"docs/vscode:/vscode.git/clone" did not exist on "39d24d9ddb60ec6f43ac9255753a9ea315bd0349"
scheduling_ddpm.py 25.4 KB
Newer Older
1
# Copyright 2024 UC Berkeley Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
improve  
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

anton-l's avatar
anton-l committed
17
import math
18
from dataclasses import dataclass
19
from typing import List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
20

Patrick von Platen's avatar
Patrick von Platen committed
21
import numpy as np
22
import torch
Patrick von Platen's avatar
improve  
Patrick von Platen committed
23

24
from ..configuration_utils import ConfigMixin, register_to_config
Dhruv Nair's avatar
Dhruv Nair committed
25
26
from ..utils import BaseOutput
from ..utils.torch_utils import randn_tensor
Kashif Rasul's avatar
Kashif Rasul committed
27
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
28
29
30
31
32


@dataclass
class DDPMSchedulerOutput(BaseOutput):
    """
33
    Output class for the scheduler's `step` function output.
34
35

    Args:
36
        prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
37
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
38
            denoising loop.
39
        pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
40
            The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
41
42
43
            `pred_original_sample` can be used to preview progress or for guidance.
    """

44
45
    prev_sample: torch.Tensor
    pred_original_sample: Optional[torch.Tensor] = None
46
47


YiYi Xu's avatar
YiYi Xu committed
48
49
50
51
52
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
53
    """
Patrick von Platen's avatar
Patrick von Platen committed
54
55
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
56

57
58
59
60
61
62
63
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
64
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
65
66
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
67
68
69

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
70
    """
YiYi Xu's avatar
YiYi Xu committed
71
    if alpha_transform_type == "cosine":
72

YiYi Xu's avatar
YiYi Xu committed
73
74
75
76
77
78
79
80
81
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
82
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
83
84
85
86
87

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
88
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
89
    return torch.tensor(betas, dtype=torch.float32)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
90
91


92
93
94
# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
def rescale_zero_terminal_snr(betas):
    """
Quentin Gallouédec's avatar
Quentin Gallouédec committed
95
    Rescales betas to have zero terminal SNR Based on https://huggingface.co/papers/2305.08891 (Algorithm 1)
96
97
98


    Args:
99
        betas (`torch.Tensor`):
100
101
102
            the betas that the scheduler is being initialized with.

    Returns:
103
        `torch.Tensor`: rescaled betas with zero terminal SNR
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    """
    # Convert betas to alphas_bar_sqrt
    alphas = 1.0 - betas
    alphas_cumprod = torch.cumprod(alphas, dim=0)
    alphas_bar_sqrt = alphas_cumprod.sqrt()

    # Store old values.
    alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
    alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()

    # Shift so the last timestep is zero.
    alphas_bar_sqrt -= alphas_bar_sqrt_T

    # Scale so the first timestep is back to the old value.
    alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)

    # Convert alphas_bar_sqrt to betas
    alphas_bar = alphas_bar_sqrt**2  # Revert sqrt
    alphas = alphas_bar[1:] / alphas_bar[:-1]  # Revert cumprod
    alphas = torch.cat([alphas_bar[0:1], alphas])
    betas = 1 - alphas

    return betas


Patrick von Platen's avatar
Patrick von Platen committed
129
class DDPMScheduler(SchedulerMixin, ConfigMixin):
130
    """
131
    `DDPMScheduler` explores the connections between denoising score matching and Langevin dynamics sampling.
132

133
134
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
135
136

    Args:
137
138
139
140
141
142
143
144
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
145
            `linear`, `scaled_linear`, `squaredcos_cap_v2`, or `sigmoid`.
146
147
        trained_betas (`np.ndarray`, *optional*):
            An array of betas to pass directly to the constructor without using `beta_start` and `beta_end`.
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
        variance_type (`str`, defaults to `"fixed_small"`):
            Clip the variance when adding noise to the denoised sample. Choose from `fixed_small`, `fixed_small_log`,
            `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
        clip_sample (`bool`, defaults to `True`):
            Clip the predicted sample for numerical stability.
        clip_sample_range (`float`, defaults to 1.0):
            The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
        sample_max_value (`float`, defaults to 1.0):
            The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
        timestep_spacing (`str`, defaults to `"leading"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
170
            An offset added to the inference steps, as required by some model families.
171
172
173
174
        rescale_betas_zero_snr (`bool`, defaults to `False`):
            Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
            dark samples instead of limiting it to samples with medium brightness. Loosely related to
            [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
175
176
    """

Kashif Rasul's avatar
Kashif Rasul committed
177
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
178
    order = 1
179

180
    @register_to_config
Patrick von Platen's avatar
improve  
Patrick von Platen committed
181
182
    def __init__(
        self,
Partho's avatar
Partho committed
183
184
185
186
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
187
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
Partho's avatar
Partho committed
188
189
        variance_type: str = "fixed_small",
        clip_sample: bool = True,
190
        prediction_type: str = "epsilon",
191
192
193
194
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        clip_sample_range: float = 1.0,
        sample_max_value: float = 1.0,
195
196
        timestep_spacing: str = "leading",
        steps_offset: int = 0,
197
        rescale_betas_zero_snr: bool = False,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
198
    ):
199
        if trained_betas is not None:
200
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
201
        elif beta_schedule == "linear":
202
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
203
204
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
205
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
anton-l's avatar
anton-l committed
206
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
207
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
208
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Nathan Lambert's avatar
Nathan Lambert committed
209
210
211
212
        elif beta_schedule == "sigmoid":
            # GeoDiff sigmoid schedule
            betas = torch.linspace(-6, 6, num_train_timesteps)
            self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
Patrick von Platen's avatar
improve  
Patrick von Platen committed
213
        else:
214
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
Patrick von Platen's avatar
improve  
Patrick von Platen committed
215

216
217
218
219
        # Rescale for zero SNR
        if rescale_betas_zero_snr:
            self.betas = rescale_zero_terminal_snr(self.betas)

Patrick von Platen's avatar
Patrick von Platen committed
220
        self.alphas = 1.0 - self.betas
221
222
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        self.one = torch.tensor(1.0)
Patrick von Platen's avatar
Patrick von Platen committed
223

224
225
226
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

227
        # setable values
Will Berman's avatar
Will Berman committed
228
        self.custom_timesteps = False
229
        self.num_inference_steps = None
230
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy())
Patrick von Platen's avatar
Patrick von Platen committed
231

232
233
        self.variance_type = variance_type

234
    def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
235
236
237
238
239
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
240
            sample (`torch.Tensor`):
241
242
243
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.
244
245

        Returns:
246
            `torch.Tensor`:
247
                A scaled input sample.
248
249
250
        """
        return sample

Will Berman's avatar
Will Berman committed
251
252
253
254
255
256
    def set_timesteps(
        self,
        num_inference_steps: Optional[int] = None,
        device: Union[str, torch.device] = None,
        timesteps: Optional[List[int]] = None,
    ):
257
        """
258
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
259
260

        Args:
261
262
            num_inference_steps (`int`):
                The number of diffusion steps used when generating samples with a pre-trained model. If used,
Will Berman's avatar
Will Berman committed
263
                `timesteps` must be `None`.
264
265
266
267
268
269
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
            timesteps (`List[int]`, *optional*):
                Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
                timestep spacing strategy of equal spacing between timesteps is used. If `timesteps` is passed,
                `num_inference_steps` must be `None`.
Will Berman's avatar
Will Berman committed
270

271
        """
Will Berman's avatar
Will Berman committed
272
273
274
275
276
277
278
279
280
281
        if num_inference_steps is not None and timesteps is not None:
            raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.")

        if timesteps is not None:
            for i in range(1, len(timesteps)):
                if timesteps[i] >= timesteps[i - 1]:
                    raise ValueError("`custom_timesteps` must be in descending order.")

            if timesteps[0] >= self.config.num_train_timesteps:
                raise ValueError(
282
                    f"`timesteps` must start before `self.config.train_timesteps`: {self.config.num_train_timesteps}."
Will Berman's avatar
Will Berman committed
283
284
285
286
287
288
289
290
291
292
293
                )

            timesteps = np.array(timesteps, dtype=np.int64)
            self.custom_timesteps = True
        else:
            if num_inference_steps > self.config.num_train_timesteps:
                raise ValueError(
                    f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
                    f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
                    f" maximal {self.config.num_train_timesteps} timesteps."
                )
294

Will Berman's avatar
Will Berman committed
295
296
            self.num_inference_steps = num_inference_steps
            self.custom_timesteps = False
297

Quentin Gallouédec's avatar
Quentin Gallouédec committed
298
            # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://huggingface.co/papers/2305.08891
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
            if self.config.timestep_spacing == "linspace":
                timesteps = (
                    np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
                    .round()[::-1]
                    .copy()
                    .astype(np.int64)
                )
            elif self.config.timestep_spacing == "leading":
                step_ratio = self.config.num_train_timesteps // self.num_inference_steps
                # creates integer timesteps by multiplying by ratio
                # casting to int to avoid issues when num_inference_step is power of 3
                timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
                timesteps += self.config.steps_offset
            elif self.config.timestep_spacing == "trailing":
                step_ratio = self.config.num_train_timesteps / self.num_inference_steps
                # creates integer timesteps by multiplying by ratio
                # casting to int to avoid issues when num_inference_step is power of 3
                timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
                timesteps -= 1
            else:
                raise ValueError(
                    f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
                )

323
        self.timesteps = torch.from_numpy(timesteps).to(device)
324

325
    def _get_variance(self, t, predicted_variance=None, variance_type=None):
Will Berman's avatar
Will Berman committed
326
327
        prev_t = self.previous_timestep(t)

328
        alpha_prod_t = self.alphas_cumprod[t]
329
330
        alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
        current_beta_t = 1 - alpha_prod_t / alpha_prod_t_prev
Patrick von Platen's avatar
Patrick von Platen committed
331

Quentin Gallouédec's avatar
Quentin Gallouédec committed
332
        # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://huggingface.co/papers/2006.11239)
333
        # and sample from it to get previous sample
Kashif Rasul's avatar
Kashif Rasul committed
334
        # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
335
        variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * current_beta_t
William Berman's avatar
William Berman committed
336
337

        # we always take the log of variance, so clamp it to ensure it's not 0
William Berman's avatar
William Berman committed
338
        variance = torch.clamp(variance, min=1e-20)
Patrick von Platen's avatar
Patrick von Platen committed
339

340
341
342
        if variance_type is None:
            variance_type = self.config.variance_type

343
        # hacks - were probably added for training stability
344
        if variance_type == "fixed_small":
William Berman's avatar
William Berman committed
345
            variance = variance
Quentin Gallouédec's avatar
Quentin Gallouédec committed
346
        # for rl-diffuser https://huggingface.co/papers/2205.09991
347
        elif variance_type == "fixed_small_log":
348
            variance = torch.log(variance)
349
            variance = torch.exp(0.5 * variance)
350
        elif variance_type == "fixed_large":
351
            variance = current_beta_t
352
        elif variance_type == "fixed_large_log":
Patrick von Platen's avatar
Patrick von Platen committed
353
            # Glide max_log
354
            variance = torch.log(current_beta_t)
355
356
357
        elif variance_type == "learned":
            return predicted_variance
        elif variance_type == "learned_range":
358
            min_log = torch.log(variance)
William Berman's avatar
William Berman committed
359
            max_log = torch.log(current_beta_t)
360
361
            frac = (predicted_variance + 1) / 2
            variance = frac * max_log + (1 - frac) * min_log
Patrick von Platen's avatar
Patrick von Platen committed
362
363
364

        return variance

365
    def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
366
367
368
369
370
371
372
        """
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

Quentin Gallouédec's avatar
Quentin Gallouédec committed
373
        https://huggingface.co/papers/2205.11487
374
375
        """
        dtype = sample.dtype
376
        batch_size, channels, *remaining_dims = sample.shape
377
378
379
380
381

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
382
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
383
384
385
386
387
388
389
390
391
392

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

393
        sample = sample.reshape(batch_size, channels, *remaining_dims)
394
395
396
        sample = sample.to(dtype)

        return sample
397

398
399
    def step(
        self,
400
        model_output: torch.Tensor,
401
        timestep: int,
402
        sample: torch.Tensor,
Patrick von Platen's avatar
Patrick von Platen committed
403
        generator=None,
404
        return_dict: bool = True,
405
    ) -> Union[DDPMSchedulerOutput, Tuple]:
406
        """
407
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
408
409
410
        process from the learned model outputs (most often the predicted noise).

        Args:
411
            model_output (`torch.Tensor`):
412
413
414
                The direct output from learned diffusion model.
            timestep (`float`):
                The current discrete timestep in the diffusion chain.
415
            sample (`torch.Tensor`):
416
417
418
419
420
                A current instance of a sample created by the diffusion process.
            generator (`torch.Generator`, *optional*):
                A random number generator.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`.
421
422

        Returns:
423
424
425
            [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
426
427

        """
428
        t = timestep
Will Berman's avatar
Will Berman committed
429
430

        prev_t = self.previous_timestep(t)
431

432
433
434
435
436
        if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
            model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
        else:
            predicted_variance = None

Patrick von Platen's avatar
Patrick von Platen committed
437
        # 1. compute alphas, betas
438
        alpha_prod_t = self.alphas_cumprod[t]
439
        alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
440
441
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev
442
443
        current_alpha_t = alpha_prod_t / alpha_prod_t_prev
        current_beta_t = 1 - current_alpha_t
Patrick von Platen's avatar
Patrick von Platen committed
444

445
        # 2. compute predicted original sample from predicted noise also called
Quentin Gallouédec's avatar
Quentin Gallouédec committed
446
        # "predicted x_0" of formula (15) from https://huggingface.co/papers/2006.11239
447
        if self.config.prediction_type == "epsilon":
Patrick von Platen's avatar
Patrick von Platen committed
448
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
449
        elif self.config.prediction_type == "sample":
Patrick von Platen's avatar
Patrick von Platen committed
450
            pred_original_sample = model_output
451
452
        elif self.config.prediction_type == "v_prediction":
            pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
453
454
        else:
            raise ValueError(
455
456
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
                " `v_prediction`  for the DDPMScheduler."
457
            )
Patrick von Platen's avatar
Patrick von Platen committed
458

459
        # 3. Clip or threshold "predicted x_0"
460
461
462
        if self.config.thresholding:
            pred_original_sample = self._threshold_sample(pred_original_sample)
        elif self.config.clip_sample:
463
464
            pred_original_sample = pred_original_sample.clamp(
                -self.config.clip_sample_range, self.config.clip_sample_range
Will Berman's avatar
Will Berman committed
465
            )
Patrick von Platen's avatar
Patrick von Platen committed
466

467
        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
Quentin Gallouédec's avatar
Quentin Gallouédec committed
468
        # See formula (7) from https://huggingface.co/papers/2006.11239
469
470
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t
        current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t
Patrick von Platen's avatar
Patrick von Platen committed
471

472
        # 5. Compute predicted previous sample µ_t
Quentin Gallouédec's avatar
Quentin Gallouédec committed
473
        # See formula (7) from https://huggingface.co/papers/2006.11239
474
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
Patrick von Platen's avatar
Patrick von Platen committed
475

Patrick von Platen's avatar
Patrick von Platen committed
476
477
478
        # 6. Add noise
        variance = 0
        if t > 0:
479
            device = model_output.device
480
481
482
            variance_noise = randn_tensor(
                model_output.shape, generator=generator, device=device, dtype=model_output.dtype
            )
483
484
            if self.variance_type == "fixed_small_log":
                variance = self._get_variance(t, predicted_variance=predicted_variance) * variance_noise
485
486
487
            elif self.variance_type == "learned_range":
                variance = self._get_variance(t, predicted_variance=predicted_variance)
                variance = torch.exp(0.5 * variance) * variance_noise
488
489
            else:
                variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * variance_noise
Patrick von Platen's avatar
Patrick von Platen committed
490
491
492

        pred_prev_sample = pred_prev_sample + variance

493
        if not return_dict:
494
495
496
497
            return (
                pred_prev_sample,
                pred_original_sample,
            )
498

499
        return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
Patrick von Platen's avatar
Patrick von Platen committed
500

Partho's avatar
Partho committed
501
502
    def add_noise(
        self,
503
504
        original_samples: torch.Tensor,
        noise: torch.Tensor,
505
        timesteps: torch.IntTensor,
506
    ) -> torch.Tensor:
507
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
508
509
510
511
        # Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
        # for the subsequent add_noise calls
        self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device)
        alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype)
512
        timesteps = timesteps.to(original_samples.device)
513

514
        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
515
516
517
518
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

519
        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
520
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
521
522
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
523
524

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
anton-l's avatar
anton-l committed
525
        return noisy_samples
anton-l's avatar
anton-l committed
526

527
    def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor:
528
        # Make sure alphas_cumprod and timestep have same device and dtype as sample
529
530
        self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device)
        alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype)
531
532
        timesteps = timesteps.to(sample.device)

533
        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
534
535
536
537
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(sample.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

538
        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
539
540
541
542
543
544
545
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
        return velocity

Patrick von Platen's avatar
improve  
Patrick von Platen committed
546
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
547
        return self.config.num_train_timesteps
Will Berman's avatar
Will Berman committed
548
549

    def previous_timestep(self, timestep):
550
        if self.custom_timesteps or self.num_inference_steps:
Will Berman's avatar
Will Berman committed
551
552
553
554
555
556
            index = (self.timesteps == timestep).nonzero(as_tuple=True)[0][0]
            if index == self.timesteps.shape[0] - 1:
                prev_t = torch.tensor(-1)
            else:
                prev_t = self.timesteps[index + 1]
        else:
557
            prev_t = timestep - 1
Will Berman's avatar
Will Berman committed
558
        return prev_t