"vscode:/vscode.git/clone" did not exist on "2220bd25ac065d2620ea4217ddd13bc2c92fea5d"
tf.cpp 47.7 KB
Newer Older
Khalique's avatar
Khalique committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <graph.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <unordered_set>
#include <functional>
#include <array>
#include <utility>
#include <vector>

#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
#include <migraphx/tf.hpp>
Khalique's avatar
Khalique committed
20
#include <migraphx/pad_calc.hpp>
Khalique's avatar
Khalique committed
21
22
23
24
25
26
27

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct tf_parser
{
    using attribute_map = std::unordered_map<std::string, tensorflow::AttrValue>;
Paul's avatar
Paul committed
28
    using node_map      = std::map<std::string, tensorflow::NodeDef>;
Khalique's avatar
Khalique committed
29
30
    // using input_node_map = std::unordered_map<std::string, std::unordered_set<std::string>>;
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Khalique's avatar
Khalique committed
31

Khalique's avatar
Khalique committed
32
33
34
35
36
37
38
39
    node_map nodes;
    std::vector<tensorflow::NodeDef> input_nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
    program prog = program();
    bool is_nhwc = true;

    std::unordered_map<std::string, op_func> ops;

Paul's avatar
Paul committed
40
    bool should_transpose(instruction_ref ins) const
Paul's avatar
Paul committed
41
42
43
44
45
46
    {
        return is_nhwc and ins->get_shape().lens().size() == 4;
    }

    instruction_ref to_nhwc(instruction_ref ins)
    {
Paul's avatar
Paul committed
47
        if(should_transpose(ins))
Paul's avatar
Paul committed
48
49
50
51
52
53
            return prog.add_instruction(op::transpose{{0, 2, 3, 1}}, ins);
        return ins;
    }

    instruction_ref to_nchw(instruction_ref ins)
    {
Paul's avatar
Paul committed
54
        if(should_transpose(ins))
Paul's avatar
Paul committed
55
56
57
58
59
60
            return prog.add_instruction(op::transpose{{0, 3, 1, 2}}, ins);
        return ins;
    }

    instruction_ref to_kcxy(instruction_ref ins)
    {
Paul's avatar
Paul committed
61
        if(should_transpose(ins))
Paul's avatar
Paul committed
62
63
64
65
66
67
            return prog.add_instruction(op::transpose{{3, 2, 0, 1}}, ins);
        return ins;
    }

    instruction_ref make_contiguous(instruction_ref ins)
    {
Paul's avatar
Paul committed
68
        if(ins->get_shape().standard())
Paul's avatar
Paul committed
69
70
71
72
73
74
75
76
            return ins;
        else
            return prog.add_instruction(op::contiguous{}, ins);
    }

    std::vector<instruction_ref> to_nchw(const std::vector<instruction_ref>& args)
    {
        std::vector<instruction_ref> result(args.size());
Paul's avatar
Paul committed
77
        std::transform(
Paul's avatar
Paul committed
78
            args.begin(), args.end(), result.begin(), [&](auto ins) { return this->to_nchw(ins); });
Paul's avatar
Paul committed
79
80
81
        return result;
    }

Khalique's avatar
Khalique committed
82
    std::vector<size_t>
83
    parse_axes(const attribute_map& attributes, const std::string& s, const size_t num_dims) const
84
    {
85
86
87
        auto attrs = attributes.at(s).list().i();
        std::vector<size_t> axes;
        copy(attrs.begin(), attrs.end(), std::back_inserter(axes));
Khalique's avatar
Khalique committed
88
        if(is_nhwc)
89
        {
Khalique's avatar
Khalique committed
90
            std::transform(axes.begin(), axes.end(), axes.begin(), [&](size_t axis) {
Khalique's avatar
Khalique committed
91
                return parse_axis(axis, num_dims);
Khalique's avatar
Khalique committed
92
            });
93
94
95
96
        }
        return axes;
    }

Khalique's avatar
Khalique committed
97
    template <class T>
98
    std::vector<T> parse_axes(std::vector<T> axes, const size_t num_dims) const
Khalique's avatar
Khalique committed
99
100
101
    {
        if(is_nhwc)
        {
102
            std::vector<T> new_axes;
Khalique's avatar
Khalique committed
103
104
105
            std::transform(axes.begin(),
                           axes.end(),
                           std::back_inserter(new_axes),
Khalique's avatar
Khalique committed
106
                           [&](size_t axis) { return parse_axis(axis, num_dims); });
107
            return new_axes;
Khalique's avatar
Khalique committed
108
        }
109
        return axes;
Khalique's avatar
Khalique committed
110
111
    }

Khalique's avatar
Khalique committed
112
113
114
    // tf stores certain attributes such as strides, dilations, as a 4D input.
    // The first and last dims are equal to 1, and the relevant data is in dims 2 and 3.
    // This helper function reorders the data to store for the respective operator member variables.
115
    template <class T>
116
    void reorder_data(std::vector<T>& prev_data) const
117
118
    {
        std::vector<T> new_data(prev_data.size());
119
        for(size_t i = 0; i < new_data.size(); i++)
120
        {
Khalique's avatar
Khalique committed
121
            auto new_idx         = parse_axis(i, new_data.size());
122
            new_data.at(new_idx) = prev_data.at(i);
123
        }
124
125
126
127
        prev_data = new_data;
    }

    template <class T>
128
    T parse_axis(const T& dim, const size_t num_dims) const
129
    {
Khalique's avatar
Khalique committed
130
        T new_dim = dim;
Khalique's avatar
Khalique committed
131
        if(is_nhwc and num_dims >= 4)
132
133
134
        {
            switch(dim)
            {
Khalique's avatar
Khalique committed
135
136
137
138
139
            case 0: new_dim = 0; break;
            case 1: new_dim = 2; break;
            case 2: new_dim = 3; break;
            case 3: new_dim = 1; break;
            default: break;
140
141
            }
        }
Khalique's avatar
Khalique committed
142
        return new_dim;
143
144
    }

145
146
147
148
149
150
151
    std::vector<int64_t> get_axes(size_t num_axes) const
    {
        std::vector<int64_t> axes(num_axes);
        std::iota(axes.begin(), axes.end(), 0);
        return axes;
    }

Khalique's avatar
Khalique committed
152
153
154
155
    tf_parser()
    {
        add_generic_op("Identity", op::identity{});
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
156
        add_generic_op("Relu6", op::clip{6.0, 0.0});
Khalique's avatar
Khalique committed
157
        add_generic_op("Tanh", op::tanh{});
Khalique's avatar
Khalique committed
158
        add_generic_op("StopGradient", op::identity{});
Khalique's avatar
Khalique committed
159

160
        add_binary_op("Add", op::add{});
Khalique's avatar
Khalique committed
161
        add_binary_op("Mul", op::mul{});
Khalique's avatar
Khalique committed
162
        add_binary_op("SquaredDifference", op::sqdiff{});
Khalique's avatar
Khalique committed
163
        add_binary_op("Sub", op::sub{});
Khalique's avatar
Khalique committed
164

165
        add_mem_op("AvgPool", &tf_parser::parse_pooling);
166
        add_mem_op("BiasAdd", &tf_parser::parse_biasadd);
Paul's avatar
Paul committed
167
        add_mem_op("ConcatV2", &tf_parser::parse_concat, false);
Khalique's avatar
Khalique committed
168
        add_mem_op("Const", &tf_parser::parse_constant);
Paul's avatar
Paul committed
169
        add_mem_op("Conv2D", &tf_parser::parse_conv);
Paul's avatar
Paul committed
170
        add_mem_op("DepthwiseConv2dNative", &tf_parser::parse_depthwiseconv);
171
        add_mem_op("ExpandDims", &tf_parser::parse_expanddims, false);
Khalique's avatar
Khalique committed
172
        add_mem_op("FusedBatchNorm", &tf_parser::parse_batchnorm);
Paul's avatar
Paul committed
173
        add_mem_op("MatMul", &tf_parser::parse_matmul, false);
174
        add_mem_op("MaxPool", &tf_parser::parse_pooling);
Khalique's avatar
Khalique committed
175
        add_mem_op("Mean", &tf_parser::parse_mean);
Paul's avatar
Paul committed
176
        add_mem_op("Pack", &tf_parser::parse_pack, false);
Paul's avatar
Paul committed
177
        add_mem_op("Pad", &tf_parser::parse_pad);
Paul's avatar
Paul committed
178
        add_mem_op("Reshape", &tf_parser::parse_reshape, false);
Khalique's avatar
Khalique committed
179
        add_mem_op("Slice", &tf_parser::parse_slice, false);
180
        add_mem_op("Softmax", &tf_parser::parse_softmax);
Paul's avatar
Paul committed
181
        add_mem_op("Squeeze", &tf_parser::parse_squeeze, false);
182
        add_mem_op("StridedSlice", &tf_parser::parse_stridedslice);
Khalique's avatar
Khalique committed
183
184
    }

185
    template <class F>
Paul's avatar
Paul committed
186
    void add_op(std::string name, F f, bool transpose = true)
187
    {
Paul's avatar
Paul committed
188
        if(transpose)
Paul's avatar
Paul committed
189
        {
Paul's avatar
Paul committed
190
191
            ops.emplace(name,
                        op_func{[=](const attribute_map& attributes,
Paul's avatar
Paul committed
192
                                    const std::vector<instruction_ref>& args) -> instruction_ref {
Paul's avatar
Paul committed
193
194
                            return to_nhwc(f(attributes, to_nchw(args)));
                        }});
Paul's avatar
Paul committed
195
196
197
198
199
        }
        else
        {
            ops.emplace(name, f);
        }
200
201
    }

Khalique's avatar
Khalique committed
202
    template <class F>
Paul's avatar
Paul committed
203
    void add_mem_op(std::string name, F f, bool transpose = true)
Khalique's avatar
Khalique committed
204
    {
Paul's avatar
Paul committed
205
206
207
208
209
        add_op(name,
               [=](auto&&... xs) {
                   return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
               },
               transpose);
Khalique's avatar
Khalique committed
210
211
212
213
214
    }

    template <class T>
    void add_binary_op(std::string name, T x)
    {
Paul's avatar
Paul committed
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
        add_op(name,
               [this, x](const attribute_map&, std::vector<instruction_ref> args) {
                   if(args.size() != 2)
                       MIGRAPHX_THROW("binary operators should have 2 operands");
                   // TODO
                   // if(contains(attributes, "data_format"))
                   // {
                   //     if(is_nhwc)
                   //     {
                   //         l0 = prog.add_instruction(op::transpose{{0, 3, 1, 2}}, args[1]);
                   //     }
                   // }
                   return add_broadcastable_binary_op(args[0], args[1], x);
               },
               false);
Khalique's avatar
Khalique committed
230
231
232
233
234
    }

    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
235
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
        {
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
            // Get lengths for both arguments
251
252
            const std::vector<size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<size_t>* s1 = &arg1->get_shape().lens();
Khalique's avatar
Khalique committed
253
254
255
256
257

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

258
            std::vector<size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
259
260
261
262
263
264
265
266
267
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
Paul's avatar
Paul committed
268
            return to_nhwc(prog.add_instruction(x, to_nchw(l0), to_nchw(l1)));
Khalique's avatar
Khalique committed
269
270
271
        }
        else
        {
Paul's avatar
Paul committed
272
            return to_nhwc(prog.add_instruction(x, {to_nchw(arg0), to_nchw(arg1)}));
Khalique's avatar
Khalique committed
273
274
275
276
        }
    }

    template <class T>
Paul's avatar
Paul committed
277
    void add_generic_op(std::string name, T x, bool transpose = true)
Khalique's avatar
Khalique committed
278
    {
Paul's avatar
Paul committed
279
280
281
282
283
        add_op(name,
               [this, x](const attribute_map&, std::vector<instruction_ref> args) {
                   return prog.add_instruction(x, args);
               },
               transpose);
Khalique's avatar
Khalique committed
284
285
286
287
288
    }

    instruction_ref
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
289
290
291
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Khalique's avatar
Khalique committed
292
293
294
295
296
297
298
299
        if(contains(attributes, "epsilon"))
        {
            epsilon = attributes.at("epsilon").f();
        }
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
        return prog.add_instruction(op, std::move(args));
    }

300
    instruction_ref
Khalique's avatar
Khalique committed
301
    parse_biasadd(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
302
    {
303
        uint64_t axis = 1; // assume output of previous layer is in NCHW (broadcast on channel)
Shucai Xiao's avatar
Shucai Xiao committed
304
        auto l0 = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()}, args[1]);
305
        return prog.add_instruction(op::add{}, args[0], l0);
306
307
    }

Khalique's avatar
Khalique committed
308
309
310
311
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        // get index for axis within args
312
        size_t axis_idx = attributes.at("N").i();
Paul's avatar
Paul committed
313
        size_t axis     = args[axis_idx]->eval().at<int64_t>();
Khalique's avatar
Khalique committed
314
        op::concat op{axis};
315
        // return only first N arguments (assuming last index is the axis value)
Paul's avatar
Paul committed
316
317
        return prog.add_instruction(
            op, std::vector<instruction_ref>(args.begin(), args.begin() + args.size() - 1));
Khalique's avatar
Khalique committed
318
319
320
321
322
323
    }

    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
    {
Paul's avatar
Paul committed
324
        literal v = parse_tensor(attributes.at("value").tensor());
Paul's avatar
Paul committed
325
        return prog.add_literal(v);
Khalique's avatar
Khalique committed
326
327
328
329
330
331
332
333
    }

    instruction_ref
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::convolution op;
        if(contains(attributes, "strides"))
        {
334
            std::vector<size_t> stride;
335
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
336
            reorder_data(stride);
337
338
            if(stride.size() != 4)
            {
339
                MIGRAPHX_THROW("strides should have 4 values");
340
            }
341
342
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
343
344
345
        }
        if(contains(attributes, "dilations"))
        {
346
            std::vector<size_t> dilation;
347
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
348
            reorder_data(dilation);
349
350
351
352
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
353
354
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
355
        }
Khalique's avatar
Khalique committed
356

Paul's avatar
Paul committed
357
        auto weights = to_kcxy(args[1]);
Paul's avatar
Paul committed
358
        auto l0      = args[0];
Khalique's avatar
Khalique committed
359
360
361
362
363
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
364
                op.padding_mode                 = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
365
366
367
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];
Khalique's avatar
Khalique committed
368
369

                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
370
371
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
372
373
374
375
376
377
378
379
380
381
382
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], op.dilation[0], weight_h);
                calculate_padding(1, pads, input_w, op.stride[1], op.dilation[1], weight_w);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
                    l0 = prog.add_instruction(migraphx::op::pad{padding}, l0);
                }
                else
                {
Khalique's avatar
Khalique committed
383
384
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
385
                }
386
387
388
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
389
                op.padding_mode = op::padding_mode_t::valid;
Khalique's avatar
Khalique committed
390
            }
Khalique's avatar
Khalique committed
391
            else if(pad_mode.find("EXPLICIT") != std::string::npos)
Khalique's avatar
Khalique committed
392
            {
393
                std::vector<size_t> padding;
394
                copy(attributes.at("explicit_paddings").list().i(), std::back_inserter(padding));
Khalique's avatar
Khalique committed
395
396
397
398
399
400
401
402
403
404
405
406
                if(padding.size() != 4)
                {
                    MIGRAPHX_THROW("padding should have 4 values");
                }
                if(padding[0] != padding[2] || padding[1] != padding[3])
                {
                    MIGRAPHX_THROW("migraphx does not support asymetric padding");
                }
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }
Paul's avatar
Paul committed
407
        return prog.add_instruction(op, {l0, to_kcxy(args[1])});
Khalique's avatar
Khalique committed
408
409
    }

Khalique's avatar
Khalique committed
410
411
412
    instruction_ref parse_depthwiseconv(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
413
414
415
    {
        op::convolution op;
        size_t num_channels = args[0]->get_shape().lens()[1];
Khalique's avatar
Khalique committed
416
        op.group            = num_channels;
Khalique's avatar
Khalique committed
417

Khalique's avatar
Khalique committed
418
419
        if(contains(attributes, "strides"))
        {
420
            std::vector<size_t> stride;
421
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
422
            reorder_data(stride);
423
424
            if(stride.size() != 4)
            {
425
                MIGRAPHX_THROW("strides should have 4 values");
426
            }
427
428
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
429
        }
Paul's avatar
Paul committed
430
431

        auto weights = to_kcxy(args[1]);
Khalique's avatar
Khalique committed
432
433
        if(contains(attributes, "dilations"))
        {
434
            std::vector<size_t> dilation;
435
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
436
            reorder_data(dilation);
437
438
439
440
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
441
442
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
443
444
        }

Khalique's avatar
Khalique committed
445
        auto l0 = args[0];
Khalique's avatar
Khalique committed
446
447
448
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
Khalique's avatar
Khalique committed
449

Khalique's avatar
Khalique committed
450
451
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
452
                op.padding_mode                 = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
453
454
455
456
457
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];

                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
458
459
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
460
461
462
463
464
465
466
467
468
469
470
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], op.dilation[0], weight_h);
                calculate_padding(1, pads, input_w, op.stride[1], op.dilation[1], weight_w);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
                    l0 = prog.add_instruction(migraphx::op::pad{padding}, l0);
                }
                else
                {
Khalique's avatar
Khalique committed
471
472
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
473
                }
Khalique's avatar
Khalique committed
474
            }
Khalique's avatar
Khalique committed
475
            else if(pad_mode.find("VALID") != std::string::npos)
Khalique's avatar
Khalique committed
476
            {
Khalique's avatar
Khalique committed
477
                op.padding_mode = op::padding_mode_t::valid;
Khalique's avatar
Khalique committed
478
479
            }
        }
Khalique's avatar
Khalique committed
480

Khalique's avatar
Khalique committed
481
482
        std::vector<int64_t> new_weights_shape;
        copy(weights->get_shape().lens(), std::back_inserter(new_weights_shape));
Khalique's avatar
Khalique committed
483
484
485
486

        // weight format is (out_channels, in_channels, h, w), but in depthwise_conv,
        // out_channels is equal to the multiplier. Adjust by inserting a reshape and
        // setting in_channels to 1
Khalique's avatar
Khalique committed
487
        int64_t multiplier   = new_weights_shape[0];
Khalique's avatar
Khalique committed
488
489
490
        int64_t out_channels = num_channels * multiplier;
        new_weights_shape[0] = out_channels;
        new_weights_shape[1] = 1;
Paul's avatar
Paul committed
491
        // Make sure weights are contiguous before doing reshape
Paul's avatar
Paul committed
492
493
        auto new_weights =
            prog.add_instruction(op::reshape{new_weights_shape}, make_contiguous(weights));
Khalique's avatar
Khalique committed
494

Khalique's avatar
Khalique committed
495
        return prog.add_instruction(op, {l0, new_weights});
Khalique's avatar
Khalique committed
496
497
    }

Khalique's avatar
Khalique committed
498
499
    instruction_ref
    parse_expanddims(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
500
501
    {
        std::vector<size_t> input_dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
502
        std::vector<int64_t> new_dims(input_dims.begin(), input_dims.end());
Khalique's avatar
Khalique committed
503
        size_t num_dims = input_dims.size();
504
        int32_t dim     = args[1]->eval().at<int32_t>();
Khalique's avatar
Khalique committed
505
506

        if(dim < 0)
Khalique's avatar
Khalique committed
507
508
509
510
511
512
513
514
515
516
        {
            new_dims.insert(new_dims.begin() + (num_dims + dim + 1), 1);
        }
        else
        {
            new_dims.insert(new_dims.begin() + dim, 1);
        }
        return prog.add_instruction(op::reshape{new_dims}, args[0]);
    }

Khalique's avatar
Khalique committed
517
518
    instruction_ref
    parse_matmul(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
519
520
521
    {
        bool transa = false;
        bool transb = false;
Khalique's avatar
Khalique committed
522

523
524
525
526
527
528
529
530
531
532
533
534
        if(contains(attributes, "transpose_a"))
        {
            transa = attributes.at("transpose_a").b();
        }
        if(contains(attributes, "transpose_b"))
        {
            transb = attributes.at("transpose_a").b();
        }

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
Khalique's avatar
Khalique committed
535
        std::iter_swap(perm.end() - 1, perm.end() - 2);
536
537
538
539
540
541
542

        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];

        return prog.add_instruction(op::dot{}, l1, l2);
    }

Khalique's avatar
Khalique committed
543
544
    instruction_ref
    parse_mean(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
545
546
    {
        bool keep_dims = attributes.at("keep_dims").b();
Paul's avatar
Paul committed
547
        std::vector<int32_t> hw_axes{2, 3};
Khalique's avatar
Khalique committed
548
        // check if conditions for GlobalAvgPool are met
Khalique's avatar
Khalique committed
549
        auto lens = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
550
551
        auto axes = parse_axes(args[1]->eval().get<int32_t>().to_vector(), lens.size());

Khalique's avatar
Khalique committed
552
        if(axes == hw_axes and lens.size() == 4)
Khalique's avatar
Khalique committed
553
554
        {
            op::pooling op{"average"};
Khalique's avatar
Khalique committed
555
556
            op.lengths[0] = lens[2];
            op.lengths[1] = lens[3];
Khalique's avatar
Khalique committed
557
558
559
560
561
            auto l0       = prog.add_instruction(op, args.front());
            if(keep_dims)
                return l0;
            return prog.add_instruction(
                op::squeeze{std::vector<int64_t>(hw_axes.begin(), hw_axes.end())}, l0);
Khalique's avatar
Khalique committed
562
563
564
565
        }
        MIGRAPHX_THROW("MIGraphX does not support mean outside of GlobalAvgPool transformation");
    }

Khalique's avatar
Khalique committed
566
567
568
    instruction_ref parse_pack(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
569
570
571
572
573
574
    {
        // reinterpret as unsqueeze with concat
        std::vector<instruction_ref> unsqueezed_args;
        int64_t axis = 0;
        if(contains(attributes, "axis"))
            axis = attributes.at("axis").i();
575
576
577
        size_t input_size = args.front()->get_shape().lens().size();
        if(axis > input_size)
        {
Khalique's avatar
Khalique committed
578
579
            MIGRAPHX_THROW("TF_PARSER: axis value of " + to_string(axis) +
                           " must be smaller than input size " + to_string(input_size));
580
581
        }

Khalique's avatar
Khalique committed
582
583
584
585
586
        std::transform(
            args.begin(),
            args.end(),
            std::back_inserter(unsqueezed_args),
            [&](instruction_ref arg) { return prog.add_instruction(op::unsqueeze{{axis}}, arg); });
Paul's avatar
Paul committed
587
588
        return to_nhwc(
            prog.add_instruction(op::concat{static_cast<size_t>(axis)}, unsqueezed_args));
Khalique's avatar
Khalique committed
589
590
    }

Khalique's avatar
Khalique committed
591
592
593
594
595
    instruction_ref
    parse_pad(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        size_t ndims = args.front()->get_shape().lens().size();

Khalique's avatar
Khalique committed
596
597
        // in tf, the paddings are arranged as a 2d shape (ndims, 2),
        // the last dim contains the left padding and right padding respectively
Khalique's avatar
Khalique committed
598
        std::vector<std::pair<int32_t, int32_t>> pad_per_dim(ndims);
Paul's avatar
Paul committed
599
        auto tf_padding = args[1]->eval().get<int32_t>().to_vector();
Khalique's avatar
Khalique committed
600
        for(size_t i = 0; i < 2 * ndims; i += 2)
Khalique's avatar
Khalique committed
601
        {
Khalique's avatar
Khalique committed
602
603
            pad_per_dim[i / 2].first  = tf_padding[i];
            pad_per_dim[i / 2].second = tf_padding[i + 1];
Khalique's avatar
Khalique committed
604
605
606
607
        }
        reorder_data(pad_per_dim);

        op::pad op;
Khalique's avatar
Khalique committed
608
609
        std::vector<int64_t> pads(ndims * 2);
        for(size_t i = 0; i < ndims; i++)
Khalique's avatar
Khalique committed
610
        {
Khalique's avatar
Khalique committed
611
612
            pads[i]         = pad_per_dim[i].first;
            pads[i + ndims] = pad_per_dim[i].second;
Khalique's avatar
Khalique committed
613
614
        }
        op.pads = pads;
Paul's avatar
Paul committed
615
        return prog.add_instruction(op, args.front());
Khalique's avatar
Khalique committed
616
617
    }

618
619
620
621
622
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
    {
        op::pooling op{starts_with(name, "Max") ? "max" : "average"};
Khalique's avatar
Khalique committed
623

624
625
        if(contains(attributes, "strides"))
        {
626
            std::vector<size_t> stride;
627
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
628
            reorder_data(stride);
629
630
631
632
            if(stride.size() != 4)
            {
                MIGRAPHX_THROW("strides should have 4 values");
            }
633
634
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
635
636
637
        }
        if(contains(attributes, "ksize"))
        {
638
            std::vector<size_t> ksize;
639
            copy(attributes.at("ksize").list().i(), std::back_inserter(ksize));
640
            reorder_data(ksize);
641
642
643
            if(ksize.size() != 4)
            {
                MIGRAPHX_THROW("ksize should have 4 values");
Khalique's avatar
Khalique committed
644
            }
645
646
            op.lengths[0] = ksize[2];
            op.lengths[1] = ksize[3];
647
        }
Khalique's avatar
Khalique committed
648
649

        auto l0 = args[0];
Khalique's avatar
Khalique committed
650
651
652
653
654
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
655
                op.padding_mode = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
656
                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
657
658
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
659
660
661
662
663
664
665
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], 1, op.lengths[0]);
                calculate_padding(1, pads, input_w, op.stride[1], 1, op.lengths[1]);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
Khalique's avatar
Khalique committed
666
667
                    l0                           = prog.add_instruction(
                        migraphx::op::pad{padding, std::numeric_limits<float>::lowest()}, l0);
Khalique's avatar
Khalique committed
668
669
670
                }
                else
                {
Khalique's avatar
Khalique committed
671
672
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
673
                }
Khalique's avatar
Khalique committed
674
675
676
677
678
679
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::valid;
            }
        }
Khalique's avatar
Khalique committed
680
        return prog.add_instruction(op, l0);
681
    }
Khalique's avatar
Khalique committed
682

683
    instruction_ref
Khalique's avatar
Khalique committed
684
    parse_reshape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
685
686
687
688
    {
        op::reshape op;
        if(args.size() != 2)
            MIGRAPHX_THROW("reshape needs 2 arguments (input, new_shape)");
Khalique's avatar
Khalique committed
689
        auto s = args[1]->eval();
690
        s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
691
        return prog.add_instruction(op, make_contiguous(args[0]));
692
693
    }

Khalique's avatar
Khalique committed
694
695
696
697
698
699
700
701
702
    void parse_from(std::istream& is)
    {
        tensorflow::GraphDef graph;
        if(graph.ParseFromIstream(&is))
        {
            this->parse_graph(graph);
        }
        else
        {
703
            throw std::runtime_error("Failed reading tf file");
Khalique's avatar
Khalique committed
704
705
706
        }
    }

707
708
709
710
711
712
713
714
715
716
    instruction_ref
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        auto dims = args.front()->get_shape().lens();
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
    }

Khalique's avatar
Khalique committed
717
718
719
    instruction_ref parse_squeeze(const std::string&,
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
720
721
    {
        op::squeeze op;
Khalique's avatar
Khalique committed
722
        auto input_dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
723
        auto axes       = attributes.at("squeeze_dims").list().i();
724
        copy(axes, std::back_inserter(op.axes));
Khalique's avatar
Khalique committed
725

726
727
        if(op.axes.empty()) // no squeeze_dims provided, remove any dim that equals 1
        {
Khalique's avatar
Khalique committed
728
            for(size_t i = 0; i < input_dims.size(); i++)
729
            {
Khalique's avatar
Khalique committed
730
                if(input_dims.at(i) == 1)
731
732
733
734
                {
                    op.axes.push_back(i);
                }
            }
735
        }
Paul's avatar
Paul committed
736
        return prog.add_instruction(op, make_contiguous(args[0]));
737
738
    }

Khalique's avatar
Khalique committed
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
    instruction_ref parse_slice(const std::string&,
                                       const attribute_map&,
                                       std::vector<instruction_ref> args)
    {
        op::slice op;
        auto starts      = args[1]->eval().get<int32_t>().to_vector();
        auto size       = args[2]->eval().get<int32_t>().to_vector();
        auto axes       = args[0]->get_shape().lens();
        size_t num_axes = axes.size();

        op.starts = std::vector<int64_t>(starts.begin(), starts.end());
        op.ends   = std::vector<int64_t>(num_axes);
        op.axes   = std::vector<int64_t>(num_axes);
        std::iota(op.axes.begin(), op.axes.end(), 0);
        for(size_t i = 0; i < num_axes; i++)
        {
            if(size[i] == -1)
                op.ends[i] = axes[i];
            else
                op.ends[i] = starts[i] + size[i];
        }
        return prog.add_instruction(op, make_contiguous(args[0]));
    }

Khalique's avatar
Khalique committed
763
764
765
    instruction_ref parse_stridedslice(const std::string&,
                                       const attribute_map& attributes,
                                       std::vector<instruction_ref> args)
766
767
    {
        op::slice op;
Khalique's avatar
Khalique committed
768
769
770
        auto starts     = args[1]->eval().get<int32_t>().to_vector();
        auto ends       = args[2]->eval().get<int32_t>().to_vector();
        size_t num_axes = args[0]->get_shape().lens().size();
771

Khalique's avatar
Khalique committed
772
773
774
775
        op.starts = std::vector<int64_t>(starts.begin(), starts.end());
        op.ends   = std::vector<int64_t>(ends.begin(), ends.end());
        op.axes   = std::vector<int64_t>(num_axes);
        std::iota(op.axes.begin(), op.axes.end(), 0);
776
        uint32_t shrink_axis_mask = 0;
Khalique's avatar
Khalique committed
777
        uint32_t bitwise_compare  = 1;
778
779
780
        std::vector<int64_t> squeeze_axes;

        if(contains(attributes, "shrink_axis_mask"))
781
            shrink_axis_mask = static_cast<uint32_t>(attributes.at("shrink_axis_mask").i());
782

Khalique's avatar
Khalique committed
783
        for(size_t i = 0; i < num_axes; i++)
784
        {
785
            // the LSB corresponds to axis 0 when determining which axes to squeeze
Khalique's avatar
Khalique committed
786
            if(((shrink_axis_mask >> i) & bitwise_compare) == 1)
787
788
                squeeze_axes.push_back(i);
        }
Khalique's avatar
Khalique committed
789

Paul's avatar
Paul committed
790
791
        auto l0 = prog.add_instruction(op, make_contiguous(args[0]));
        return to_nhwc(prog.add_instruction(op::squeeze{squeeze_axes}, l0));
792
793
    }

Khalique's avatar
Khalique committed
794
795
796
797
798
    void parse_graph(const tensorflow::GraphDef& graph)
    {
        nodes = get_nodes(graph, input_nodes);
        for(auto&& input : input_nodes)
        {
Khalique's avatar
Khalique committed
799
            const std::string& name   = input.name();
Khalique's avatar
Khalique committed
800
            attribute_map input_attrs = get_attributes(input);
Khalique's avatar
Khalique committed
801
802
            shape::type_t shape_type  = parse_type(input_attrs.at("dtype").type());
            std::vector<size_t> dims  = parse_dims(input_attrs.at("shape").shape());
803
            if(is_nhwc and dims.size() >= 4)
804
            {
805
                reorder_data(dims);
806
            }
Khalique's avatar
Khalique committed
807
            shape s            = shape{shape_type, dims};
Paul's avatar
Paul committed
808
            instructions[name] = to_nhwc(prog.add_parameter(name, s));
Khalique's avatar
Khalique committed
809
810
811
        }
        for(auto&& p : nodes)
        {
812
            this->parse_node(p.first);
Khalique's avatar
Khalique committed
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
        }
    }

    void parse_node(const std::string& name)
    {
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;

            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
                    auto&& iname = get_name(nodes.at(input));
                    assert(name != iname);
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op()) == 0)
            {
839
                instructions[name] = prog.add_instruction(op::unknown{node.op()}, args);
Khalique's avatar
Khalique committed
840
841
842
843
844
845
846
847
848
849
850
            }
            else
            {
                instructions[name] = ops[node.op()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const tensorflow::NodeDef& node)
    {
        attribute_map result;
Khalique's avatar
Khalique committed
851
        for(auto&& attr : node.attr())
Khalique's avatar
Khalique committed
852
853
854
855
856
857
        {
            result[attr.first] = attr.second;
        }
        return result;
    }

Khalique's avatar
Khalique committed
858
    static std::string get_name(const tensorflow::NodeDef& node) { return node.name(); }
Khalique's avatar
Khalique committed
859

Khalique's avatar
Khalique committed
860
861
    static node_map get_nodes(const tensorflow::GraphDef& graph,
                              std::vector<tensorflow::NodeDef>& input_nodes)
Khalique's avatar
Khalique committed
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
    {
        node_map result;
        for(auto&& node : graph.node())
        {
            auto node_name = get_name(node);
            // assume each node in graph has an associated name
            if(node_name.empty())
                MIGRAPHX_THROW("tf node with no name found");
            result[node_name] = node;
            if(node.op() == "Placeholder")
            {
                input_nodes.push_back(node);
            }
        }
        return result;
    }

    static shape::type_t parse_type(const tensorflow::DataType t)
    {
        shape::type_t shape_type{};
        switch(t)
        {
        case tensorflow::DataType::DT_INVALID:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case tensorflow::DataType::DT_FLOAT: shape_type = shape::float_type; break;
        case tensorflow::DataType::DT_DOUBLE: shape_type = shape::double_type; break;
        case tensorflow::DataType::DT_INT32: shape_type = shape::int32_type; break;
        case tensorflow::DataType::DT_UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case tensorflow::DataType::DT_INT16: shape_type = shape::int16_type; break;
        case tensorflow::DataType::DT_INT8: shape_type = shape::int8_type; break;
        case tensorflow::DataType::DT_STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case tensorflow::DataType::DT_COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case tensorflow::DataType::DT_INT64: shape_type = shape::int64_type; break;
        case tensorflow::DataType::DT_BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
        case tensorflow::DataType::DT_QINT8:
            break; // throw std::runtime_error("Unsupported type QINT8");
        case tensorflow::DataType::DT_QUINT8:
            break; // throw std::runtime_error("Unsupported type QUINT8");
        case tensorflow::DataType::DT_QINT32:
            break; // throw std::runtime_error("Unsupported type QINT32");
        case tensorflow::DataType::DT_BFLOAT16:
            break; // throw std::runtime_error("Unsupported type BFLOAT16");
        case tensorflow::DataType::DT_QINT16:
            break; // throw std::runtime_error("Unsupported type QINT16");
        case tensorflow::DataType::DT_QUINT16:
            break; // throw std::runtime_error("Unsupported type QUINT16");
        case tensorflow::DataType::DT_UINT16: shape_type = shape::uint16_type; break;
        case tensorflow::DataType::DT_COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        case tensorflow::DataType::DT_HALF: shape_type = shape::half_type; break;
        case tensorflow::DataType::DT_RESOURCE:
            break; // throw std::runtime_error("Unsupported type RESOURCE");
        case tensorflow::DataType::DT_VARIANT:
            break; // throw std::runtime_error("Unsupported type VARIANT");
        case tensorflow::DataType::DT_UINT32: shape_type = shape::uint32_type; break;
Khalique's avatar
Khalique committed
921
922
923
        case tensorflow::DataType::DT_UINT64:
            shape_type = shape::uint64_type;
            break;
Khalique's avatar
Khalique committed
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950

        // tf pb should not use these types
        case tensorflow::DataType::DT_FLOAT_REF: break;
        case tensorflow::DataType::DT_DOUBLE_REF: break;
        case tensorflow::DataType::DT_INT32_REF: break;
        case tensorflow::DataType::DT_UINT8_REF: break;
        case tensorflow::DataType::DT_INT16_REF: break;
        case tensorflow::DataType::DT_INT8_REF: break;
        case tensorflow::DataType::DT_STRING_REF: break;
        case tensorflow::DataType::DT_COMPLEX64_REF: break;
        case tensorflow::DataType::DT_INT64_REF: break;
        case tensorflow::DataType::DT_BOOL_REF: break;
        case tensorflow::DataType::DT_QINT8_REF: break;
        case tensorflow::DataType::DT_QUINT8_REF: break;
        case tensorflow::DataType::DT_QINT32_REF: break;
        case tensorflow::DataType::DT_BFLOAT16_REF: break;
        case tensorflow::DataType::DT_QINT16_REF: break;
        case tensorflow::DataType::DT_QUINT16_REF: break;
        case tensorflow::DataType::DT_UINT16_REF: break;
        case tensorflow::DataType::DT_COMPLEX128_REF: break;
        case tensorflow::DataType::DT_HALF_REF: break;
        case tensorflow::DataType::DT_RESOURCE_REF: break;
        case tensorflow::DataType::DT_VARIANT_REF: break;
        case tensorflow::DataType::DT_UINT32_REF: break;
        case tensorflow::DataType::DT_UINT64_REF: break;
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_: break;
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_: break;
Khalique's avatar
Khalique committed
951
952
953
954
        }
        return shape_type;
    }

Khalique's avatar
Khalique committed
955
    static literal parse_tensor(const tensorflow::TensorProto& t)
Khalique's avatar
Khalique committed
956
957
    {
        std::vector<size_t> dims = parse_dims(t.tensor_shape());
958
        size_t shape_size = std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<size_t>());
Khalique's avatar
Khalique committed
959
960
        if(!t.tensor_content().empty()) // has raw data
        {
Khalique's avatar
Khalique committed
961
            const std::string& s = t.tensor_content();
Khalique's avatar
Khalique committed
962
963
964
            switch(t.dtype())
            {
            case tensorflow::DataType::DT_INVALID: throw std::runtime_error("");
Khalique's avatar
Khalique committed
965
966
            case tensorflow::DataType::DT_FLOAT:
                return literal{{shape::float_type, dims}, s.data()};
Khalique's avatar
Khalique committed
967
            case tensorflow::DataType::DT_UINT8: throw std::runtime_error("");
968
            case tensorflow::DataType::DT_INT8: return literal{{shape::int8_type, dims}, s.data()};
Khalique's avatar
Khalique committed
969
            case tensorflow::DataType::DT_UINT16:
970
                return literal{{shape::uint16_type, dims}, s.data()};
Khalique's avatar
Khalique committed
971
            case tensorflow::DataType::DT_INT16:
972
                return literal{{shape::int16_type, dims}, s.data()};
Khalique's avatar
Khalique committed
973
974
975
976
            case tensorflow::DataType::DT_INT32:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT64:
                return literal{{shape::int64_type, dims}, s.data()};
Khalique's avatar
Khalique committed
977
            case tensorflow::DataType::DT_STRING: throw std::runtime_error("");
978
            case tensorflow::DataType::DT_BOOL: return literal{{shape::int8_type, dims}, s.data()};
Khalique's avatar
Khalique committed
979
            case tensorflow::DataType::DT_HALF: return literal{{shape::half_type, dims}, s.data()};
Khalique's avatar
Khalique committed
980
981
            case tensorflow::DataType::DT_DOUBLE:
                return literal{{shape::double_type, dims}, s.data()};
Khalique's avatar
Khalique committed
982
983
984
985
            case tensorflow::DataType::DT_UINT32: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT64: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error("");
Khalique's avatar
Khalique committed
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
            case tensorflow::DataType::DT_QINT8: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT8: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT32: throw std::runtime_error("");
            case tensorflow::DataType::DT_BFLOAT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_RESOURCE: throw std::runtime_error("");
            case tensorflow::DataType::DT_VARIANT: throw std::runtime_error("");
            case tensorflow::DataType::DT_FLOAT_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_DOUBLE_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_STRING_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX64_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT64_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_BOOL_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_BFLOAT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX128_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_HALF_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_RESOURCE_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_VARIANT_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT64_REF: throw std::runtime_error("");
Khalique's avatar
Khalique committed
1017
1018
1019
1020
            case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
            case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
Khalique's avatar
Khalique committed
1021
1022
1023
1024
1025
1026
1027
            }
            MIGRAPHX_THROW("Invalid tensor type");
        }
        switch(t.dtype())
        {
        case tensorflow::DataType::DT_INVALID: throw std::runtime_error("");
        case tensorflow::DataType::DT_FLOAT:
Khalique's avatar
Khalique committed
1028
1029
            return create_literal(
                shape::float_type, dims, get_data_vals(t.float_val(), shape_size));
Khalique's avatar
Khalique committed
1030
1031
        case tensorflow::DataType::DT_UINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT8:
1032
            return create_literal(shape::int8_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1033
        case tensorflow::DataType::DT_UINT16:
1034
            return create_literal(shape::uint16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1035
        case tensorflow::DataType::DT_INT16:
1036
            return create_literal(shape::int16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1037
        case tensorflow::DataType::DT_INT32:
1038
            return create_literal(shape::int32_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1039
        case tensorflow::DataType::DT_INT64:
Khalique's avatar
Khalique committed
1040
1041
            return create_literal(
                shape::int64_type, dims, get_data_vals(t.int64_val(), shape_size));
Khalique's avatar
Khalique committed
1042
1043
        case tensorflow::DataType::DT_STRING: throw std::runtime_error("");
        case tensorflow::DataType::DT_BOOL:
1044
            return create_literal(shape::int32_type, dims, get_data_vals(t.bool_val(), shape_size));
Khalique's avatar
Khalique committed
1045
        case tensorflow::DataType::DT_HALF:
Khalique's avatar
Khalique committed
1046
        {
1047
1048
            std::vector<int> data_int32 = get_data_vals(t.half_val(), shape_size);
            std::vector<uint16_t> data_uint16(data_int32.begin(), data_int32.end());
Khalique's avatar
Khalique committed
1049
1050
1051
1052
1053
            std::vector<half> data_half;
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1054
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1055
        }
Khalique's avatar
Khalique committed
1056
        case tensorflow::DataType::DT_DOUBLE:
Khalique's avatar
Khalique committed
1057
            return literal{{shape::double_type, dims}, get_data_vals(t.double_val(), shape_size)};
Khalique's avatar
Khalique committed
1058
1059
1060
1061
        case tensorflow::DataType::DT_UINT32: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT64: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error("");
Khalique's avatar
Khalique committed
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
        case tensorflow::DataType::DT_QINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT32: throw std::runtime_error("");
        case tensorflow::DataType::DT_BFLOAT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_RESOURCE: throw std::runtime_error("");
        case tensorflow::DataType::DT_VARIANT: throw std::runtime_error("");
        case tensorflow::DataType::DT_FLOAT_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_DOUBLE_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_STRING_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX64_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT64_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_BOOL_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_BFLOAT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX128_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_HALF_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_RESOURCE_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_VARIANT_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT64_REF: throw std::runtime_error("");
Khalique's avatar
Khalique committed
1093
1094
1095
1096
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
Khalique's avatar
Khalique committed
1097
1098
1099
1100
        }
        MIGRAPHX_THROW("Invalid tensor type");
    }

1101
    template <class T>
Khalique's avatar
Khalique committed
1102
    static std::vector<T> get_data_vals(const google::protobuf::RepeatedField<T>& data,
1103
                                        const size_t& shape_size)
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
    {
        std::vector<T> data_vals(shape_size);
        // check if shape has enough data values given existing fields
        if(data.size() == 1)
        {
            std::fill(data_vals.begin(), data_vals.end(), data[0]);
        }
        else
            copy(data.begin(), data.end(), std::back_inserter(data_vals));
        return data_vals;
    }

Khalique's avatar
Khalique committed
1116
1117
1118
1119
    static std::vector<size_t> parse_dims(const tensorflow::TensorShapeProto& s)
    {
        std::vector<size_t> dims;
        auto input_dims = s.dim();
Khalique's avatar
Khalique committed
1120
1121
1122
        std::transform(input_dims.begin(),
                       input_dims.end(),
                       std::back_inserter(dims),
Paul's avatar
Paul committed
1123
                       [](const tensorflow::TensorShapeProto_Dim& dim) { return dim.size(); });
Khalique's avatar
Khalique committed
1124
1125
        return dims;
    }
1126
1127

    template <class T>
Khalique's avatar
Khalique committed
1128
    static literal
1129
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, std::vector<T> data)
1130
    {
Khalique's avatar
Khalique committed
1131
        // assume if explicit value is mentioned in protobuf and dim size <= 1, treat as scalar
1132
        if(dims.empty() or (dims.size() == 1 and dims.front() == 1))
1133
            return literal{{shape_type}, data};
1134
1135
        return literal{{shape_type, dims}, data};
    }
Khalique's avatar
Khalique committed
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
};

program parse_tf(const std::string& name, bool is_nhwc)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    tf_parser parser;
    parser.is_nhwc = is_nhwc;

#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
Paul's avatar
Paul committed
1158
    parser.to_nchw(std::prev(parser.prog.end()));
Khalique's avatar
Khalique committed
1159
1160
1161
1162
1163
    return std::move(parser.prog);
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx