onnx.cpp 35.7 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
28
29
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
30
    program prog    = program();
31
    bool is_pytorch = false;
Paul's avatar
Paul committed
32
33
34
35
36

    std::unordered_map<std::string, op_func> ops;

    onnx_parser()
    {
Shucai Xiao's avatar
Shucai Xiao committed
37
        add_generic_op("MatMul", op::dot{});
Khalique's avatar
Khalique committed
38
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
39
40
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
41
42
        add_generic_op("Exp", op::exp{});
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
43
44
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
45
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
46
47
48
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
49
50
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
51
        add_generic_op("Tanh", op::tanh{});
52
53
54
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
Paul's avatar
Paul committed
55

Khalique's avatar
Khalique committed
56
57
58
59
60
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

Khalique's avatar
Khalique committed
61
62
63
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
64

Khalique's avatar
Khalique committed
65
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
66
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
67
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
68
69
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
70
71
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
72
73
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
74
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
75
76
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
77
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
78
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
79
80
81
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
82
        add_mem_op("Concat", &onnx_parser::parse_concat);
83
84
85
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
Khalique's avatar
Khalique committed
86
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Khalique's avatar
Khalique committed
87
        add_mem_op("Pad", &onnx_parser::parse_pad);
Paul's avatar
Paul committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
    }

    template <class F>
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
103

104
    template <class T>
Khalique's avatar
Khalique committed
105
    void add_binary_op(std::string name, T x)
106
107
    {
        ops.emplace(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
108
            if(args.size() != 2)
Paul's avatar
Paul committed
109
                MIGRAPHX_THROW("binary operators should have 2 operands");
110
111
112
113
114
115
116
117
118
119
120
121
            if(contains(attributes, "broadcast"))
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
                    uint64_t axis = (contains(attributes, "axis"))
                                        ? parse_value(attributes.at("axis")).at<uint64_t>()
                                        : 0;
                    auto l =
                        prog.add_instruction(op::broadcast{axis, args[0]->get_shape()}, args[1]);
                    return prog.add_instruction(x, args[0], l);
                }
122
                return prog.add_instruction(x, args);
123
            }
Paul's avatar
Paul committed
124
            else
125
            {
Khalique's avatar
Khalique committed
126
                return add_broadcastable_binary_op(args[0], args[1], x);
127
128
129
130
            }
        });
    }

Khalique's avatar
Khalique committed
131
132
133
134
135
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
        if(arg0->get_shape() != arg1->get_shape())
        {
Khalique's avatar
Khalique committed
136
137
138
139
140
141
142
143
144
145
146
147
148
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
Khalique's avatar
Khalique committed
149
150
151
152
153
154
155
156
            // Get lengths for both arguments
            const std::vector<std::size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<std::size_t>* s1 = &arg1->get_shape().lens();

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

Khalique's avatar
Khalique committed
157
            std::vector<std::size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
158
159
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
Khalique's avatar
Khalique committed
160
161
162
163
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });
Khalique's avatar
Khalique committed
164
165
166
167
168
169
170
171
172

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
173
174
    }

Paul's avatar
Paul committed
175
    template <class T>
Paul's avatar
Paul committed
176
177
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
178
        ops.emplace(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
179
180
181
182
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
183
    template <class T>
Khalique's avatar
Khalique committed
184
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
185
    {
Khalique's avatar
Khalique committed
186
187
        ops.emplace(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
188
189
190
191
192
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
193
        });
Khalique's avatar
Khalique committed
194
195
    }

Paul's avatar
Paul committed
196
    instruction_ref
Paul's avatar
Paul committed
197
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
198
199
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
200
201
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
202
203
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
204
205
    }

Paul's avatar
Paul committed
206
    instruction_ref
Paul's avatar
Paul committed
207
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
208
    {
209
        op::convolution op;
Paul's avatar
Paul committed
210
211
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
212
            if(contains(attributes, "auto_pad"))
213
            {
Paul's avatar
Paul committed
214
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
215
216
217
            }
            std::vector<std::size_t> padding(4);
            copy(attributes["pads"].ints(), padding.begin());
Scott Thornton's avatar
Scott Thornton committed
218
            if(padding.size() != 4)
219
            {
Paul's avatar
Paul committed
220
                MIGRAPHX_THROW("padding should have 4 values");
221
            }
Scott Thornton's avatar
Scott Thornton committed
222
            if(padding[0] != padding[2] || padding[1] != padding[3])
223
            {
Paul's avatar
Paul committed
224
                MIGRAPHX_THROW("migraphx does not support asymetric padding");
225
226
227
            }
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
Paul's avatar
Paul committed
228
        }
Paul's avatar
Paul committed
229
230
231
232
233
234
235
236
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
237
        if(contains(attributes, "auto_pad"))
238
239
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
240
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
241
            {
Paul's avatar
Paul committed
242
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
243
244
            }

wsttiger's avatar
fixes  
wsttiger committed
245
            if(s.find("SAME") != std::string::npos)
246
247
248
249
            {
                op.padding_mode = op::convolution::same;
            }
        }
Khalique's avatar
Khalique committed
250
251
252
253
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
254
255
256
257
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Scott Thornton's avatar
Scott Thornton committed
258
            auto l2       = prog.add_instruction(op::broadcast{axis, l1->get_shape()}, args[2]);
259
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
260
        }
Paul's avatar
Paul committed
261
262
        return prog.add_instruction(op, args);
    }
Paul's avatar
Paul committed
263

Paul's avatar
Paul committed
264
265
266
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
267
    {
Khalique's avatar
Khalique committed
268
269
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
        if(starts_with(name, "Global"))
270
        {
Khalique's avatar
Khalique committed
271
272
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
273
        }
Paul's avatar
Paul committed
274
275
        if(contains(attributes, "pads"))
        {
276
277
            std::vector<std::size_t> padding(4);
            copy(attributes["pads"].ints(), padding.begin());
Scott Thornton's avatar
Scott Thornton committed
278
            if(padding.size() != 4)
279
            {
Paul's avatar
Paul committed
280
                MIGRAPHX_THROW("padding should have 4 values");
281
            }
Scott Thornton's avatar
Scott Thornton committed
282
            if(padding[0] != padding[2] || padding[1] != padding[3])
283
            {
Paul's avatar
Paul committed
284
                MIGRAPHX_THROW("migraphx does not support asymetric padding");
285
286
287
            }
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
Paul's avatar
Paul committed
288
289
290
291
292
293
294
295
296
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
297
        if(contains(attributes, "auto_pad"))
298
299
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
300
            if(to_upper(s) != "NOTSET")
301
            {
Paul's avatar
Paul committed
302
                MIGRAPHX_THROW("auto_pad is not supported for pooling");
303
304
305
            }
        }

Paul's avatar
Paul committed
306
        return prog.add_instruction(op, std::move(args));
Paul's avatar
Paul committed
307
308
    }

Paul's avatar
Paul committed
309
    instruction_ref
Paul's avatar
Paul committed
310
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
311
    {
312
        op::reshape op;
Paul's avatar
Paul committed
313
314
315
316
317
318
319
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
320
            literal s = args[1]->get_literal();
Paul's avatar
Paul committed
321
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
322
        }
Paul's avatar
Paul committed
323
324
325
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
326
    instruction_ref
Paul's avatar
Paul committed
327
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
328
    {
329
        uint64_t axis = 1;
Paul's avatar
Paul committed
330
331
332
333
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
334
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
335
336
    }

337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
355
356
357
358
359
360
361
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
362

363
364
365
366
367
368
369
370
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = 0;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
371
        op::gather op{axis};
372
373
374
        return prog.add_instruction(op, std::move(args));
    }

375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
395
396
397
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
398
399
400
401
    {
        literal v = parse_value(attributes.at("value"));
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
402

Paul's avatar
Paul committed
403
    instruction_ref
Paul's avatar
Paul committed
404
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
405
406
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
407
        float beta  = 1.0f;
Paul's avatar
Paul committed
408
409
410
411
412
413
414
415
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
416
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
417
418
419
420
421
422
423
424
425
426
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
        std::vector<int64_t> perm = {1, 0};
427
428
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
429
430
        if(args.size() == 3)
        {
Khalique's avatar
Khalique committed
431
            if(beta != 0.f)
432
            {
Khalique's avatar
Khalique committed
433
                auto l3 = prog.add_instruction(op::dot{alpha}, l1, l2);
Khalique's avatar
Khalique committed
434
                auto l4 = args[2];
Khalique's avatar
Khalique committed
435
                if(l4->get_shape().scalar()) // ignore args[2] (no C value added to alpha*A*B)
Khalique's avatar
Khalique committed
436
                    return l3;
Khalique's avatar
Khalique committed
437
                if(beta != 1.f)
Khalique's avatar
Khalique committed
438
439
                {
                    auto beta_val = prog.add_literal(beta);
Khalique's avatar
Khalique committed
440
441
                    auto l5 = prog.add_instruction(op::scalar{args[2]->get_shape()}, beta_val);
                    l4      = prog.add_instruction(op::mul{}, args[2], l5);
Khalique's avatar
Khalique committed
442
443
                }
                return add_broadcastable_binary_op(l3, l4, op::add{});
444
            }
Paul's avatar
Paul committed
445
        }
Shucai Xiao's avatar
Shucai Xiao committed
446
        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
447
448
    }

449
    instruction_ref
Paul's avatar
Paul committed
450
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
451
    {
Scott Thornton's avatar
Scott Thornton committed
452
453
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
454
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
455
        bool is_test                                      = false;
456
457
458
459
460
461
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
462
            momentum = parse_value(attributes.at("momentum")).at<float>();
463
464
465
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
466
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
467
468
469
        }
        if(contains(attributes, "spatial"))
        {
470
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
471
472
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
473
        }
Paul's avatar
Paul committed
474
        (void)is_test;
Paul's avatar
Paul committed
475
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
476
        return prog.add_instruction(op, std::move(args));
477
478
    }

479
480
481
482
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
483
        float alpha = 0.01; // default alpha val for leaky relu
484
485
486
487
488
489
490
491
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
492
493
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
494
495
496
497
498
499
500
501
502
503
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
        auto input_shape = args.front()->get_shape();
Khalique's avatar
Khalique committed
521

Khalique's avatar
Khalique committed
522
523
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
524
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
525

Paul's avatar
Paul committed
526
527
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_shape}, scale_val);
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Paul's avatar
Paul committed
528
        auto bias_bcast = prog.add_instruction(migraphx::op::broadcast{1, input_shape}, bias_vals);
Paul's avatar
Paul committed
529
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
530
    }
Khalique's avatar
Khalique committed
531

Khalique's avatar
Khalique committed
532
533
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
534
535
536
537
538
539
540
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
541
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
542
543
    }

Khalique's avatar
Khalique committed
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
566
567
568
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
569
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
570
571
    {
        if(args.size() != 1)
572
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }


Shucai Xiao's avatar
Shucai Xiao committed
605
606
        if(contains(attributes, "extra_shape"))
        {
607
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
608
609
        }

610
611
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
612
            if(args.size() != 1)
613
            {
614
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
615
616
            }

Shucai Xiao's avatar
Shucai Xiao committed
617
618
            if(contains(attributes, "shape"))
            {
619
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
620
                               "at the same time");
621
622
            }

623
624
625
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
626
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
627
            }
628

629
630
631
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
632
633
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
634
635
636
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
637
638
            if(!contains(attributes, "shape"))
            {
639
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
640
641
642
            }

            literal ls = parse_value(attributes.at("shape"));
643
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
644
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
645
            migraphx::shape s{type, dims};
646
647
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
648
649
650
        }
        else
        {
651
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
652
653
        }
    }
Khalique's avatar
Khalique committed
654

Paul's avatar
Paul committed
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            throw std::runtime_error("Failed reading");
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
674
675
676
677
678
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
679
680
681
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
682
683
684
685
686
687
688
689
690
691
692
693
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
694
695
696
        }
        for(auto&& p : nodes)
        {
697
            this->parse_node(get_name(p.second));
Paul's avatar
Paul committed
698
699
700
        }
    }

Paul's avatar
Paul committed
701
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
702
    {
Paul's avatar
Paul committed
703
        if(name.empty())
Paul's avatar
Paul committed
704
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
705
706
707
708
709
710
711
712
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
713
                    auto&& iname = get_name(nodes.at(input));
Paul's avatar
Paul committed
714
                    assert(name != iname);
Paul's avatar
Paul committed
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op_type()) == 0)
            {
                instructions[name] = prog.add_instruction(unknown{node.op_type()}, args);
            }
            else
            {
                instructions[name] = ops[node.op_type()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

744
745
746
747
    static std::string get_name(const onnx::NodeProto& node)
    {
        if(node.name().empty())
        {
Paul's avatar
Paul committed
748
            std::string generated = "migraphx_unnamed_node";
Paul's avatar
Paul committed
749
750
751
752
            return std::accumulate(node.output().begin(),
                                   node.output().end(),
                                   generated,
                                   [](auto x, auto y) { return x + "_" + y; });
753
754
755
756
        }
        return node.name();
    }

Paul's avatar
Paul committed
757
758
759
760
761
    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
        for(auto&& node : graph.node())
        {
762
            result[get_name(node)] = node;
Paul's avatar
Paul committed
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
788
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
789
790
791
792
793
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
794
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
795
796
797
798
799
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
Khalique's avatar
Khalique committed
800
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
801
        if(dims.empty())
Khalique's avatar
Khalique committed
802
803
804
        {
            dims = {1};
        }
805
806
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
807
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
808
809
810
811
812
813
814
815
816
817
818
819
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
            case onnx::TensorProto::FLOAT: return literal{{shape::float_type, dims}, s.data()};
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
            case onnx::TensorProto::INT8: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::UINT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT32: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT64: return literal{{shape::int64_type, dims}, s.data()};
            case onnx::TensorProto::STRING: throw std::runtime_error("");
            case onnx::TensorProto::BOOL: return literal{{shape::int32_type, dims}, s.data()};
Paul's avatar
Paul committed
820
            case onnx::TensorProto::FLOAT16: return literal{{shape::half_type, dims}, s.data()};
Scott Thornton's avatar
Scott Thornton committed
821
822
823
824
825
826
            case onnx::TensorProto::DOUBLE: return literal{{shape::double_type, dims}, s.data()};
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
827
            MIGRAPHX_THROW("Invalid tensor type");
828
        }
Paul's avatar
Paul committed
829
830
831
832
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Paul's avatar
Paul committed
833
            return literal{{shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
834
835
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Paul's avatar
Paul committed
836
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
837
        case onnx::TensorProto::UINT16:
Paul's avatar
Paul committed
838
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
839
        case onnx::TensorProto::INT16:
Paul's avatar
Paul committed
840
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
841
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
842
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
843
        case onnx::TensorProto::INT64:
Paul's avatar
Paul committed
844
            return literal{{shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
Paul's avatar
Paul committed
845
846
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Paul's avatar
Paul committed
847
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
848
849
        case onnx::TensorProto::FLOAT16:
            return literal{{shape::half_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
850
851
852
853
854
855
856
857
        case onnx::TensorProto::DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
858
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
    }

    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
880
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
881
882
883
884
885
886
887
888
889
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
890
        auto&& tensor_dims = t.tensor_type().shape().dim();
891
892
893
894
895
896
897
898
899
900
901
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
902
903
        return {shape_type, dims};
    }
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
949
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
950
} // namespace migraphx