tf.cpp 48.7 KB
Newer Older
Khalique's avatar
Khalique committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <graph.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <unordered_set>
#include <functional>
#include <array>
#include <utility>
#include <vector>

#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
#include <migraphx/tf.hpp>
Khalique's avatar
Khalique committed
20
#include <migraphx/pad_calc.hpp>
Khalique's avatar
Khalique committed
21
22
23
24
25
26
27

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct tf_parser
{
    using attribute_map = std::unordered_map<std::string, tensorflow::AttrValue>;
Paul's avatar
Paul committed
28
    using node_map      = std::map<std::string, tensorflow::NodeDef>;
Khalique's avatar
Khalique committed
29
30
    // using input_node_map = std::unordered_map<std::string, std::unordered_set<std::string>>;
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Khalique's avatar
Khalique committed
31

Khalique's avatar
Khalique committed
32
33
34
35
36
37
38
39
    node_map nodes;
    std::vector<tensorflow::NodeDef> input_nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
    program prog = program();
    bool is_nhwc = true;

    std::unordered_map<std::string, op_func> ops;

Paul's avatar
Paul committed
40
    bool should_transpose(instruction_ref ins) const
Paul's avatar
Paul committed
41
42
43
44
45
46
    {
        return is_nhwc and ins->get_shape().lens().size() == 4;
    }

    instruction_ref to_nhwc(instruction_ref ins)
    {
Paul's avatar
Paul committed
47
        if(should_transpose(ins))
Paul's avatar
Paul committed
48
49
50
51
52
53
            return prog.add_instruction(op::transpose{{0, 2, 3, 1}}, ins);
        return ins;
    }

    instruction_ref to_nchw(instruction_ref ins)
    {
Paul's avatar
Paul committed
54
        if(should_transpose(ins))
Paul's avatar
Paul committed
55
56
57
58
59
60
            return prog.add_instruction(op::transpose{{0, 3, 1, 2}}, ins);
        return ins;
    }

    instruction_ref to_kcxy(instruction_ref ins)
    {
Paul's avatar
Paul committed
61
        if(should_transpose(ins))
Paul's avatar
Paul committed
62
63
64
65
66
67
            return prog.add_instruction(op::transpose{{3, 2, 0, 1}}, ins);
        return ins;
    }

    instruction_ref make_contiguous(instruction_ref ins)
    {
Paul's avatar
Paul committed
68
        if(ins->get_shape().standard())
Paul's avatar
Paul committed
69
70
71
72
73
74
75
76
            return ins;
        else
            return prog.add_instruction(op::contiguous{}, ins);
    }

    std::vector<instruction_ref> to_nchw(const std::vector<instruction_ref>& args)
    {
        std::vector<instruction_ref> result(args.size());
Paul's avatar
Paul committed
77
        std::transform(
Paul's avatar
Paul committed
78
            args.begin(), args.end(), result.begin(), [&](auto ins) { return this->to_nchw(ins); });
Paul's avatar
Paul committed
79
80
81
        return result;
    }

Khalique's avatar
Khalique committed
82
    std::vector<size_t>
83
    parse_axes(const attribute_map& attributes, const std::string& s, const size_t num_dims) const
84
    {
85
86
87
        auto attrs = attributes.at(s).list().i();
        std::vector<size_t> axes;
        copy(attrs.begin(), attrs.end(), std::back_inserter(axes));
Khalique's avatar
Khalique committed
88
        if(is_nhwc)
89
        {
Khalique's avatar
Khalique committed
90
            std::transform(axes.begin(), axes.end(), axes.begin(), [&](size_t axis) {
Khalique's avatar
Khalique committed
91
                return parse_axis(axis, num_dims);
Khalique's avatar
Khalique committed
92
            });
93
94
95
96
        }
        return axes;
    }

Khalique's avatar
Khalique committed
97
    template <class T>
98
    std::vector<T> parse_axes(std::vector<T> axes, const size_t num_dims) const
Khalique's avatar
Khalique committed
99
100
101
    {
        if(is_nhwc)
        {
102
            std::vector<T> new_axes;
Khalique's avatar
Khalique committed
103
104
105
            std::transform(axes.begin(),
                           axes.end(),
                           std::back_inserter(new_axes),
Khalique's avatar
Khalique committed
106
                           [&](size_t axis) { return parse_axis(axis, num_dims); });
107
            return new_axes;
Khalique's avatar
Khalique committed
108
        }
109
        return axes;
Khalique's avatar
Khalique committed
110
111
    }

Khalique's avatar
Khalique committed
112
113
114
    // tf stores certain attributes such as strides, dilations, as a 4D input.
    // The first and last dims are equal to 1, and the relevant data is in dims 2 and 3.
    // This helper function reorders the data to store for the respective operator member variables.
115
    template <class T>
116
    void reorder_data(std::vector<T>& prev_data) const
117
118
    {
        std::vector<T> new_data(prev_data.size());
119
        for(size_t i = 0; i < new_data.size(); i++)
120
        {
Khalique's avatar
Khalique committed
121
            auto new_idx         = parse_axis(i, new_data.size());
122
            new_data.at(new_idx) = prev_data.at(i);
123
        }
124
125
126
127
        prev_data = new_data;
    }

    template <class T>
128
    T parse_axis(const T& dim, const size_t num_dims) const
129
    {
Khalique's avatar
Khalique committed
130
        T new_dim = dim;
Khalique's avatar
Khalique committed
131
        if(is_nhwc and num_dims >= 4)
132
133
134
        {
            switch(dim)
            {
Khalique's avatar
Khalique committed
135
136
137
138
139
            case 0: new_dim = 0; break;
            case 1: new_dim = 2; break;
            case 2: new_dim = 3; break;
            case 3: new_dim = 1; break;
            default: break;
140
141
            }
        }
Khalique's avatar
Khalique committed
142
        return new_dim;
143
144
    }

145
146
147
148
149
150
151
    std::vector<int64_t> get_axes(size_t num_axes) const
    {
        std::vector<int64_t> axes(num_axes);
        std::iota(axes.begin(), axes.end(), 0);
        return axes;
    }

Khalique's avatar
Khalique committed
152
153
154
155
    tf_parser()
    {
        add_generic_op("Identity", op::identity{});
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
156
        add_generic_op("Relu6", op::clip{6.0, 0.0});
Khalique's avatar
Khalique committed
157
        add_generic_op("Rsqrt", op::rsqrt{});
Khalique's avatar
Khalique committed
158
        add_generic_op("Tanh", op::tanh{});
Khalique's avatar
Khalique committed
159
        add_generic_op("StopGradient", op::identity{});
Khalique's avatar
Khalique committed
160

161
        add_binary_op("Add", op::add{});
Khalique's avatar
Khalique committed
162
        add_binary_op("Mul", op::mul{});
Khalique's avatar
Khalique committed
163
        add_binary_op("SquaredDifference", op::sqdiff{});
Khalique's avatar
Khalique committed
164
        add_binary_op("Sub", op::sub{});
Khalique's avatar
Khalique committed
165

166
        add_mem_op("AvgPool", &tf_parser::parse_pooling);
Khalique's avatar
Khalique committed
167
        add_mem_op("BatchMatMul", &tf_parser::parse_matmul, false);
168
        add_mem_op("BiasAdd", &tf_parser::parse_biasadd);
Paul's avatar
Paul committed
169
        add_mem_op("ConcatV2", &tf_parser::parse_concat, false);
Khalique's avatar
Khalique committed
170
        add_mem_op("Const", &tf_parser::parse_constant);
Paul's avatar
Paul committed
171
        add_mem_op("Conv2D", &tf_parser::parse_conv);
Paul's avatar
Paul committed
172
        add_mem_op("DepthwiseConv2dNative", &tf_parser::parse_depthwiseconv);
173
        add_mem_op("ExpandDims", &tf_parser::parse_expanddims, false);
Khalique's avatar
Khalique committed
174
        add_mem_op("FusedBatchNorm", &tf_parser::parse_batchnorm);
Khalique's avatar
Khalique committed
175
        add_mem_op("GatherV2", &tf_parser::parse_gather, false);
Paul's avatar
Paul committed
176
        add_mem_op("MatMul", &tf_parser::parse_matmul, false);
177
        add_mem_op("MaxPool", &tf_parser::parse_pooling);
Khalique's avatar
Khalique committed
178
        add_mem_op("Mean", &tf_parser::parse_mean);
Paul's avatar
Paul committed
179
        add_mem_op("Pack", &tf_parser::parse_pack, false);
Paul's avatar
Paul committed
180
        add_mem_op("Pad", &tf_parser::parse_pad);
Paul's avatar
Paul committed
181
        add_mem_op("Reshape", &tf_parser::parse_reshape, false);
Khalique's avatar
Khalique committed
182
        add_mem_op("Slice", &tf_parser::parse_slice, false);
183
        add_mem_op("Softmax", &tf_parser::parse_softmax);
Paul's avatar
Paul committed
184
        add_mem_op("Squeeze", &tf_parser::parse_squeeze, false);
185
        add_mem_op("StridedSlice", &tf_parser::parse_stridedslice);
Khalique's avatar
Khalique committed
186
        add_mem_op("Transpose", &tf_parser::parse_transpose, false);
Khalique's avatar
Khalique committed
187
188
    }

189
    template <class F>
Paul's avatar
Paul committed
190
    void add_op(std::string name, F f, bool transpose = true)
191
    {
Paul's avatar
Paul committed
192
        if(transpose)
Paul's avatar
Paul committed
193
        {
Paul's avatar
Paul committed
194
195
            ops.emplace(name,
                        op_func{[=](const attribute_map& attributes,
Paul's avatar
Paul committed
196
                                    const std::vector<instruction_ref>& args) -> instruction_ref {
Paul's avatar
Paul committed
197
198
                            return to_nhwc(f(attributes, to_nchw(args)));
                        }});
Paul's avatar
Paul committed
199
200
201
202
203
        }
        else
        {
            ops.emplace(name, f);
        }
204
205
    }

Khalique's avatar
Khalique committed
206
    template <class F>
Paul's avatar
Paul committed
207
    void add_mem_op(std::string name, F f, bool transpose = true)
Khalique's avatar
Khalique committed
208
    {
Paul's avatar
Paul committed
209
210
211
212
213
        add_op(name,
               [=](auto&&... xs) {
                   return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
               },
               transpose);
Khalique's avatar
Khalique committed
214
215
216
217
218
    }

    template <class T>
    void add_binary_op(std::string name, T x)
    {
Paul's avatar
Paul committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
        add_op(name,
               [this, x](const attribute_map&, std::vector<instruction_ref> args) {
                   if(args.size() != 2)
                       MIGRAPHX_THROW("binary operators should have 2 operands");
                   // TODO
                   // if(contains(attributes, "data_format"))
                   // {
                   //     if(is_nhwc)
                   //     {
                   //         l0 = prog.add_instruction(op::transpose{{0, 3, 1, 2}}, args[1]);
                   //     }
                   // }
                   return add_broadcastable_binary_op(args[0], args[1], x);
               },
               false);
Khalique's avatar
Khalique committed
234
235
236
237
238
    }

    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
239
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
        {
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
            // Get lengths for both arguments
255
256
            const std::vector<size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<size_t>* s1 = &arg1->get_shape().lens();
Khalique's avatar
Khalique committed
257
258
259
260
261

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

262
            std::vector<size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
263
264
265
266
267
268
269
270
271
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
Paul's avatar
Paul committed
272
            return to_nhwc(prog.add_instruction(x, to_nchw(l0), to_nchw(l1)));
Khalique's avatar
Khalique committed
273
274
275
        }
        else
        {
Paul's avatar
Paul committed
276
            return to_nhwc(prog.add_instruction(x, {to_nchw(arg0), to_nchw(arg1)}));
Khalique's avatar
Khalique committed
277
278
279
280
        }
    }

    template <class T>
Paul's avatar
Paul committed
281
    void add_generic_op(std::string name, T x, bool transpose = true)
Khalique's avatar
Khalique committed
282
    {
Paul's avatar
Paul committed
283
284
285
286
287
        add_op(name,
               [this, x](const attribute_map&, std::vector<instruction_ref> args) {
                   return prog.add_instruction(x, args);
               },
               transpose);
Khalique's avatar
Khalique committed
288
289
290
291
292
    }

    instruction_ref
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
293
294
295
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Khalique's avatar
Khalique committed
296
297
298
299
300
301
302
303
        if(contains(attributes, "epsilon"))
        {
            epsilon = attributes.at("epsilon").f();
        }
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
        return prog.add_instruction(op, std::move(args));
    }

304
    instruction_ref
Khalique's avatar
Khalique committed
305
    parse_biasadd(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
306
    {
307
        uint64_t axis = 1; // assume output of previous layer is in NCHW (broadcast on channel)
Shucai Xiao's avatar
Shucai Xiao committed
308
        auto l0 = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()}, args[1]);
309
        return prog.add_instruction(op::add{}, args[0], l0);
310
311
    }

Khalique's avatar
Khalique committed
312
313
314
315
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        // get index for axis within args
316
        size_t axis_idx = attributes.at("N").i();
Paul's avatar
Paul committed
317
        size_t axis     = args[axis_idx]->eval().at<int64_t>();
Khalique's avatar
Khalique committed
318
        op::concat op{axis};
319
        // return only first N arguments (assuming last index is the axis value)
Paul's avatar
Paul committed
320
321
        return prog.add_instruction(
            op, std::vector<instruction_ref>(args.begin(), args.begin() + args.size() - 1));
Khalique's avatar
Khalique committed
322
323
324
325
326
327
    }

    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
    {
Paul's avatar
Paul committed
328
        literal v = parse_tensor(attributes.at("value").tensor());
Paul's avatar
Paul committed
329
        return prog.add_literal(v);
Khalique's avatar
Khalique committed
330
331
332
333
334
335
336
337
    }

    instruction_ref
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::convolution op;
        if(contains(attributes, "strides"))
        {
338
            std::vector<size_t> stride;
339
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
340
            reorder_data(stride);
341
342
            if(stride.size() != 4)
            {
343
                MIGRAPHX_THROW("strides should have 4 values");
344
            }
345
346
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
347
348
349
        }
        if(contains(attributes, "dilations"))
        {
350
            std::vector<size_t> dilation;
351
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
352
            reorder_data(dilation);
353
354
355
356
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
357
358
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
359
        }
Khalique's avatar
Khalique committed
360

Paul's avatar
Paul committed
361
        auto weights = to_kcxy(args[1]);
Paul's avatar
Paul committed
362
        auto l0      = args[0];
Khalique's avatar
Khalique committed
363
364
365
366
367
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
368
                op.padding_mode                 = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
369
370
371
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];
Khalique's avatar
Khalique committed
372
373

                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
374
375
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
376
377
378
379
380
381
382
383
384
385
386
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], op.dilation[0], weight_h);
                calculate_padding(1, pads, input_w, op.stride[1], op.dilation[1], weight_w);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
                    l0 = prog.add_instruction(migraphx::op::pad{padding}, l0);
                }
                else
                {
Khalique's avatar
Khalique committed
387
388
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
389
                }
390
391
392
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
393
                op.padding_mode = op::padding_mode_t::valid;
Khalique's avatar
Khalique committed
394
            }
Khalique's avatar
Khalique committed
395
            else if(pad_mode.find("EXPLICIT") != std::string::npos)
Khalique's avatar
Khalique committed
396
            {
397
                std::vector<size_t> padding;
398
                copy(attributes.at("explicit_paddings").list().i(), std::back_inserter(padding));
Khalique's avatar
Khalique committed
399
400
401
402
403
404
405
406
407
408
409
410
                if(padding.size() != 4)
                {
                    MIGRAPHX_THROW("padding should have 4 values");
                }
                if(padding[0] != padding[2] || padding[1] != padding[3])
                {
                    MIGRAPHX_THROW("migraphx does not support asymetric padding");
                }
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }
Paul's avatar
Paul committed
411
        return prog.add_instruction(op, {l0, to_kcxy(args[1])});
Khalique's avatar
Khalique committed
412
413
    }

Khalique's avatar
Khalique committed
414
415
416
    instruction_ref parse_depthwiseconv(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
417
418
419
    {
        op::convolution op;
        size_t num_channels = args[0]->get_shape().lens()[1];
Khalique's avatar
Khalique committed
420
        op.group            = num_channels;
Khalique's avatar
Khalique committed
421

Khalique's avatar
Khalique committed
422
423
        if(contains(attributes, "strides"))
        {
424
            std::vector<size_t> stride;
425
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
426
            reorder_data(stride);
427
428
            if(stride.size() != 4)
            {
429
                MIGRAPHX_THROW("strides should have 4 values");
430
            }
431
432
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
433
        }
Paul's avatar
Paul committed
434
435

        auto weights = to_kcxy(args[1]);
Khalique's avatar
Khalique committed
436
437
        if(contains(attributes, "dilations"))
        {
438
            std::vector<size_t> dilation;
439
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
440
            reorder_data(dilation);
441
442
443
444
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
445
446
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
447
448
        }

Khalique's avatar
Khalique committed
449
        auto l0 = args[0];
Khalique's avatar
Khalique committed
450
451
452
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
Khalique's avatar
Khalique committed
453

Khalique's avatar
Khalique committed
454
455
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
456
                op.padding_mode                 = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
457
458
459
460
461
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];

                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
462
463
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
464
465
466
467
468
469
470
471
472
473
474
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], op.dilation[0], weight_h);
                calculate_padding(1, pads, input_w, op.stride[1], op.dilation[1], weight_w);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
                    l0 = prog.add_instruction(migraphx::op::pad{padding}, l0);
                }
                else
                {
Khalique's avatar
Khalique committed
475
476
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
477
                }
Khalique's avatar
Khalique committed
478
            }
Khalique's avatar
Khalique committed
479
            else if(pad_mode.find("VALID") != std::string::npos)
Khalique's avatar
Khalique committed
480
            {
Khalique's avatar
Khalique committed
481
                op.padding_mode = op::padding_mode_t::valid;
Khalique's avatar
Khalique committed
482
483
            }
        }
Khalique's avatar
Khalique committed
484

Khalique's avatar
Khalique committed
485
486
        std::vector<int64_t> new_weights_shape;
        copy(weights->get_shape().lens(), std::back_inserter(new_weights_shape));
Khalique's avatar
Khalique committed
487
488
489
490

        // weight format is (out_channels, in_channels, h, w), but in depthwise_conv,
        // out_channels is equal to the multiplier. Adjust by inserting a reshape and
        // setting in_channels to 1
Khalique's avatar
Khalique committed
491
        int64_t multiplier   = new_weights_shape[0];
Khalique's avatar
Khalique committed
492
493
494
        int64_t out_channels = num_channels * multiplier;
        new_weights_shape[0] = out_channels;
        new_weights_shape[1] = 1;
Paul's avatar
Paul committed
495
        // Make sure weights are contiguous before doing reshape
Paul's avatar
Paul committed
496
497
        auto new_weights =
            prog.add_instruction(op::reshape{new_weights_shape}, make_contiguous(weights));
Khalique's avatar
Khalique committed
498

Khalique's avatar
Khalique committed
499
        return prog.add_instruction(op, {l0, new_weights});
Khalique's avatar
Khalique committed
500
501
    }

Khalique's avatar
Khalique committed
502
503
    instruction_ref
    parse_expanddims(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
504
505
    {
        std::vector<size_t> input_dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
506
        std::vector<int64_t> new_dims(input_dims.begin(), input_dims.end());
Khalique's avatar
Khalique committed
507
        size_t num_dims = input_dims.size();
508
        int32_t dim     = args[1]->eval().at<int32_t>();
Khalique's avatar
Khalique committed
509
510

        if(dim < 0)
Khalique's avatar
Khalique committed
511
512
513
514
515
516
517
518
519
520
        {
            new_dims.insert(new_dims.begin() + (num_dims + dim + 1), 1);
        }
        else
        {
            new_dims.insert(new_dims.begin() + dim, 1);
        }
        return prog.add_instruction(op::reshape{new_dims}, args[0]);
    }

Khalique's avatar
Khalique committed
521
522
523
524
525
526
527
528
    instruction_ref
    parse_gather(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        int axis = args[2]->eval().at<int32_t>();
        op::gather op{axis};
        return prog.add_instruction(op, {args[0], args[1]});
    }

Khalique's avatar
Khalique committed
529
530
    instruction_ref
    parse_matmul(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
531
532
533
    {
        bool transa = false;
        bool transb = false;
Khalique's avatar
Khalique committed
534

535
536
537
538
539
540
541
542
543
        if(contains(attributes, "transpose_a"))
        {
            transa = attributes.at("transpose_a").b();
        }
        if(contains(attributes, "transpose_b"))
        {
            transb = attributes.at("transpose_a").b();
        }

Khalique's avatar
Khalique committed
544
545
546
547
548
549
550
551
552
        if(contains(attributes, "adj_x"))
        {
            transa = attributes.at("adj_x").b();
        }
        if(contains(attributes, "adj_y"))
        {
            transb = attributes.at("adj_y").b();
        }

553
554
555
        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
Khalique's avatar
Khalique committed
556
        std::iter_swap(perm.end() - 1, perm.end() - 2);
557
558
559
560
561
562
563

        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];

        return prog.add_instruction(op::dot{}, l1, l2);
    }

Khalique's avatar
Khalique committed
564
565
    instruction_ref
    parse_mean(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
566
567
    {
        bool keep_dims = attributes.at("keep_dims").b();
Paul's avatar
Paul committed
568
        std::vector<int32_t> hw_axes{2, 3};
Khalique's avatar
Khalique committed
569
        // check if conditions for GlobalAvgPool are met
Khalique's avatar
Khalique committed
570
        auto lens = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
571
572
        auto axes = parse_axes(args[1]->eval().get<int32_t>().to_vector(), lens.size());

Khalique's avatar
Khalique committed
573
        if(axes == hw_axes and lens.size() == 4)
Khalique's avatar
Khalique committed
574
575
        {
            op::pooling op{"average"};
Khalique's avatar
Khalique committed
576
577
            op.lengths[0] = lens[2];
            op.lengths[1] = lens[3];
Khalique's avatar
Khalique committed
578
579
580
581
582
            auto l0       = prog.add_instruction(op, args.front());
            if(keep_dims)
                return l0;
            return prog.add_instruction(
                op::squeeze{std::vector<int64_t>(hw_axes.begin(), hw_axes.end())}, l0);
Khalique's avatar
Khalique committed
583
584
585
586
        }
        MIGRAPHX_THROW("MIGraphX does not support mean outside of GlobalAvgPool transformation");
    }

Khalique's avatar
Khalique committed
587
588
589
    instruction_ref parse_pack(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
590
591
592
593
594
595
    {
        // reinterpret as unsqueeze with concat
        std::vector<instruction_ref> unsqueezed_args;
        int64_t axis = 0;
        if(contains(attributes, "axis"))
            axis = attributes.at("axis").i();
596
597
598
        size_t input_size = args.front()->get_shape().lens().size();
        if(axis > input_size)
        {
Khalique's avatar
Khalique committed
599
600
            MIGRAPHX_THROW("TF_PARSER: axis value of " + to_string(axis) +
                           " must be smaller than input size " + to_string(input_size));
601
602
        }

Khalique's avatar
Khalique committed
603
604
605
606
607
        std::transform(
            args.begin(),
            args.end(),
            std::back_inserter(unsqueezed_args),
            [&](instruction_ref arg) { return prog.add_instruction(op::unsqueeze{{axis}}, arg); });
Paul's avatar
Paul committed
608
609
        return to_nhwc(
            prog.add_instruction(op::concat{static_cast<size_t>(axis)}, unsqueezed_args));
Khalique's avatar
Khalique committed
610
611
    }

Khalique's avatar
Khalique committed
612
613
614
615
616
    instruction_ref
    parse_pad(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        size_t ndims = args.front()->get_shape().lens().size();

Khalique's avatar
Khalique committed
617
618
        // in tf, the paddings are arranged as a 2d shape (ndims, 2),
        // the last dim contains the left padding and right padding respectively
Khalique's avatar
Khalique committed
619
        std::vector<std::pair<int32_t, int32_t>> pad_per_dim(ndims);
Paul's avatar
Paul committed
620
        auto tf_padding = args[1]->eval().get<int32_t>().to_vector();
Khalique's avatar
Khalique committed
621
        for(size_t i = 0; i < 2 * ndims; i += 2)
Khalique's avatar
Khalique committed
622
        {
Khalique's avatar
Khalique committed
623
624
            pad_per_dim[i / 2].first  = tf_padding[i];
            pad_per_dim[i / 2].second = tf_padding[i + 1];
Khalique's avatar
Khalique committed
625
626
627
628
        }
        reorder_data(pad_per_dim);

        op::pad op;
Khalique's avatar
Khalique committed
629
630
        std::vector<int64_t> pads(ndims * 2);
        for(size_t i = 0; i < ndims; i++)
Khalique's avatar
Khalique committed
631
        {
Khalique's avatar
Khalique committed
632
633
            pads[i]         = pad_per_dim[i].first;
            pads[i + ndims] = pad_per_dim[i].second;
Khalique's avatar
Khalique committed
634
635
        }
        op.pads = pads;
Paul's avatar
Paul committed
636
        return prog.add_instruction(op, args.front());
Khalique's avatar
Khalique committed
637
638
    }

639
640
641
642
643
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
    {
        op::pooling op{starts_with(name, "Max") ? "max" : "average"};
Khalique's avatar
Khalique committed
644

645
646
        if(contains(attributes, "strides"))
        {
647
            std::vector<size_t> stride;
648
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
649
            reorder_data(stride);
650
651
652
653
            if(stride.size() != 4)
            {
                MIGRAPHX_THROW("strides should have 4 values");
            }
654
655
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
656
657
658
        }
        if(contains(attributes, "ksize"))
        {
659
            std::vector<size_t> ksize;
660
            copy(attributes.at("ksize").list().i(), std::back_inserter(ksize));
661
            reorder_data(ksize);
662
663
664
            if(ksize.size() != 4)
            {
                MIGRAPHX_THROW("ksize should have 4 values");
Khalique's avatar
Khalique committed
665
            }
666
667
            op.lengths[0] = ksize[2];
            op.lengths[1] = ksize[3];
668
        }
Khalique's avatar
Khalique committed
669
670

        auto l0 = args[0];
Khalique's avatar
Khalique committed
671
672
673
674
675
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
676
                op.padding_mode = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
677
                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
678
679
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
680
681
682
683
684
685
686
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], 1, op.lengths[0]);
                calculate_padding(1, pads, input_w, op.stride[1], 1, op.lengths[1]);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
Khalique's avatar
Khalique committed
687
688
                    l0                           = prog.add_instruction(
                        migraphx::op::pad{padding, std::numeric_limits<float>::lowest()}, l0);
Khalique's avatar
Khalique committed
689
690
691
                }
                else
                {
Khalique's avatar
Khalique committed
692
693
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
694
                }
Khalique's avatar
Khalique committed
695
696
697
698
699
700
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::valid;
            }
        }
Khalique's avatar
Khalique committed
701
        return prog.add_instruction(op, l0);
702
    }
Khalique's avatar
Khalique committed
703

704
    instruction_ref
Khalique's avatar
Khalique committed
705
    parse_reshape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
706
707
708
709
    {
        op::reshape op;
        if(args.size() != 2)
            MIGRAPHX_THROW("reshape needs 2 arguments (input, new_shape)");
Khalique's avatar
Khalique committed
710
        auto s = args[1]->eval();
711
        s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
712
        return prog.add_instruction(op, make_contiguous(args[0]));
713
714
    }

Khalique's avatar
Khalique committed
715
716
717
718
719
720
721
722
723
    void parse_from(std::istream& is)
    {
        tensorflow::GraphDef graph;
        if(graph.ParseFromIstream(&is))
        {
            this->parse_graph(graph);
        }
        else
        {
724
            throw std::runtime_error("Failed reading tf file");
Khalique's avatar
Khalique committed
725
726
727
        }
    }

728
729
730
731
732
733
734
735
736
737
    instruction_ref
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        auto dims = args.front()->get_shape().lens();
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
    }

Khalique's avatar
Khalique committed
738
739
740
    instruction_ref parse_squeeze(const std::string&,
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
741
742
    {
        op::squeeze op;
Khalique's avatar
Khalique committed
743
        auto input_dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
744
        auto axes       = attributes.at("squeeze_dims").list().i();
745
        copy(axes, std::back_inserter(op.axes));
Khalique's avatar
Khalique committed
746

747
748
        if(op.axes.empty()) // no squeeze_dims provided, remove any dim that equals 1
        {
Khalique's avatar
Khalique committed
749
            for(size_t i = 0; i < input_dims.size(); i++)
750
            {
Khalique's avatar
Khalique committed
751
                if(input_dims.at(i) == 1)
752
753
754
755
                {
                    op.axes.push_back(i);
                }
            }
756
        }
Paul's avatar
Paul committed
757
        return prog.add_instruction(op, make_contiguous(args[0]));
758
759
    }

Khalique's avatar
Khalique committed
760
761
    instruction_ref
    parse_slice(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
762
763
    {
        op::slice op;
Khalique's avatar
Khalique committed
764
        auto starts     = args[1]->eval().get<int32_t>().to_vector();
Khalique's avatar
Khalique committed
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
        auto size       = args[2]->eval().get<int32_t>().to_vector();
        auto axes       = args[0]->get_shape().lens();
        size_t num_axes = axes.size();

        op.starts = std::vector<int64_t>(starts.begin(), starts.end());
        op.ends   = std::vector<int64_t>(num_axes);
        op.axes   = std::vector<int64_t>(num_axes);
        std::iota(op.axes.begin(), op.axes.end(), 0);
        for(size_t i = 0; i < num_axes; i++)
        {
            if(size[i] == -1)
                op.ends[i] = axes[i];
            else
                op.ends[i] = starts[i] + size[i];
        }
        return prog.add_instruction(op, make_contiguous(args[0]));
    }

Khalique's avatar
Khalique committed
783
784
785
    instruction_ref parse_stridedslice(const std::string&,
                                       const attribute_map& attributes,
                                       std::vector<instruction_ref> args)
786
787
    {
        op::slice op;
Khalique's avatar
Khalique committed
788
789
790
        auto starts     = args[1]->eval().get<int32_t>().to_vector();
        auto ends       = args[2]->eval().get<int32_t>().to_vector();
        size_t num_axes = args[0]->get_shape().lens().size();
791

Khalique's avatar
Khalique committed
792
793
794
795
        op.starts = std::vector<int64_t>(starts.begin(), starts.end());
        op.ends   = std::vector<int64_t>(ends.begin(), ends.end());
        op.axes   = std::vector<int64_t>(num_axes);
        std::iota(op.axes.begin(), op.axes.end(), 0);
796
        uint32_t shrink_axis_mask = 0;
Khalique's avatar
Khalique committed
797
        uint32_t bitwise_compare  = 1;
798
799
800
        std::vector<int64_t> squeeze_axes;

        if(contains(attributes, "shrink_axis_mask"))
801
            shrink_axis_mask = static_cast<uint32_t>(attributes.at("shrink_axis_mask").i());
802

Khalique's avatar
Khalique committed
803
        for(size_t i = 0; i < num_axes; i++)
804
        {
805
            // the LSB corresponds to axis 0 when determining which axes to squeeze
Khalique's avatar
Khalique committed
806
            if(((shrink_axis_mask >> i) & bitwise_compare) == 1)
807
808
                squeeze_axes.push_back(i);
        }
Khalique's avatar
Khalique committed
809

Paul's avatar
Paul committed
810
811
        auto l0 = prog.add_instruction(op, make_contiguous(args[0]));
        return to_nhwc(prog.add_instruction(op::squeeze{squeeze_axes}, l0));
812
813
    }

Khalique's avatar
Khalique committed
814
815
    instruction_ref
    parse_transpose(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
816
817
818
819
820
821
822
823
    {
        auto perm = args[1]->eval().get<int32_t>().to_vector();
        op::transpose op;
        op.dims = std::vector<int64_t>(perm.begin(), perm.end());

        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
824
825
826
827
828
    void parse_graph(const tensorflow::GraphDef& graph)
    {
        nodes = get_nodes(graph, input_nodes);
        for(auto&& input : input_nodes)
        {
Khalique's avatar
Khalique committed
829
            const std::string& name   = input.name();
Khalique's avatar
Khalique committed
830
            attribute_map input_attrs = get_attributes(input);
Khalique's avatar
Khalique committed
831
832
            shape::type_t shape_type  = parse_type(input_attrs.at("dtype").type());
            std::vector<size_t> dims  = parse_dims(input_attrs.at("shape").shape());
833
            if(is_nhwc and dims.size() >= 4)
834
            {
835
                reorder_data(dims);
836
            }
Khalique's avatar
Khalique committed
837
            shape s            = shape{shape_type, dims};
Paul's avatar
Paul committed
838
            instructions[name] = to_nhwc(prog.add_parameter(name, s));
Khalique's avatar
Khalique committed
839
840
841
        }
        for(auto&& p : nodes)
        {
842
            this->parse_node(p.first);
Khalique's avatar
Khalique committed
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
        }
    }

    void parse_node(const std::string& name)
    {
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;

            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
                    auto&& iname = get_name(nodes.at(input));
                    assert(name != iname);
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op()) == 0)
            {
869
                instructions[name] = prog.add_instruction(op::unknown{node.op()}, args);
Khalique's avatar
Khalique committed
870
871
872
873
874
875
876
877
878
879
880
            }
            else
            {
                instructions[name] = ops[node.op()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const tensorflow::NodeDef& node)
    {
        attribute_map result;
Khalique's avatar
Khalique committed
881
        for(auto&& attr : node.attr())
Khalique's avatar
Khalique committed
882
883
884
885
886
887
        {
            result[attr.first] = attr.second;
        }
        return result;
    }

Khalique's avatar
Khalique committed
888
    static std::string get_name(const tensorflow::NodeDef& node) { return node.name(); }
Khalique's avatar
Khalique committed
889

Khalique's avatar
Khalique committed
890
891
    static node_map get_nodes(const tensorflow::GraphDef& graph,
                              std::vector<tensorflow::NodeDef>& input_nodes)
Khalique's avatar
Khalique committed
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
    {
        node_map result;
        for(auto&& node : graph.node())
        {
            auto node_name = get_name(node);
            // assume each node in graph has an associated name
            if(node_name.empty())
                MIGRAPHX_THROW("tf node with no name found");
            result[node_name] = node;
            if(node.op() == "Placeholder")
            {
                input_nodes.push_back(node);
            }
        }
        return result;
    }

    static shape::type_t parse_type(const tensorflow::DataType t)
    {
        shape::type_t shape_type{};
        switch(t)
        {
        case tensorflow::DataType::DT_INVALID:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case tensorflow::DataType::DT_FLOAT: shape_type = shape::float_type; break;
        case tensorflow::DataType::DT_DOUBLE: shape_type = shape::double_type; break;
        case tensorflow::DataType::DT_INT32: shape_type = shape::int32_type; break;
        case tensorflow::DataType::DT_UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case tensorflow::DataType::DT_INT16: shape_type = shape::int16_type; break;
        case tensorflow::DataType::DT_INT8: shape_type = shape::int8_type; break;
        case tensorflow::DataType::DT_STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case tensorflow::DataType::DT_COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case tensorflow::DataType::DT_INT64: shape_type = shape::int64_type; break;
        case tensorflow::DataType::DT_BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
        case tensorflow::DataType::DT_QINT8:
            break; // throw std::runtime_error("Unsupported type QINT8");
        case tensorflow::DataType::DT_QUINT8:
            break; // throw std::runtime_error("Unsupported type QUINT8");
        case tensorflow::DataType::DT_QINT32:
            break; // throw std::runtime_error("Unsupported type QINT32");
        case tensorflow::DataType::DT_BFLOAT16:
            break; // throw std::runtime_error("Unsupported type BFLOAT16");
        case tensorflow::DataType::DT_QINT16:
            break; // throw std::runtime_error("Unsupported type QINT16");
        case tensorflow::DataType::DT_QUINT16:
            break; // throw std::runtime_error("Unsupported type QUINT16");
        case tensorflow::DataType::DT_UINT16: shape_type = shape::uint16_type; break;
        case tensorflow::DataType::DT_COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        case tensorflow::DataType::DT_HALF: shape_type = shape::half_type; break;
        case tensorflow::DataType::DT_RESOURCE:
            break; // throw std::runtime_error("Unsupported type RESOURCE");
        case tensorflow::DataType::DT_VARIANT:
            break; // throw std::runtime_error("Unsupported type VARIANT");
        case tensorflow::DataType::DT_UINT32: shape_type = shape::uint32_type; break;
Khalique's avatar
Khalique committed
951
952
953
        case tensorflow::DataType::DT_UINT64:
            shape_type = shape::uint64_type;
            break;
Khalique's avatar
Khalique committed
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

        // tf pb should not use these types
        case tensorflow::DataType::DT_FLOAT_REF: break;
        case tensorflow::DataType::DT_DOUBLE_REF: break;
        case tensorflow::DataType::DT_INT32_REF: break;
        case tensorflow::DataType::DT_UINT8_REF: break;
        case tensorflow::DataType::DT_INT16_REF: break;
        case tensorflow::DataType::DT_INT8_REF: break;
        case tensorflow::DataType::DT_STRING_REF: break;
        case tensorflow::DataType::DT_COMPLEX64_REF: break;
        case tensorflow::DataType::DT_INT64_REF: break;
        case tensorflow::DataType::DT_BOOL_REF: break;
        case tensorflow::DataType::DT_QINT8_REF: break;
        case tensorflow::DataType::DT_QUINT8_REF: break;
        case tensorflow::DataType::DT_QINT32_REF: break;
        case tensorflow::DataType::DT_BFLOAT16_REF: break;
        case tensorflow::DataType::DT_QINT16_REF: break;
        case tensorflow::DataType::DT_QUINT16_REF: break;
        case tensorflow::DataType::DT_UINT16_REF: break;
        case tensorflow::DataType::DT_COMPLEX128_REF: break;
        case tensorflow::DataType::DT_HALF_REF: break;
        case tensorflow::DataType::DT_RESOURCE_REF: break;
        case tensorflow::DataType::DT_VARIANT_REF: break;
        case tensorflow::DataType::DT_UINT32_REF: break;
        case tensorflow::DataType::DT_UINT64_REF: break;
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_: break;
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_: break;
Khalique's avatar
Khalique committed
981
982
983
984
        }
        return shape_type;
    }

Khalique's avatar
Khalique committed
985
    static literal parse_tensor(const tensorflow::TensorProto& t)
Khalique's avatar
Khalique committed
986
987
    {
        std::vector<size_t> dims = parse_dims(t.tensor_shape());
988
        size_t shape_size = std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<size_t>());
Khalique's avatar
Khalique committed
989
990
        if(!t.tensor_content().empty()) // has raw data
        {
Khalique's avatar
Khalique committed
991
            const std::string& s = t.tensor_content();
Khalique's avatar
Khalique committed
992
993
994
            switch(t.dtype())
            {
            case tensorflow::DataType::DT_INVALID: throw std::runtime_error("");
Khalique's avatar
Khalique committed
995
996
            case tensorflow::DataType::DT_FLOAT:
                return literal{{shape::float_type, dims}, s.data()};
Khalique's avatar
Khalique committed
997
            case tensorflow::DataType::DT_UINT8: throw std::runtime_error("");
998
            case tensorflow::DataType::DT_INT8: return literal{{shape::int8_type, dims}, s.data()};
Khalique's avatar
Khalique committed
999
            case tensorflow::DataType::DT_UINT16:
1000
                return literal{{shape::uint16_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1001
            case tensorflow::DataType::DT_INT16:
1002
                return literal{{shape::int16_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1003
1004
1005
1006
            case tensorflow::DataType::DT_INT32:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT64:
                return literal{{shape::int64_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1007
            case tensorflow::DataType::DT_STRING: throw std::runtime_error("");
1008
            case tensorflow::DataType::DT_BOOL: return literal{{shape::int8_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1009
            case tensorflow::DataType::DT_HALF: return literal{{shape::half_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1010
1011
            case tensorflow::DataType::DT_DOUBLE:
                return literal{{shape::double_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1012
1013
1014
1015
            case tensorflow::DataType::DT_UINT32: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT64: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error("");
Khalique's avatar
Khalique committed
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
            case tensorflow::DataType::DT_QINT8: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT8: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT32: throw std::runtime_error("");
            case tensorflow::DataType::DT_BFLOAT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_RESOURCE: throw std::runtime_error("");
            case tensorflow::DataType::DT_VARIANT: throw std::runtime_error("");
            case tensorflow::DataType::DT_FLOAT_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_DOUBLE_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_STRING_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX64_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT64_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_BOOL_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_BFLOAT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX128_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_HALF_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_RESOURCE_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_VARIANT_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT64_REF: throw std::runtime_error("");
Khalique's avatar
Khalique committed
1047
1048
1049
1050
            case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
            case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
Khalique's avatar
Khalique committed
1051
1052
1053
1054
1055
1056
1057
            }
            MIGRAPHX_THROW("Invalid tensor type");
        }
        switch(t.dtype())
        {
        case tensorflow::DataType::DT_INVALID: throw std::runtime_error("");
        case tensorflow::DataType::DT_FLOAT:
Khalique's avatar
Khalique committed
1058
1059
            return create_literal(
                shape::float_type, dims, get_data_vals(t.float_val(), shape_size));
Khalique's avatar
Khalique committed
1060
1061
        case tensorflow::DataType::DT_UINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT8:
1062
            return create_literal(shape::int8_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1063
        case tensorflow::DataType::DT_UINT16:
1064
            return create_literal(shape::uint16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1065
        case tensorflow::DataType::DT_INT16:
1066
            return create_literal(shape::int16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1067
        case tensorflow::DataType::DT_INT32:
1068
            return create_literal(shape::int32_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1069
        case tensorflow::DataType::DT_INT64:
Khalique's avatar
Khalique committed
1070
1071
            return create_literal(
                shape::int64_type, dims, get_data_vals(t.int64_val(), shape_size));
Khalique's avatar
Khalique committed
1072
1073
        case tensorflow::DataType::DT_STRING: throw std::runtime_error("");
        case tensorflow::DataType::DT_BOOL:
1074
            return create_literal(shape::int32_type, dims, get_data_vals(t.bool_val(), shape_size));
Khalique's avatar
Khalique committed
1075
        case tensorflow::DataType::DT_HALF:
Khalique's avatar
Khalique committed
1076
        {
1077
1078
            std::vector<int> data_int32 = get_data_vals(t.half_val(), shape_size);
            std::vector<uint16_t> data_uint16(data_int32.begin(), data_int32.end());
Khalique's avatar
Khalique committed
1079
1080
1081
1082
1083
            std::vector<half> data_half;
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1084
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1085
        }
Khalique's avatar
Khalique committed
1086
        case tensorflow::DataType::DT_DOUBLE:
Khalique's avatar
Khalique committed
1087
            return literal{{shape::double_type, dims}, get_data_vals(t.double_val(), shape_size)};
Khalique's avatar
Khalique committed
1088
1089
1090
1091
        case tensorflow::DataType::DT_UINT32: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT64: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error("");
Khalique's avatar
Khalique committed
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
        case tensorflow::DataType::DT_QINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT32: throw std::runtime_error("");
        case tensorflow::DataType::DT_BFLOAT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_RESOURCE: throw std::runtime_error("");
        case tensorflow::DataType::DT_VARIANT: throw std::runtime_error("");
        case tensorflow::DataType::DT_FLOAT_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_DOUBLE_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_STRING_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX64_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT64_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_BOOL_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_BFLOAT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX128_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_HALF_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_RESOURCE_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_VARIANT_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT64_REF: throw std::runtime_error("");
Khalique's avatar
Khalique committed
1123
1124
1125
1126
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
Khalique's avatar
Khalique committed
1127
1128
1129
1130
        }
        MIGRAPHX_THROW("Invalid tensor type");
    }

1131
    template <class T>
Khalique's avatar
Khalique committed
1132
    static std::vector<T> get_data_vals(const google::protobuf::RepeatedField<T>& data,
1133
                                        const size_t& shape_size)
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
    {
        std::vector<T> data_vals(shape_size);
        // check if shape has enough data values given existing fields
        if(data.size() == 1)
        {
            std::fill(data_vals.begin(), data_vals.end(), data[0]);
        }
        else
            copy(data.begin(), data.end(), std::back_inserter(data_vals));
        return data_vals;
    }

Khalique's avatar
Khalique committed
1146
1147
1148
1149
    static std::vector<size_t> parse_dims(const tensorflow::TensorShapeProto& s)
    {
        std::vector<size_t> dims;
        auto input_dims = s.dim();
Khalique's avatar
Khalique committed
1150
1151
1152
        std::transform(input_dims.begin(),
                       input_dims.end(),
                       std::back_inserter(dims),
Paul's avatar
Paul committed
1153
                       [](const tensorflow::TensorShapeProto_Dim& dim) { return dim.size(); });
Khalique's avatar
Khalique committed
1154
1155
        return dims;
    }
1156
1157

    template <class T>
Khalique's avatar
Khalique committed
1158
    static literal
1159
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, std::vector<T> data)
1160
    {
Khalique's avatar
Khalique committed
1161
        // assume if explicit value is mentioned in protobuf and dim size <= 1, treat as scalar
1162
        if(dims.empty() or (dims.size() == 1 and dims.front() == 1))
1163
            return literal{{shape_type}, data};
1164
1165
        return literal{{shape_type, dims}, data};
    }
Khalique's avatar
Khalique committed
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
};

program parse_tf(const std::string& name, bool is_nhwc)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    tf_parser parser;
    parser.is_nhwc = is_nhwc;

#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
Paul's avatar
Paul committed
1188
    parser.to_nchw(std::prev(parser.prog.end()));
Khalique's avatar
Khalique committed
1189
1190
1191
1192
1193
    return std::move(parser.prog);
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx