task.py 50.9 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
7
8
import re
from collections.abc import Callable
from dataclasses import asdict, dataclass
from typing import Any, List, Literal, Tuple, Union
9
10
11
12
13

import datasets
import numpy as np

from lm_eval import utils
14
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
15
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
16
from lm_eval.api.metrics import (
17
    bits_per_byte,
lintangsutawika's avatar
lintangsutawika committed
18
19
20
21
    mean,
    weighted_perplexity,
)
from lm_eval.api.registry import (
22
23
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
24
    get_aggregation,
25
    get_metric,
26
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
27
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
28
)
29
30
31
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

32

33
34
35
36
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
37
    "generate_until",
38
39
]

40

41
eval_logger = logging.getLogger("lm-eval")
42

lintangsutawika's avatar
lintangsutawika committed
43

lintangsutawika's avatar
lintangsutawika committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
@dataclass
class GroupConfig(dict):
    group: str = None
    task: Union[str, list] = None
    weight_by_size: bool = False

    def __getitem__(self, item):
        return getattr(self, item)

    def __setitem__(self, item, value):
        return setattr(self, item, value)

    def to_dict(self):
        return asdict(self)

lintangsutawika's avatar
lintangsutawika committed
59

60
61
@dataclass
class TaskConfig(dict):
62
    # task naming/registry
63
    task: str = None
lintangsutawika's avatar
lintangsutawika committed
64
    task_alias: str = None
65
    group: Union[str, list] = None
lintangsutawika's avatar
lintangsutawika committed
66
    group_alias: Union[str, list] = None
67
68
69
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
70
71
    dataset_path: str = None
    dataset_name: str = None
72
    dataset_kwargs: dict = None
73
74
75
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
76
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
77
78
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
79
    process_docs: Callable = None
80
81
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
82
    doc_to_choice: Union[Callable, str, dict, list] = None
lintangsutawika's avatar
lintangsutawika committed
83
    process_results: Union[Callable, str] = None
84
    use_prompt: str = None
85
    description: str = ""
86
87
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
haileyschoelkopf's avatar
haileyschoelkopf committed
88
    fewshot_config: dict = None
89
    # runtime configuration options
90
    num_fewshot: int = None
91
    # scoring options
92
    metric_list: list = None
93
    output_type: str = "generate_until"
94
    generation_kwargs: dict = None
95
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
96
    filter_list: Union[str, list] = None
97
98
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
lintangsutawika's avatar
lintangsutawika committed
99
    weight_by_size: bool = False
lintangsutawika's avatar
lintangsutawika committed
100
101
102
    metadata: Union[
        str, list
    ] = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
103

Ethan Smith's avatar
Ethan Smith committed
104
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
105
        if self.generation_kwargs is not None:
106
            if self.output_type != "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
107
                eval_logger.warning(
108
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
109
                )
110
                assert self.output_type != "generate_until"
Lintang Sutawika's avatar
Lintang Sutawika committed
111
112
113
114
115
116
117

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
118
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
119
        else:
120
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
121
122
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
123
                    "until": None
124
125
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
126
127
                    "do_sample": False,
                }
128

haileyschoelkopf's avatar
haileyschoelkopf committed
129
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?
130
131
        # if self.dataset_kwargs is None:
        #     self.dataset_kwargs = {"trust_remote_code": True}
haileyschoelkopf's avatar
haileyschoelkopf committed
132

133
134
135
    def __getitem__(self, item):
        return getattr(self, item)

136
137
138
    def __setitem__(self, item, value):
        return setattr(self, item, value)

Lintang Sutawika's avatar
Lintang Sutawika committed
139
    def to_dict(self, keep_callable=False):
140
141
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
142
        Used for dumping results alongside full task configuration
143

haileyschoelkopf's avatar
haileyschoelkopf committed
144
145
146
147
148
149
150
151
152
153
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
154
            elif isinstance(v, Callable):
Lintang Sutawika's avatar
Lintang Sutawika committed
155
156
157
158
159
                if keep_callable:
                    cfg_dict[k] = v
                else:
                    # TODO: this should handle Promptsource template objects as a separate case?
                    cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
160
        return cfg_dict
161

162
163
164
165
166
167
168
169
170
171
172
173

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
174

175
176
177
178
179
180
181
182
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
183

184
185
186
187
188
189
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
Ethan Smith's avatar
Ethan Smith committed
190
    ) -> None:
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

lintangsutawika's avatar
lintangsutawika committed
217
        self._config = TaskConfig({**config}) if config else TaskConfig()
218

lintangsutawika's avatar
lintangsutawika committed
219
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
220

Ethan Smith's avatar
Ethan Smith committed
221
    def download(self, data_dir=None, cache_dir=None, download_mode=None) -> None:
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
246
247
248
249
250
251
252
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
253

254
255
256
257
258
    @property
    def config(self):
        """Returns the TaskConfig associated with this class."""
        return self._config

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

295
296
297
298
299
300
301
302
303
304
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
305
            eval_logger.warning(
306
                "has_training_docs and has_validation_docs are False"
307
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
308
            )
309
310
            return self.test_docs()

311
312
313
314
315
316
317
318
319
320
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
321

322
323
324
325
326
327
328
329
330
331
332
333
334
    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

Ethan Smith's avatar
Ethan Smith committed
335
    def doc_to_decontamination_query(self, doc) -> None:
336
337
338
339
340
341
342
343
344
345
346
347
348
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

Ethan Smith's avatar
Ethan Smith committed
349
    def build_all_requests(self, limit=None, rank=None, world_size=None) -> None:
350
351
352
353
354
355
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
356
            assert False, f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
357

358
        eval_logger.info(f"Building contexts for task on rank {rank}...")
359

360
        instances = []
361
362
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
363
        ):
364
            # sample fewshot context #TODO: need to offset doc_id by rank now!
365
            fewshot_ctx = self.fewshot_context(
366
                doc,
367
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
368
            )
369

370
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
371
372
373
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
374
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
375
            )
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
401
            The number of times each instance in a dataset is inferred on. Defaults to 1,
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
437
438
439
440
441
442
443
444
445
446
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

447
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
448
    def fewshot_context(
449
450
451
452
453
        self,
        doc,
        num_fewshot,
        rnd=random.Random(1234),
        description=None,
lintangsutawika's avatar
lintangsutawika committed
454
    ):
455
456
457
458
459
460
461
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
462
463
464
465
466
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
467
468
469
        :returns: str
            The fewshot context.
        """
lintangsutawika's avatar
lintangsutawika committed
470
471
472
473
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

474
        description = description if description else ""
475
476

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
477
            labeled_examples = ""
478
        else:
lintangsutawika's avatar
lintangsutawika committed
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
503
            )
504
505

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
506
        return description + labeled_examples + example
507
508

    def apply_filters(self):
lintangsutawika's avatar
lintangsutawika committed
509
510
        if hasattr(self, "_filters"):
            for f in self._filters:
lintangsutawika's avatar
lintangsutawika committed
511
                f.apply(self._instances, None)
lintangsutawika's avatar
lintangsutawika committed
512
513
514
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
515

baberabb's avatar
baberabb committed
516
    def dump_config(self) -> dict:
517
        """Returns a dictionary representing the task's config.
518
519
520
521
522

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
523
        # (num_fewshot)
524
        return self.config.to_dict()
525

526
527

class ConfigurableTask(Task):
528
    VERSION = "Yaml"
529
    OUTPUT_TYPE = None
530
    CONFIG = None
531
532
533

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
Ethan Smith's avatar
Ethan Smith committed
534
    ) -> None:  # TODO no super() call here
535
        # Get pre-configured attributes
536
        self._config = self.CONFIG
537

538
        # Use new configurations if there was no preconfiguration
539
        if self.config is None:
540
            self._config = TaskConfig(**config)
541
542
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
543
            if config is not None:
544
                self._config.__dict__.update(config)
545

546
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
547
548
549
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
550

551
552
553
554
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

555
556
557
        if self.config.output_type is not None:
            assert self.config.output_type in ALL_OUTPUT_TYPES
            self.OUTPUT_TYPE = self.config.output_type
558

559
560
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
561

562
563
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
564

565
566
567
568
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
569

570
        if self.config.metric_list is None:
571
            # TODO: handle this in TaskConfig.__post_init__ ?
572
573
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

574
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
575
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
576
                self._metric_fn_kwargs[metric_name] = {}
577
578
579
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
580
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
581
        else:
582
            for metric_config in self.config.metric_list:
583
584
585
586
587
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
588
589
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
590
                }
Chris's avatar
Chris committed
591
592
593
594
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
595

596
                if self.config.process_results is not None:
597
598
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
599
600
601
602
603
604
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
605
606
607
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
608
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
609

610
                if "aggregation" in metric_config:
611
                    agg_name = metric_config["aggregation"]
612
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
613
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
614
                    elif callable(agg_name):  # noqa: E721
615
616
617
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
618
                else:
619
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
620
                    metric_agg = get_metric_aggregation(metric_name)
621
                    eval_logger.warning(
baberabb's avatar
baberabb committed
622
                        f"[Task: {self._config.task}] metric {metric_name} is defined, but aggregation is not. "
623
624
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
625
                    )
626
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
627

628
629
630
631
632
633
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
baberabb's avatar
baberabb committed
634
                        f"[Task: {self._config.task}] metric {metric_name} is defined, but higher_is_better is not. "
635
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
636
                        f"higher_is_better={is_higher_better(metric_name)}"
637
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
638
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
639

640
        self.download(self.config.dataset_kwargs)
641
642
643
        self._training_docs = None
        self._fewshot_docs = None

644
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
645
            self._filters = []
646
            for filter_config in self.config.filter_list:
lintangsutawika's avatar
lintangsutawika committed
647
648
649
650
651
652
653
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
654
655
656
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
657
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
658
        else:
659
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
660

661
662
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
663
            self.prompt = get_prompt(
664
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
665
            )
666
667
668
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
669
        if self.fewshot_docs() is not None:
haileyschoelkopf's avatar
haileyschoelkopf committed
670
            self.sampler = samplers.get_sampler(
haileyschoelkopf's avatar
haileyschoelkopf committed
671
672
673
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
haileyschoelkopf's avatar
haileyschoelkopf committed
674
            )(list(self.fewshot_docs()), self, rnd=random.Random(1234))
675

676
        if self.has_test_docs():
677
            self.task_docs = self.test_docs()
678
        elif self.has_validation_docs():
679
            self.task_docs = self.validation_docs()
680
        else:
681
            assert False, f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
682

683
        # Test One Doc
684
        self.features = list(self.task_docs.features.keys())
685
686
        self.multiple_input = 0
        self.multiple_target = 0
687
        test_doc = self.task_docs[0]
688
        test_text = self.doc_to_text(test_doc)
689
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
690

691
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
692
            test_choice = self.doc_to_choice(test_doc)
693
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
694
                eval_logger.error("doc_to_choice must return list")
695
696
            else:
                num_choice = len(test_choice)
697

698
            if isinstance(test_text, int):
699
                self.multiple_input = num_choice
700
701
        else:
            test_choice = None
702

703
        if isinstance(test_target, list):
704
            self.multiple_target = len(test_target)
705
        else:
706
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
707
                test_target = test_choice[test_target]
708
            else:
lintangsutawika's avatar
lintangsutawika committed
709
                test_target = str(test_target)
710

711
712
713
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
714
            check_choices = [test_target]
715
716
717
718
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
719
720
                    True
                    if self.config.target_delimiter.rstrip()
721
                    != self.config.target_delimiter
722
                    else False
723
                )
724

725
                if delimiter_has_whitespace and choice_has_whitespace:
726
727
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
728
729
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
730
                    eval_logger.debug(
731
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
732
733
                    )

Ethan Smith's avatar
Ethan Smith committed
734
    def download(self, dataset_kwargs=None) -> None:
735
736
737
738
739
740
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
741
    def has_training_docs(self) -> bool:
742
        if self.config.training_split is not None:
743
744
745
746
            return True
        else:
            return False

baberabb's avatar
baberabb committed
747
    def has_validation_docs(self) -> bool:
748
        if self.config.validation_split is not None:
749
750
751
752
            return True
        else:
            return False

baberabb's avatar
baberabb committed
753
    def has_test_docs(self) -> bool:
754
        if self.config.test_split is not None:
755
756
757
758
            return True
        else:
            return False

baberabb's avatar
baberabb committed
759
    def training_docs(self) -> datasets.Dataset:
760
        if self.has_training_docs():
761
762
763
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
764
                )
765
            return self.dataset[self.config.training_split]
766

baberabb's avatar
baberabb committed
767
    def validation_docs(self) -> datasets.Dataset:
768
        if self.has_validation_docs():
769
770
771
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
772
                )
773
            return self.dataset[self.config.validation_split]
774

baberabb's avatar
baberabb committed
775
    def test_docs(self) -> datasets.Dataset:
776
        if self.has_test_docs():
777
778
779
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
780

781
    def fewshot_docs(self):
782
        if self.config.fewshot_split is not None:
783
784
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
785
            return self.dataset[self.config.fewshot_split]
786
        else:
787
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
788
                eval_logger.warning(
789
                    f"Task '{self.config.task}': "
790
791
792
793
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
794

lintangsutawika's avatar
lintangsutawika committed
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """

        if num_fewshot == 0:
            # always prepend the (possibly empty) task description
            labeled_examples = self.config.description
        else:
            labeled_examples = self.config.description + self.sampler.get_context(
                doc, num_fewshot
            )

        example = self.doc_to_text(doc)
817
818
819
820
821
822
823
824
825
826
827
828
829
        if self.multiple_input:
            return labeled_examples
        else:
            if isinstance(example, str):
                return labeled_examples + example
            elif isinstance(example, list):
                return [labeled_examples + ex for ex in example]
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    return labeled_examples + choices[example]
                else:
                    return labeled_examples + str(example)
lintangsutawika's avatar
lintangsutawika committed
830

831
832
833
834
835
836
837
838
    def apply_filters(self):
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances, self.task_docs)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

839
    def should_decontaminate(self):
840
        return self.config.should_decontaminate
841
842

    def doc_to_decontamination_query(self, doc):
843
        if self.config.should_decontaminate:
844
845
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
846
            else:
847
848
849
850
851
852
853
854
855
856
857
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
858

859
860
861
862
863
864
865
866
867
868
869
870
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
871
872
        if self.prompt is not None:
            doc_to_text = self.prompt
873
        else:
874
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
875

876
        if isinstance(doc_to_text, int):
877
            return doc_to_text
878
        elif isinstance(doc_to_text, str):
879
            if doc_to_text in self.features:
880
                # if self.config.doc_to_choice is not None:
881
882
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
883
884
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
885
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
886
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
887
888
889
                    return ast.literal_eval(text_string)
                else:
                    return text_string
890
        elif callable(doc_to_text):
891
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
892
        # Used when applying a Promptsource template
893
        elif hasattr(doc_to_text, "apply"):
894
895
896
897
898
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
899
                return self.config.fewshot_delimiter
900
        else:
901
            print(type(doc_to_text))
902
            raise TypeError
903

904
    def doc_to_target(self, doc: dict) -> Union[int, str, list]:
905
906
        if self.prompt is not None:
            doc_to_target = self.prompt
907
        else:
908
            doc_to_target = self.config.doc_to_target
909

910
        if isinstance(doc_to_target, int):
911
            return doc_to_target
912
        elif isinstance(doc_to_target, str):
913
            if doc_to_target in self.features:
914
                # if self.config.doc_to_choice is not None:
915
916
917
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
918
            else:
lintangsutawika's avatar
lintangsutawika committed
919
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
920
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
921
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
922
923
924
925
926
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
927
928
929
930
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
931
932
                else:
                    return target_string
933
        elif isinstance(doc_to_target, list):
934
            return doc_to_target
935
        elif callable(doc_to_target):
936
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
937
        # Used when applying a Promptsource template
938
        elif hasattr(doc_to_target, "apply"):
939
            applied_prompt = doc_to_target.apply(doc)
940
941
942
943
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
944
                return self.config.fewshot_delimiter
945
946
        else:
            raise TypeError
947

baberabb's avatar
baberabb committed
948
    def doc_to_choice(self, doc: Any) -> List[str]:
949
950
        if self.prompt is not None:
            doc_to_choice = self.prompt
951
        elif self.config.doc_to_choice is None:
952
953
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
954
            doc_to_choice = self.config.doc_to_choice
955

956
        if isinstance(doc_to_choice, str):
957
958
959
960
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
961
        elif isinstance(doc_to_choice, list):
962
            return doc_to_choice
963
        elif isinstance(doc_to_choice, dict):
964
965
966
967
968
969
970
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
971

baberabb's avatar
baberabb committed
972
973
974
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
975
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
976
            arguments = (ctx, self.doc_to_target(doc))
977
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
978
            arguments = (self.doc_to_target(doc),)
979
        elif self.OUTPUT_TYPE == "multiple_choice":
980
            choices = self.doc_to_choice(doc)
981
            target_delimiter = self.config.target_delimiter
982
983
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
984
                cont = self.doc_to_target(doc)
985
986
987
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
988
            else:
989
                # Otherwise they are placed in the continuation
990
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
991

992
            request_list = [
993
994
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
995
                    doc=doc,
996
                    arguments=arg,
997
                    idx=i,
998
999
                    **kwargs,
                )
1000
                for i, arg in enumerate(arguments)
1001
            ]
1002
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
1003
            if "acc_mutual_info" in self._metric_fn_list.keys():
1004
1005
1006
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
1007
                # here mutual info refers to calculating
1008
1009
1010
1011
1012
1013
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1014
                            doc=doc,
1015
                            arguments=("", "{}".format(choice)),
1016
1017
1018
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
1019
                        for i, choice in enumerate(choices)
1020
1021
1022
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
1023

1024
        elif self.OUTPUT_TYPE == "generate_until":
1025
            arguments = (ctx, self.config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
1026
1027

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
1028
1029
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
1030
1031

    def process_results(self, doc, results):
1032
        if callable(self.config.process_results):
Lintang Sutawika's avatar
Lintang Sutawika committed
1033
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1034

1035
        result_dict = {}
1036
        use_metric = list(self._metric_fn_list.keys())
1037
1038
1039
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1040
1041
            prob_norm = np.exp(ll)

1042
1043
1044
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
1045
                **(
lintangsutawika's avatar
lintangsutawika committed
1046
                    {"brier_score": (0, [prob_norm])}  # Gold is Index 0
1047
1048
1049
                    if "brier_score" in use_metric
                    else {}
                ),
1050
            }
1051
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1052
            (loglikelihood,) = results
1053
1054
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1055
            return {
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1071
            }
1072
        elif self.OUTPUT_TYPE == "multiple_choice":
1073
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1074

1075
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1076
            choices = self.doc_to_choice(doc)
1077
1078
            completion_len = np.array([float(len(i)) for i in choices])

1079
1080
            if (
                2 * len(choices) == len(lls)
1081
                and "acc_mutual_info" in self._metric_fn_list.keys()
1082
1083
1084
1085
1086
1087
1088
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1089

1090
1091
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1092

1093
1094
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1095
            else:
1096
                gold = self.doc_to_target(doc)
1097
1098

            gold_index_error = False
1099
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1100
1101
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1102
1103
                    gold_index_error = True
            else:
1104
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1105
                    gold = gold if gold < len(choices) else -100
1106
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1107
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1108

Lintang Sutawika's avatar
Lintang Sutawika committed
1109
                if gold == -100:
1110
1111
1112
1113
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1114
                    f"Label index was not in within range of available choices,"
1115
1116
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1117

1118
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1119
1120
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1121
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1122
1123
1124
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1125
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1126
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1127

lintangsutawika's avatar
lintangsutawika committed
1128
            prob_norm = utils.softmax(lls)
lintangsutawika's avatar
lintangsutawika committed
1129

lintangsutawika's avatar
lintangsutawika committed
1130
            # TODO use keyword arguments to the metric?
lintangsutawika's avatar
format  
lintangsutawika committed
1131
            # gold, pred, norm stuff, the original lls,
1132
            result_dict = {
1133
                **({"acc": acc} if "acc" in use_metric else {}),
1134
1135
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1136
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1137
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
lintangsutawika's avatar
format  
lintangsutawika committed
1138
                **(
1139
1140
                    # {"brier_score": (gold, prob_norm)}
                    {"brier_score": [np.eye(len(prob_norm))[gold], prob_norm]}
lintangsutawika's avatar
format  
lintangsutawika committed
1141
1142
1143
                    if "brier_score" in use_metric
                    else {}
                ),
1144
1145
            }

1146
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1147
1148
1149
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1150
1151
1152
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1153
        elif self.OUTPUT_TYPE == "generate_until":
1154
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1155
            result = results[0]
1156
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1157
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1158
                # it assumes that doc_to_target returns a number.
1159
1160
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1161
1162
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1163
                gold = list(gold)
Chris's avatar
Chris committed
1164
1165
1166
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1167

lintangsutawika's avatar
lintangsutawika committed
1168
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1169
1170
1171
1172
1173
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1174
1175
1176
1177
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1178
1179
1180
1181
1182
1183
1184
1185
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1186
                    else:
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1208
                else:
1209
                    try:
1210
                        result_score = self._metric_fn_list[metric](
1211
1212
                            references=[gold],
                            predictions=[result],
1213
                            **self._metric_fn_kwargs[metric],
1214
                        )
1215
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1216
                        result_score = self._metric_fn_list[metric]([gold, result])
1217
1218
1219
1220
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1221
        else:
lintangsutawika's avatar
lintangsutawika committed
1222
1223
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1224
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1225
            )
1226
1227
1228
1229
1230
1231
1232

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
1233
        return self._higher_is_better
1234
1235
1236
1237
1238


class MultipleChoiceTask(Task):
    OUTPUT_TYPE: str = "loglikelihood"

baberabb's avatar
baberabb committed
1239
    def doc_to_target(self, doc: dict) -> str:
1240
1241
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1242
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1243
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1244
1245
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1246
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1247
                doc=doc,
1248
                arguments=(ctx, " {}".format(choice)),
1249
                idx=i,
1250
1251
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1252
1253
            for i, choice in enumerate(doc["choices"])
        ]
1254

baberabb's avatar
baberabb committed
1255
    def process_results(self, doc: dict, results: List[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1256
1257
1258
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1270
    def higher_is_better(self) -> dict:
1271
1272
1273
1274
1275
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1276
    def aggregation(self) -> dict:
1277
1278
1279
1280
1281
1282
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1283
class PerplexityTask(Task):
1284
1285
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1286
    def has_training_docs(self) -> bool:
1287
1288
        return False

baberabb's avatar
baberabb committed
1289
    def fewshot_examples(self, k: int, rnd) -> List:
1290
1291
1292
        assert k == 0
        return []

baberabb's avatar
baberabb committed
1293
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1294
1295
1296
1297
1298
1299
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."

        return ""

baberabb's avatar
baberabb committed
1300
    def higher_is_better(self) -> dict:
1301
1302
1303
1304
1305
1306
1307
1308
1309
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1310
    def doc_to_text(self, doc) -> str:
1311
1312
1313
1314
1315
        return ""

    def doc_to_target(self, doc):
        return doc

baberabb's avatar
baberabb committed
1316
    def construct_requests(self, doc: dict, ctx: Union[str, None], **kwargs):
1317
1318
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1319
1320
1321
1322
1323
1324
1325
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1326

baberabb's avatar
baberabb committed
1327
    def process_results(self, doc: dict, results: float) -> dict:
1328
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1329
1330
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1331
1332
1333
1334
1335
1336
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1337
    def aggregation(self) -> dict:
1338
1339
1340
1341
1342
1343
1344
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1345
    def count_bytes(cls, doc) -> int:
1346
1347
1348
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1349
    def count_words(cls, doc) -> int:
1350
1351
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))