onnx.cpp 36.9 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
28
29
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
30
    program prog    = program();
31
    bool is_pytorch = false;
Paul's avatar
Paul committed
32
33
34
35
36

    std::unordered_map<std::string, op_func> ops;

    onnx_parser()
    {
Shucai Xiao's avatar
Shucai Xiao committed
37
        add_generic_op("MatMul", op::dot{});
Khalique's avatar
Khalique committed
38
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
39
40
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
41
42
        add_generic_op("Exp", op::exp{});
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
43
44
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
45
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
46
47
48
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
49
50
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
51
        add_generic_op("Tanh", op::tanh{});
52
53
54
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
Paul's avatar
Paul committed
55

Khalique's avatar
Khalique committed
56
57
58
59
60
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

Khalique's avatar
Khalique committed
61
62
63
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
64

Khalique's avatar
Khalique committed
65
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
66
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
67
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
68
69
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
70
71
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
72
73
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
74
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
75
76
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
77
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
78
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
79
80
81
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
82
        add_mem_op("Concat", &onnx_parser::parse_concat);
83
84
85
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
Khalique's avatar
Khalique committed
86
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
87
        add_mem_op("RNN", &onnx_parser::parse_rnn);
Paul's avatar
Paul committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
    }

    template <class F>
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
103

104
    template <class T>
Khalique's avatar
Khalique committed
105
    void add_binary_op(std::string name, T x)
106
107
    {
        ops.emplace(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
108
            if(args.size() != 2)
Paul's avatar
Paul committed
109
                MIGRAPHX_THROW("binary operators should have 2 operands");
110
111
112
113
114
115
116
117
118
119
120
121
            if(contains(attributes, "broadcast"))
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
                    uint64_t axis = (contains(attributes, "axis"))
                                        ? parse_value(attributes.at("axis")).at<uint64_t>()
                                        : 0;
                    auto l =
                        prog.add_instruction(op::broadcast{axis, args[0]->get_shape()}, args[1]);
                    return prog.add_instruction(x, args[0], l);
                }
122
                return prog.add_instruction(x, args);
123
            }
Paul's avatar
Paul committed
124
            else
125
            {
Khalique's avatar
Khalique committed
126
                return add_broadcastable_binary_op(args[0], args[1], x);
127
128
129
130
            }
        });
    }

Khalique's avatar
Khalique committed
131
132
133
134
135
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
        if(arg0->get_shape() != arg1->get_shape())
        {
Khalique's avatar
Khalique committed
136
137
138
139
140
141
142
143
144
145
146
147
148
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
Khalique's avatar
Khalique committed
149
150
151
152
153
154
155
156
            // Get lengths for both arguments
            const std::vector<std::size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<std::size_t>* s1 = &arg1->get_shape().lens();

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

Khalique's avatar
Khalique committed
157
            std::vector<std::size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
158
159
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
Khalique's avatar
Khalique committed
160
161
162
163
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });
Khalique's avatar
Khalique committed
164
165
166
167
168
169
170
171
172

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
173
174
    }

Paul's avatar
Paul committed
175
    template <class T>
Paul's avatar
Paul committed
176
177
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
178
        ops.emplace(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
179
180
181
182
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
183
    template <class T>
Khalique's avatar
Khalique committed
184
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
185
    {
Khalique's avatar
Khalique committed
186
187
        ops.emplace(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
188
189
190
191
192
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
193
        });
Khalique's avatar
Khalique committed
194
195
    }

Paul's avatar
Paul committed
196
    instruction_ref
Paul's avatar
Paul committed
197
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
198
199
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
200
201
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
202
203
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
204
205
    }

Paul's avatar
Paul committed
206
    instruction_ref
Paul's avatar
Paul committed
207
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
208
    {
209
        op::convolution op;
Paul's avatar
Paul committed
210
211
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
212
            if(contains(attributes, "auto_pad"))
213
            {
Paul's avatar
Paul committed
214
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
215
216
217
            }
            std::vector<std::size_t> padding(4);
            copy(attributes["pads"].ints(), padding.begin());
Scott Thornton's avatar
Scott Thornton committed
218
            if(padding.size() != 4)
219
            {
Paul's avatar
Paul committed
220
                MIGRAPHX_THROW("padding should have 4 values");
221
            }
Scott Thornton's avatar
Scott Thornton committed
222
            if(padding[0] != padding[2] || padding[1] != padding[3])
223
            {
Paul's avatar
Paul committed
224
                MIGRAPHX_THROW("migraphx does not support asymetric padding");
225
226
227
            }
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
Paul's avatar
Paul committed
228
        }
Paul's avatar
Paul committed
229
230
231
232
233
234
235
236
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
237
        if(contains(attributes, "auto_pad"))
238
239
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
240
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
241
            {
Paul's avatar
Paul committed
242
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
243
244
            }

wsttiger's avatar
fixes  
wsttiger committed
245
            if(s.find("SAME") != std::string::npos)
246
247
248
249
            {
                op.padding_mode = op::convolution::same;
            }
        }
Khalique's avatar
Khalique committed
250
251
252
253
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
254
255
256
257
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Scott Thornton's avatar
Scott Thornton committed
258
            auto l2       = prog.add_instruction(op::broadcast{axis, l1->get_shape()}, args[2]);
259
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
260
        }
Paul's avatar
Paul committed
261
262
        return prog.add_instruction(op, args);
    }
Paul's avatar
Paul committed
263

Paul's avatar
Paul committed
264
265
266
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
267
    {
Khalique's avatar
Khalique committed
268
269
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
        if(starts_with(name, "Global"))
270
        {
Khalique's avatar
Khalique committed
271
272
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
273
        }
Paul's avatar
Paul committed
274
275
        if(contains(attributes, "pads"))
        {
276
277
            std::vector<std::size_t> padding(4);
            copy(attributes["pads"].ints(), padding.begin());
Scott Thornton's avatar
Scott Thornton committed
278
            if(padding.size() != 4)
279
            {
Paul's avatar
Paul committed
280
                MIGRAPHX_THROW("padding should have 4 values");
281
            }
Scott Thornton's avatar
Scott Thornton committed
282
            if(padding[0] != padding[2] || padding[1] != padding[3])
283
            {
Paul's avatar
Paul committed
284
                MIGRAPHX_THROW("migraphx does not support asymetric padding");
285
286
287
            }
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
Paul's avatar
Paul committed
288
289
290
291
292
293
294
295
296
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
297
        if(contains(attributes, "auto_pad"))
298
299
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
300
            if(to_upper(s) != "NOTSET")
301
            {
Paul's avatar
Paul committed
302
                MIGRAPHX_THROW("auto_pad is not supported for pooling");
303
304
305
            }
        }

Paul's avatar
Paul committed
306
        return prog.add_instruction(op, std::move(args));
Paul's avatar
Paul committed
307
308
    }

Paul's avatar
Paul committed
309
    instruction_ref
Paul's avatar
Paul committed
310
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
311
    {
312
        op::reshape op;
Paul's avatar
Paul committed
313
314
315
316
317
318
319
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
320
            literal s = args[1]->get_literal();
Paul's avatar
Paul committed
321
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
322
        }
Paul's avatar
Paul committed
323
324
325
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
326
    instruction_ref
Paul's avatar
Paul committed
327
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
328
    {
329
        uint64_t axis = 1;
Paul's avatar
Paul committed
330
331
332
333
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
334
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
335
336
    }

337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
355
356
357
358
359
360
361
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
362

363
364
365
366
367
368
369
370
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = 0;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
371
        op::gather op{axis};
372
373
374
        return prog.add_instruction(op, std::move(args));
    }

375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
395
396
397
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
398
399
400
401
    {
        literal v = parse_value(attributes.at("value"));
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
402

Paul's avatar
Paul committed
403
    instruction_ref
Paul's avatar
Paul committed
404
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
405
406
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
407
        float beta  = 1.0f;
Paul's avatar
Paul committed
408
409
410
411
412
413
414
415
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
416
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
417
418
419
420
421
422
423
424
425
426
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
        std::vector<int64_t> perm = {1, 0};
427
428
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
429
430
        if(args.size() == 3)
        {
Khalique's avatar
Khalique committed
431
            if(beta != 0.f)
432
            {
Khalique's avatar
Khalique committed
433
                auto l3 = prog.add_instruction(op::dot{alpha}, l1, l2);
Khalique's avatar
Khalique committed
434
                auto l4 = args[2];
Khalique's avatar
Khalique committed
435
                if(l4->get_shape().scalar()) // ignore args[2] (no C value added to alpha*A*B)
Khalique's avatar
Khalique committed
436
                    return l3;
Khalique's avatar
Khalique committed
437
                if(beta != 1.f)
Khalique's avatar
Khalique committed
438
439
                {
                    auto beta_val = prog.add_literal(beta);
Khalique's avatar
Khalique committed
440
441
                    auto l5 = prog.add_instruction(op::scalar{args[2]->get_shape()}, beta_val);
                    l4      = prog.add_instruction(op::mul{}, args[2], l5);
Khalique's avatar
Khalique committed
442
443
                }
                return add_broadcastable_binary_op(l3, l4, op::add{});
444
            }
Paul's avatar
Paul committed
445
        }
Shucai Xiao's avatar
Shucai Xiao committed
446
        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
447
448
    }

449
    instruction_ref
Paul's avatar
Paul committed
450
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
451
    {
Scott Thornton's avatar
Scott Thornton committed
452
453
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
454
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
455
        bool is_test                                      = false;
456
457
458
459
460
461
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
462
            momentum = parse_value(attributes.at("momentum")).at<float>();
463
464
465
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
466
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
467
468
469
        }
        if(contains(attributes, "spatial"))
        {
470
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
471
472
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
473
        }
Paul's avatar
Paul committed
474
        (void)is_test;
Paul's avatar
Paul committed
475
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
476
        return prog.add_instruction(op, std::move(args));
477
478
    }

479
480
481
482
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
483
        float alpha = 0.01; // default alpha val for leaky relu
484
485
486
487
488
489
490
491
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
492
493
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
494
495
496
497
498
499
500
501
502
503
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
        auto input_shape = args.front()->get_shape();
Khalique's avatar
Khalique committed
521

Khalique's avatar
Khalique committed
522
523
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
524
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
525

Paul's avatar
Paul committed
526
527
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_shape}, scale_val);
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Paul's avatar
Paul committed
528
        auto bias_bcast = prog.add_instruction(migraphx::op::broadcast{1, input_shape}, bias_vals);
Paul's avatar
Paul committed
529
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
530
    }
Khalique's avatar
Khalique committed
531

Khalique's avatar
Khalique committed
532
533
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
534
535
536
537
538
539
540
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
541
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
542
543
    }

544
545
546
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
547
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
548
549
    {
        if(args.size() != 1)
550
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
587
588
        if(contains(attributes, "extra_shape"))
        {
589
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
590
591
        }

592
593
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
594
            if(args.size() != 1)
595
            {
596
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
597
598
            }

Shucai Xiao's avatar
Shucai Xiao committed
599
600
            if(contains(attributes, "shape"))
            {
601
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
602
                               "at the same time");
603
604
            }

605
606
607
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
608
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
609
            }
610

611
612
613
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
614
615
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
616
617
618
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
619
620
            if(!contains(attributes, "shape"))
            {
621
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
622
623
624
            }

            literal ls = parse_value(attributes.at("shape"));
625
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
626
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
627
            migraphx::shape s{type, dims};
628
629
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
630
631
632
        }
        else
        {
633
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
634
635
636
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
    instruction_ref
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        migraphx::shape w_shape     = args[1]->get_shape();
        std::size_t hidden_size     = w_shape.lens()[1];

        if(contains(attributes, "hidden_size"))
        {
            hidden_size = parse_value(attributes.at("hidden_size")).at<int>();
        }
        else
        {
            MIGRAPHX_THROW("RNN: hidden size attribute missing");
        }

        std::string activation_func = {"tanh"};
        if(contains(attributes, "activations"))
        {
            activation_func = attributes.at("activations").strings(0);
        }

        std::unordered_map<std::string, operation> actv_func_map;
        actv_func_map.insert(std::make_pair("tanh", op::tanh{}));
        actv_func_map.insert(std::make_pair("relu", op::relu{}));
        actv_func_map.insert(std::make_pair("sigmoid", op::sigmoid{}));

        if (actv_func_map.count(activation_func) == 0) 
        {
            MIGRAPHX_THROW("RNN: activation function " + activation_func + " not supported");
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

        op::rnn::rnn_direction_t dirct = op::rnn::forward;
        if(direction == "bidirectional")
        {
            dirct = op::rnn::bidirectional;
        }
        else if(direction == "reverse")
        {
            dirct = op::rnn::reverse;
        }

        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        return prog.add_instruction(op::rnn{hidden_size, actv_func_map[activation_func], dirct, clip}, std::move(args));
    }

Paul's avatar
Paul committed
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            throw std::runtime_error("Failed reading");
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
715
716
717
718
719
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
720
721
722
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
723
724
725
726
727
728
729
730
731
732
733
734
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
735
736
737
        }
        for(auto&& p : nodes)
        {
738
            this->parse_node(get_name(p.second));
Paul's avatar
Paul committed
739
740
741
        }
    }

Paul's avatar
Paul committed
742
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
743
    {
Paul's avatar
Paul committed
744
        if(name.empty())
Paul's avatar
Paul committed
745
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
746
747
748
749
750
751
752
753
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
754
                    auto&& iname = get_name(nodes.at(input));
Paul's avatar
Paul committed
755
                    assert(name != iname);
Paul's avatar
Paul committed
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op_type()) == 0)
            {
                instructions[name] = prog.add_instruction(unknown{node.op_type()}, args);
            }
            else
            {
                instructions[name] = ops[node.op_type()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

785
786
787
788
    static std::string get_name(const onnx::NodeProto& node)
    {
        if(node.name().empty())
        {
Paul's avatar
Paul committed
789
            std::string generated = "migraphx_unnamed_node";
Paul's avatar
Paul committed
790
791
792
793
            return std::accumulate(node.output().begin(),
                                   node.output().end(),
                                   generated,
                                   [](auto x, auto y) { return x + "_" + y; });
794
795
796
797
        }
        return node.name();
    }

Paul's avatar
Paul committed
798
799
800
801
802
    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
        for(auto&& node : graph.node())
        {
803
            result[get_name(node)] = node;
Paul's avatar
Paul committed
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
829
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
830
831
832
833
834
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
835
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
836
837
838
839
840
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
Khalique's avatar
Khalique committed
841
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
842
        if(dims.empty())
Khalique's avatar
Khalique committed
843
844
845
        {
            dims = {1};
        }
846
847
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
848
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
849
850
851
852
853
854
855
856
857
858
859
860
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
            case onnx::TensorProto::FLOAT: return literal{{shape::float_type, dims}, s.data()};
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
            case onnx::TensorProto::INT8: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::UINT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT32: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT64: return literal{{shape::int64_type, dims}, s.data()};
            case onnx::TensorProto::STRING: throw std::runtime_error("");
            case onnx::TensorProto::BOOL: return literal{{shape::int32_type, dims}, s.data()};
Paul's avatar
Paul committed
861
            case onnx::TensorProto::FLOAT16: return literal{{shape::half_type, dims}, s.data()};
Scott Thornton's avatar
Scott Thornton committed
862
863
864
865
866
867
            case onnx::TensorProto::DOUBLE: return literal{{shape::double_type, dims}, s.data()};
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
868
            MIGRAPHX_THROW("Invalid tensor type");
869
        }
Paul's avatar
Paul committed
870
871
872
873
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Paul's avatar
Paul committed
874
            return literal{{shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
875
876
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Paul's avatar
Paul committed
877
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
878
        case onnx::TensorProto::UINT16:
Paul's avatar
Paul committed
879
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
880
        case onnx::TensorProto::INT16:
Paul's avatar
Paul committed
881
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
882
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
883
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
884
        case onnx::TensorProto::INT64:
Paul's avatar
Paul committed
885
            return literal{{shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
Paul's avatar
Paul committed
886
887
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Paul's avatar
Paul committed
888
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
889
890
        case onnx::TensorProto::FLOAT16:
            return literal{{shape::half_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
891
892
893
894
895
896
897
898
        case onnx::TensorProto::DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
899
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
    }

    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
921
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
922
923
924
925
926
927
928
929
930
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
931
        auto&& tensor_dims = t.tensor_type().shape().dim();
932
933
934
935
936
937
938
939
940
941
942
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
943
944
        return {shape_type, dims};
    }
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
990
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
991
} // namespace migraphx