_impl))
305

306
    return model
307
308


309
def get_optimizer_param_scheduler(optimizer):
310
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
311
    args = get_args()
312

313
314
315
316
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
Vijay Korthikanti's avatar
Vijay Korthikanti committed
317
318
        lr_decay_steps = args.lr_decay_iters * args.global_batch_size
        wd_incr_steps = args.train_iters * args.global_batch_size
319
        if args.lr_warmup_fraction is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
320
            lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
321
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
322
            lr_warmup_steps = args.lr_warmup_iters * args.global_batch_size
323
324
325
326
327
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
328
        update_train_iters(args)
329
330
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
Vijay Korthikanti's avatar
Vijay Korthikanti committed
331
332
        lr_decay_steps = args.lr_decay_samples
        wd_incr_steps = args.train_samples
333
        if args.lr_warmup_fraction is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
334
            lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
335
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
336
            lr_warmup_steps = args.lr_warmup_samples
337
    else:
338
339
340
        raise Exception(
            'either train-iters or train-samples should be provided.')

341
    opt_param_scheduler = OptimizerParamScheduler(
342
        optimizer,
343
        max_lr=args.lr,
344
        min_lr=args.min_lr,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
345
346
347
        lr_warmup_steps=lr_warmup_steps,
        lr_decay_steps=lr_decay_steps,
        lr_decay_style=args.lr_decay_style,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
348
349
        start_wd=args.start_weight_decay,
        end_wd=args.end_weight_decay,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
350
        wd_incr_steps=wd_incr_steps,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
351
        wd_incr_style=args.weight_decay_incr_style,
352
353
        use_checkpoint_opt_param_scheduler=args.use_checkpoint_opt_param_scheduler,
        override_opt_param_scheduler=args.override_opt_param_scheduler)
354

355
    return opt_param_scheduler
356
357


358
359
360
361
362
def setup_model_and_optimizer(model_provider_func,
                              model_type,
                              no_wd_decay_cond=None,
                              scale_lr_cond=None,
                              lr_mult=1.0):
363
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
364
    args = get_args()
365

366
    model = get_model(model_provider_func, model_type)
367
    unwrapped_model = unwrap_model(model,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
368
                                   (torchDDP, LocalDDP, Float16Module))
Lawrence McAfee's avatar
Lawrence McAfee committed
369

370
    optimizer = get_megatron_optimizer(model, no_wd_decay_cond,
371
                                       scale_lr_cond, lr_mult)
372
    opt_param_scheduler = get_optimizer_param_scheduler(optimizer)
373
374

    if args.load is not None:
375
        timers = get_timers()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
376
        timers('load-checkpoint', log_level=0).start(barrier=True)
377
        args.iteration = load_checkpoint(model, optimizer, opt_param_scheduler)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
378
        timers('load-checkpoint').stop(barrier=True)
379
        timers.log(['load-checkpoint'])
380
381
382
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
383
    # We only support local DDP with multiple micro-batches.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
384
    if len(model) > 1 or mpu.get_pipeline_model_parallel_world_size() > 1:
mohammad's avatar
mohammad committed
385
386
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
387
    # get model without FP16 and/or TorchDDP wrappers
Mostofa Patwary's avatar
Mostofa Patwary committed
388
389
    if args.iteration == 0 and len(unwrapped_model) == 1 \
        and hasattr(unwrapped_model[0], 'init_state_dict_from_bert'):
Mostofa Patwary's avatar
Mostofa Patwary committed
390
        print_rank_0("Initializing ICT from pretrained BERT model")
Mostofa Patwary's avatar
Mostofa Patwary committed
391
        unwrapped_model[0].init_state_dict_from_bert()
Mostofa Patwary's avatar
Mostofa Patwary committed
392
393
        if args.fp16:
            optimizer.reload_model_params()
Neel Kant's avatar
Neel Kant committed
394

395
    return model, optimizer, opt_param_scheduler
396
397


398
def train_step(forward_step_func, data_iterator,
Lawrence McAfee's avatar
Lawrence McAfee committed
399
               model, optimizer, opt_param_scheduler):
400
401
402
403
404
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
405
    if args.DDP_impl == 'local' and args.use_contiguous_buffers_in_local_ddp:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
406
407
        for partition in model:
            partition.zero_grad_buffer()
408
    optimizer.zero_grad()
409

410
    # Forward pass.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
411
412
    timers('forward-backward', log_level=1).start(
        barrier=args.barrier_with_L1_time)
413
    forward_backward_func = get_forward_backward_func()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
414
    fwd_bwd_timers = timers if args.timing_log_level > 1 else None
415
416
    losses_reduced = forward_backward_func(
        forward_step_func, data_iterator, model,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
417
418
        optimizer, fwd_bwd_timers, forward_only=False)
    timers('forward-backward').stop()
419

420
    # Empty unused memory.
Lawrence McAfee's avatar
Lawrence McAfee committed
421
    if args.empty_unused_memory_level >= 1:
422
423
        torch.cuda.empty_cache()

424
    # Reduce gradients.
425
    optimizer.reduce_model_grads(args, timers)
426

Lawrence McAfee's avatar
Lawrence McAfee committed
427
    # Vision gradients.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
428
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
429
430
431
432
        unwrapped_model = unwrap_model(model[0],
                                       (torchDDP, LocalDDP, Float16Module))
        unwrapped_model.cancel_gradients_last_layer(args.curr_iteration)

433
    # Update parameters.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
434
    timers('optimizer', log_level=1).start(barrier=args.barrier_with_L1_time)
Lawrence McAfee's avatar
Lawrence McAfee committed
435
    update_successful, grad_norm, num_zeros_in_grad = optimizer.step(args, timers)
436
437
    timers('optimizer').stop()

438
    # Gather params.
439
    if update_successful:
Lawrence McAfee's avatar
Lawrence McAfee committed
440
        optimizer.gather_model_params(args, timers)
441

Lawrence McAfee's avatar
Lawrence McAfee committed
442
    # Vision momentum.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
443
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
444
445
446
447
        unwrapped_model = unwrap_model(model[0],
                                       (torchDDP, LocalDDP, Float16Module))
        unwrapped_model.update_momentum(args.curr_iteration)

448
    # Update learning rate.
449
    if update_successful:
450
451
452
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
453
        opt_param_scheduler.step(increment=increment)
mohammad's avatar
mohammad committed
454
        skipped_iter = 0
455
456
457
    else:
        skipped_iter = 1

458
    # Empty unused memory.
Lawrence McAfee's avatar
Lawrence McAfee committed
459
    if args.empty_unused_memory_level >= 2:
460
461
        torch.cuda.empty_cache()

462
    if mpu.is_pipeline_last_stage(ignore_virtual=True):
463
464
465
466
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
467
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
468
469
        return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
    return {}, skipped_iter, grad_norm, num_zeros_in_grad
470
471


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
472
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
473
                 loss_scale, report_memory_flag, skipped_iter,
474
                 grad_norm, params_norm, num_zeros_in_grad):
Mohammad's avatar
Mohammad committed
475
476
477
478
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
479

mohammad's avatar
mohammad committed
480
481
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
482
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
483
484
485
486
487
488
489
490
491
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
492
493
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
494
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
495
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
496
    for key in loss_dict:
mohammad's avatar
mohammad committed
497
        if not skipped_iter:
498
499
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
500
501
502
503
504
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
505
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
506
507
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
508
509

    # Logging.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
    timers_to_log = [
        'forward-backward',
        'forward-compute',
        'backward-compute',
        'batch-generator',
        'forward-recv',
        'forward-send',
        'backward-recv',
        'backward-send',
        'forward-send-forward-recv',
        'forward-send-backward-recv',
        'backward-send-forward-recv',
        'backward-send-backward-recv',
        'forward-backward-send-forward-backward-recv',
        'layernorm-grads-all-reduce',
        'embedding-grads-all-reduce',
        'grads-all-reduce',
        'grads-reduce-scatter',
        'params-all-gather',
        'optimizer-copy-to-main-grad',
        'optimizer-unscale-and-check-inf',
        'optimizer-clip-main-grad',
        'optimizer-count-zeros',
        'optimizer-inner-step',
        'optimizer-copy-main-to-model-params',
        'optimizer']
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
536

mohammad's avatar
mohammad committed
537
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
538
539
540
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
541
542
543
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
544
    # Tensorboard values.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
545
546
547
548
549
550
    # Timer requires all the ranks to call.
    if args.log_timers_to_tensorboard and \
       (iteration % args.tensorboard_log_interval == 0):
        timers.write(timers_to_log, writer, iteration,
                     normalizer=total_iterations)
    if writer and (iteration % args.tensorboard_log_interval == 0):
551
552
553
554
555
556
557
558
        if args.log_learning_rate_to_tensorboard:
            writer.add_scalar('learning-rate', learning_rate, iteration)
            writer.add_scalar('learning-rate vs samples', learning_rate,
                              args.consumed_train_samples)
        if args.log_batch_size_to_tensorboard:
            writer.add_scalar('batch-size', batch_size, iteration)
            writer.add_scalar('batch-size vs samples', batch_size,
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
559
        for key in loss_dict:
mohammad's avatar
mohammad committed
560
561
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
562
                              args.consumed_train_samples)
563
564
565
566
        if args.log_loss_scale_to_tensorboard:
            writer.add_scalar('loss-scale', loss_scale, iteration)
            writer.add_scalar('loss-scale vs samples', loss_scale,
                              args.consumed_train_samples)
567
568
569
570
        if args.log_world_size_to_tensorboard:
            writer.add_scalar('world-size', args.world_size, iteration)
            writer.add_scalar('world-size vs samples', args.world_size,
                              args.consumed_train_samples)
571
572
573
574
        if grad_norm is not None:
            writer.add_scalar('grad-norm', grad_norm, iteration)
            writer.add_scalar('grad-norm vs samples', grad_norm,
                              args.consumed_train_samples)
575
576
577
        if num_zeros_in_grad is not None:
            writer.add_scalar('num-zeros', num_zeros_in_grad, iteration)
            writer.add_scalar('num-zeros vs samples', num_zeros_in_grad,
Rewon Child's avatar
Rewon Child committed
578
                              args.consumed_train_samples)
mohammad's avatar
mohammad committed
579
580
581
582
        if params_norm is not None:
            writer.add_scalar('params-norm', params_norm, iteration)
            writer.add_scalar('params-norm vs samples', params_norm,
                              args.consumed_train_samples)
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
        if args.log_memory_to_tensorboard:
            mem_stats = torch.cuda.memory_stats()
            writer.add_scalar(
                "mem-reserved-bytes",
                mem_stats["reserved_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-bytes",
                mem_stats["allocated_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-count",
                mem_stats["allocation.all.current"],
                iteration,
            )
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
600
601

    if iteration % args.log_interval == 0:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
602
        elapsed_time = timers('interval-time').elapsed(barrier=True)
mohammad's avatar
mohammad committed
603
        elapsed_time_per_iteration = elapsed_time / total_iterations
mshoeybi's avatar
mshoeybi committed
604
        if writer:
605
606
607
            if args.log_timers_to_tensorboard:
                writer.add_scalar('iteration-time',
                                  elapsed_time_per_iteration, iteration)
608
609
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
610
        log_string += ' consumed samples: {:12d} |'.format(
611
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
612
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
613
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
614
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
615
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
616
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
617
618
619
620
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
621
622
623
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
624
        log_string += ' loss scale: {:.1f} |'.format(loss_scale)
625
626
        if grad_norm is not None:
            log_string += ' grad norm: {:.3f} |'.format(grad_norm)
627
628
        if num_zeros_in_grad is not None:
            log_string += ' num zeros: {:.1f} |'.format(num_zeros_in_grad)
mohammad's avatar
mohammad committed
629
630
        if params_norm is not None:
            log_string += ' params norm: {:.3f} |'.format(params_norm)
mohammad's avatar
mohammad committed
631
632
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
633
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
634
635
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
636
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
637
        total_loss_dict[nan_iters_key] = 0
638
        print_rank_last(log_string)
639
640
641
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
642
643
644
645
646
647
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


648
def save_checkpoint_and_time(iteration, model, optimizer, opt_param_scheduler):
649
650
651
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
652
    timers('save-checkpoint', log_level=0).start(barrier=True)
653
    save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
654
    timers('save-checkpoint').stop(barrier=True)
655
    timers.log(['save-checkpoint'])
656
657


658
def train(forward_step_func, model, optimizer, opt_param_scheduler,
659
660
          train_data_iterator, valid_data_iterator,
          process_non_loss_data_func):
661
    """Train the model function."""
Mohammad's avatar
Mohammad committed
662
663
    args = get_args()
    timers = get_timers()
664

665
666
667
    # Write args to tensorboard
    write_args_to_tensorboard()

668
    # Turn on training mode which enables dropout.
669
670
    for model_module in model:
        model_module.train()
671
672
673
674
675
676
677

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
678
    timers('interval-time', log_level=0).start(barrier=True)
679
    print_datetime('before the start of training step')
680
681
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
682
        update_num_microbatches(args.consumed_train_samples)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
683
        args.curr_iteration = iteration
684
685
686
687
688
        loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = \
            train_step(forward_step_func,
                       train_data_iterator,
                       model,
                       optimizer,
Lawrence McAfee's avatar
Lawrence McAfee committed
689
                       opt_param_scheduler)
690
        iteration += 1
691
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
692
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
693
                                       get_num_microbatches()
694
695

        # Logging.
696
        loss_scale = optimizer.get_loss_scale().item()
697
698
699
        params_norm = None
        if args.log_params_norm:
            params_norm = calc_params_l2_norm(model)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
700
701
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
702
                                          iteration, loss_scale,
703
                                          report_memory_flag, skipped_iter,
704
                                          grad_norm, params_norm, num_zeros_in_grad)
705
706

        # Autoresume
707
708
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
709
            check_adlr_autoresume_termination(iteration, model, optimizer,
710
                                              opt_param_scheduler)
711
712
713
714
715
716

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
717
                                       valid_data_iterator, model,
718
719
                                       iteration, process_non_loss_data_func,
                                       False)
720

721
722
        # Checkpointing
        saved_checkpoint = False
723
724
725
726
        if args.exit_signal_handler:
            signal_handler = get_signal_handler()
            if any(signal_handler.signals_received()):
                save_checkpoint_and_time(iteration, model, optimizer,
727
                                         opt_param_scheduler)
728
729
730
                print_datetime('exiting program after receiving SIGTERM.')
                sys.exit()

731
732
733
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
734
                                     opt_param_scheduler)
735
736
            saved_checkpoint = True

737
738
739
740
741
742
743
744
745
746
747
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
748
                                             opt_param_scheduler)
749
                print_datetime('exiting program after {} minutes'.format(train_time))
750
751
                sys.exit()

752
        # Exiting based on iterations
753
        if args.exit_interval and iteration % args.exit_interval == 0:
754
755
            if not saved_checkpoint:
                save_checkpoint_and_time(iteration, model, optimizer,
756
                                         opt_param_scheduler)
757
            torch.distributed.barrier()
758
            print_datetime('exiting program at iteration {}'.format(iteration))
Mohammad's avatar
Mohammad committed
759
            sys.exit()
760

761

mohammad's avatar
mohammad committed
762
    return iteration
763
764


765
766
767
768
769
def evaluate(forward_step_func,
             data_iterator,
             model,
             process_non_loss_data_func,
             verbose=False):
770
    """Evaluation."""
Mohammad's avatar
Mohammad committed
771
    args = get_args()
772

Vijay Korthikanti's avatar
Vijay Korthikanti committed
773
774
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
        compute_feature_bank(model)
775

776
    # Turn on evaluation mode which disables dropout.
777
778
    for model_module in model:
        model_module.eval()
779
780
781
782
783
784
785
786
787
788

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
789

790
            forward_backward_func = get_forward_backward_func()
791
792
793
794
            loss_dicts = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True)

795
            # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
796
            if args.empty_unused_memory_level >= 1:
797
798
                torch.cuda.empty_cache()

799
800
801
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                # Reduce across processes.
                for loss_dict in loss_dicts:
802
                    for key in loss_dict:
803
804
                        total_loss_dict[key] = total_loss_dict.get(
                            key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
805

806
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
807
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
808
                                           * get_num_microbatches()
809
810
811
812
813
814
        collected_non_loss_data = None
        if process_non_loss_data_func is not None and is_last_rank():
            collected_non_loss_data = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True, collect_non_loss_data=True)

815
    # Move model back to the train mode.
816
817
    for model_module in model:
        model_module.train()
818
819

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
820
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
821

822
    return total_loss_dict, collected_non_loss_data
823
824
825

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
826
827
                               iteration, process_non_loss_data_func,
                               verbose=False):
828
    """Helper function to evaluate and dump results on screen."""
829
    args = get_args()
Mohammad's avatar
Mohammad committed
830
831
    writer = get_tensorboard_writer()

832
833
834
    total_loss_dict, collected_non_loss_data = evaluate(
        forward_step_func, data_iterator, model,
        process_non_loss_data_func, verbose)
835
836
837
838
839
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
mshoeybi's avatar
mshoeybi committed
840
        if writer:
mohammad's avatar
mohammad committed
841
            writer.add_scalar('{} validation'.format(key),
842
843
                              total_loss_dict[key].item(),
                              iteration)
mohammad's avatar
mohammad committed
844
            writer.add_scalar('{} validation vs samples'.format(key),
845
846
                              total_loss_dict[key].item(),
                              args.consumed_train_samples)
847
            if args.log_validation_ppl_to_tensorboard:
mohammad's avatar
mohammad committed
848
                writer.add_scalar('{} validation ppl'.format(key), ppl,
849
                                  iteration)
mohammad's avatar
mohammad committed
850
                writer.add_scalar('{} validation ppl vs samples'.format(key),
851
                                  ppl, args.consumed_train_samples)
852

853
854
855
    if process_non_loss_data_func is not None and writer and is_last_rank():
        process_non_loss_data_func(collected_non_loss_data, iteration, writer)

856
    length = len(string) + 1
857
858
859
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
860
861


Vijay Korthikanti's avatar
Vijay Korthikanti committed
862
def cyclic_iter(iter):
863
    while True:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
864
        for x in iter:
865
866
            yield x

867
868
869
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
870
    args = get_args()
871

872
873
874
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
875
876
877

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
878
879
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
880
        args.consumed_train_samples = args.iteration * args.global_batch_size
881
    if args.iteration > 0 and args.consumed_valid_samples == 0:
882
883
884
        if args.train_samples is None:
            args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
                args.eval_iters * args.global_batch_size
885

886
    # Data loader only on rank 0 of each model parallel group.
887
    if mpu.get_tensor_model_parallel_rank() == 0:
888
889

        # Number of train/valid/test samples.
890
891
892
893
894
895
        if args.train_samples:
            train_samples = args.train_samples
        else:
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
                     args.eval_iters
896
        test_iters = args.eval_iters
897
        train_val_test_num_samples = [train_samples,
mohammad's avatar
mohammad committed
898
899
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
900
901
902
903
904
905
906
907
908
909
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
910
911
912
913
914
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
915
916
917
918
919
920
921
922
923
924
925
926
927

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
928
929
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
930
931
932
933
934
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

    # Build iterators.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
935
936
937
    dl_type = args.dataloader_type
    assert dl_type in ['single', 'cyclic']

938
    if train_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
939
940
        train_data_iterator = iter(train_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(train_dataloader))
941
942
943
    else:
        train_data_iterator = None

944
    if valid_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
945
946
        valid_data_iterator = iter(valid_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(valid_dataloader))
947
    else:
948
        valid_data_iterator = None
949

950
    if test_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
951
952
        test_data_iterator = iter(test_dataloader) if dl_type == 'single' \
                             else iter(cyclic_iter(test_dataloader))
953
954
955
    else:
        test_data_iterator = None

956
    return train_data_iterator, valid_data_iterator, test_data_iterator