task.py 49.9 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
7
8
import re
from collections.abc import Callable
from dataclasses import asdict, dataclass
from typing import Any, List, Literal, Tuple, Union
9
10
11
12
13

import datasets
import numpy as np

from lm_eval import utils
14
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
15
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
16
from lm_eval.api.metrics import (
17
    bits_per_byte,
lintangsutawika's avatar
lintangsutawika committed
18
19
20
21
    mean,
    weighted_perplexity,
)
from lm_eval.api.registry import (
22
23
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
24
    get_aggregation,
25
    get_metric,
26
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
27
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
28
)
29
30
31
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

32

33
34
35
36
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
37
    "generate_until",
38
39
]

lintangsutawika's avatar
lintangsutawika committed
40

41
eval_logger = logging.getLogger("lm-eval")
42

lintangsutawika's avatar
lintangsutawika committed
43

44
45
@dataclass
class TaskConfig(dict):
46
    # task naming/registry
47
    task: str = None
lintangsutawika's avatar
lintangsutawika committed
48
    task_alias: str = None
49
    group: Union[str, list] = None
lintangsutawika's avatar
lintangsutawika committed
50
    group_alias: Union[str, list] = None
51
52
53
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
54
55
    dataset_path: str = None
    dataset_name: str = None
56
    dataset_kwargs: dict = None
57
58
59
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
60
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
61
62
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
63
    process_docs: Callable = None
64
65
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
66
    doc_to_choice: Union[Callable, str, dict, list] = None
lintangsutawika's avatar
lintangsutawika committed
67
    process_results: Union[Callable, str] = None
68
    use_prompt: str = None
69
    description: str = ""
70
71
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
haileyschoelkopf's avatar
haileyschoelkopf committed
72
    fewshot_config: dict = None
73
    # runtime configuration options
74
    num_fewshot: int = None
75
    # scoring options
76
    metric_list: list = None
77
    output_type: str = "generate_until"
78
    generation_kwargs: dict = None
79
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
80
    filter_list: Union[str, list] = None
81
82
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
83

lintangsutawika's avatar
lintangsutawika committed
84
85
86
    metadata: Union[
        str, list
    ] = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
87

Ethan Smith's avatar
Ethan Smith committed
88
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
89
        if self.generation_kwargs is not None:
90
            if self.output_type != "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
91
                eval_logger.warning(
92
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
93
                )
94
                assert self.output_type != "generate_until"
Lintang Sutawika's avatar
Lintang Sutawika committed
95
96
97
98
99
100
101

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
102
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
103
        else:
104
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
105
106
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
107
                    "until": None
108
109
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
110
111
                    "do_sample": False,
                }
112

haileyschoelkopf's avatar
haileyschoelkopf committed
113
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?
114
115
        # if self.dataset_kwargs is None:
        #     self.dataset_kwargs = {"trust_remote_code": True}
haileyschoelkopf's avatar
haileyschoelkopf committed
116

117
118
119
    def __getitem__(self, item):
        return getattr(self, item)

120
121
122
    def __setitem__(self, item, value):
        return setattr(self, item, value)

Lintang Sutawika's avatar
Lintang Sutawika committed
123
    def to_dict(self, keep_callable=False):
124
125
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
126
        Used for dumping results alongside full task configuration
127

haileyschoelkopf's avatar
haileyschoelkopf committed
128
129
130
131
132
133
134
135
136
137
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
138
            elif isinstance(v, Callable):
Lintang Sutawika's avatar
Lintang Sutawika committed
139
140
141
142
143
                if keep_callable:
                    cfg_dict[k] = v
                else:
                    # TODO: this should handle Promptsource template objects as a separate case?
                    cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
144
        return cfg_dict
145

146
147
148
149
150
151
152
153
154
155
156
157

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
158

159
160
161
162
163
164
165
166
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
167

168
169
170
171
172
173
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
Ethan Smith's avatar
Ethan Smith committed
174
    ) -> None:
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

lintangsutawika's avatar
lintangsutawika committed
201
        self._config = TaskConfig({**config}) if config else TaskConfig()
202

lintangsutawika's avatar
lintangsutawika committed
203
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
204

Ethan Smith's avatar
Ethan Smith committed
205
    def download(self, data_dir=None, cache_dir=None, download_mode=None) -> None:
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
230
231
232
233
234
235
236
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
237

238
239
240
241
242
    @property
    def config(self):
        """Returns the TaskConfig associated with this class."""
        return self._config

243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

279
280
281
282
283
284
285
286
287
288
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
289
            eval_logger.warning(
290
                "has_training_docs and has_validation_docs are False"
291
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
292
            )
293
294
            return self.test_docs()

295
296
297
298
299
300
301
302
303
304
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
305

306
307
308
309
310
311
312
313
314
315
316
317
318
    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

Ethan Smith's avatar
Ethan Smith committed
319
    def doc_to_decontamination_query(self, doc) -> None:
320
321
322
323
324
325
326
327
328
329
330
331
332
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

Ethan Smith's avatar
Ethan Smith committed
333
    def build_all_requests(self, limit=None, rank=None, world_size=None) -> None:
334
335
336
337
338
339
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
340
            assert False, f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
341

342
        eval_logger.info(f"Building contexts for task on rank {rank}...")
343

344
        instances = []
345
346
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
347
        ):
348
            # sample fewshot context #TODO: need to offset doc_id by rank now!
349
            fewshot_ctx = self.fewshot_context(
350
                doc,
351
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
352
            )
353

354
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
355
356
357
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
358
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
359
            )
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
385
            The number of times each instance in a dataset is inferred on. Defaults to 1,
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
421
422
423
424
425
426
427
428
429
430
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

431
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
432
    def fewshot_context(
433
434
435
436
437
        self,
        doc,
        num_fewshot,
        rnd=random.Random(1234),
        description=None,
lintangsutawika's avatar
lintangsutawika committed
438
    ):
439
440
441
442
443
444
445
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
446
447
448
449
450
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
451
452
453
        :returns: str
            The fewshot context.
        """
lintangsutawika's avatar
lintangsutawika committed
454
455
456
457
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

458
        description = description if description else ""
459
460

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
461
            labeled_examples = ""
462
        else:
lintangsutawika's avatar
lintangsutawika committed
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
487
            )
488
489

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
490
        return description + labeled_examples + example
491
492

    def apply_filters(self):
lintangsutawika's avatar
lintangsutawika committed
493
494
        if hasattr(self, "_filters"):
            for f in self._filters:
lintangsutawika's avatar
lintangsutawika committed
495
                f.apply(self._instances, None)
lintangsutawika's avatar
lintangsutawika committed
496
497
498
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
499

baberabb's avatar
baberabb committed
500
    def dump_config(self) -> dict:
501
        """Returns a dictionary representing the task's config.
502
503
504
505
506

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
507
        # (num_fewshot)
508
        return self.config.to_dict()
509

510
511

class ConfigurableTask(Task):
512
    VERSION = "Yaml"
513
    OUTPUT_TYPE = None
514
    CONFIG = None
515
516
517

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
Ethan Smith's avatar
Ethan Smith committed
518
    ) -> None:  # TODO no super() call here
519
        # Get pre-configured attributes
520
        self._config = self.CONFIG
521

522
        # Use new configurations if there was no preconfiguration
523
        if self.config is None:
524
            self._config = TaskConfig(**config)
525
526
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
527
            if config is not None:
528
                self._config.__dict__.update(config)
529

530
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
531
532
533
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
534

535
536
537
538
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

539
540
541
        if self.config.output_type is not None:
            assert self.config.output_type in ALL_OUTPUT_TYPES
            self.OUTPUT_TYPE = self.config.output_type
542

543
544
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
545

546
547
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
548

549
550
551
552
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
553

554
        if self.config.metric_list is None:
555
            # TODO: handle this in TaskConfig.__post_init__ ?
556
557
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

558
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
559
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
560
                self._metric_fn_kwargs[metric_name] = {}
561
562
563
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
564
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
565
        else:
566
            for metric_config in self.config.metric_list:
567
568
569
570
571
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
572
573
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
574
                }
Chris's avatar
Chris committed
575
576
577
578
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
579

580
                if self.config.process_results is not None:
581
582
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
583
584
585
586
587
588
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
589
590
591
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
592
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
593

594
                if "aggregation" in metric_config:
595
                    agg_name = metric_config["aggregation"]
596
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
597
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
598
                    elif callable(agg_name):  # noqa: E721
599
600
601
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
602
                else:
603
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
604
                    metric_agg = get_metric_aggregation(metric_name)
605
                    eval_logger.warning(
baberabb's avatar
baberabb committed
606
                        f"[Task: {self._config.task}] metric {metric_name} is defined, but aggregation is not. "
607
608
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
609
                    )
610
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
611

612
613
614
615
616
617
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
baberabb's avatar
baberabb committed
618
                        f"[Task: {self._config.task}] metric {metric_name} is defined, but higher_is_better is not. "
619
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
620
                        f"higher_is_better={is_higher_better(metric_name)}"
621
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
622
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
623

624
        self.download(self.config.dataset_kwargs)
625
626
627
        self._training_docs = None
        self._fewshot_docs = None

628
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
629
            self._filters = []
630
            for filter_config in self.config.filter_list:
lintangsutawika's avatar
lintangsutawika committed
631
632
633
634
635
636
637
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
638
639
640
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
641
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
642
        else:
643
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
644

645
646
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
647
            self.prompt = get_prompt(
648
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
649
            )
650
651
652
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
653
        if self.fewshot_docs() is not None:
haileyschoelkopf's avatar
haileyschoelkopf committed
654
            self.sampler = samplers.get_sampler(
haileyschoelkopf's avatar
haileyschoelkopf committed
655
656
657
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
haileyschoelkopf's avatar
haileyschoelkopf committed
658
            )(list(self.fewshot_docs()), self, rnd=random.Random(1234))
659

660
        if self.has_test_docs():
661
            self.task_docs = self.test_docs()
662
        elif self.has_validation_docs():
663
            self.task_docs = self.validation_docs()
664
        else:
665
            assert False, f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
666

667
        # Test One Doc
668
        self.features = list(self.task_docs.features.keys())
669
670
        self.multiple_input = 0
        self.multiple_target = 0
671
        test_doc = self.task_docs[0]
672
        test_text = self.doc_to_text(test_doc)
673
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
674

675
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
676
            test_choice = self.doc_to_choice(test_doc)
677
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
678
                eval_logger.error("doc_to_choice must return list")
679
680
            else:
                num_choice = len(test_choice)
681

682
            if isinstance(test_text, int):
683
                self.multiple_input = num_choice
684
685
        else:
            test_choice = None
686

687
        if isinstance(test_target, list):
688
            self.multiple_target = len(test_target)
689
        else:
690
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
691
                test_target = test_choice[test_target]
692
            else:
lintangsutawika's avatar
lintangsutawika committed
693
                test_target = str(test_target)
694

695
696
697
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
698
            check_choices = [test_target]
699
700
701
702
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
703
704
                    True
                    if self.config.target_delimiter.rstrip()
705
                    != self.config.target_delimiter
706
                    else False
707
                )
708

709
                if delimiter_has_whitespace and choice_has_whitespace:
710
711
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
712
713
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
714
                    eval_logger.debug(
715
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
716
717
                    )

Ethan Smith's avatar
Ethan Smith committed
718
    def download(self, dataset_kwargs=None) -> None:
719
720
721
722
723
724
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
725
    def has_training_docs(self) -> bool:
726
        if self.config.training_split is not None:
727
728
729
730
            return True
        else:
            return False

baberabb's avatar
baberabb committed
731
    def has_validation_docs(self) -> bool:
732
        if self.config.validation_split is not None:
733
734
735
736
            return True
        else:
            return False

baberabb's avatar
baberabb committed
737
    def has_test_docs(self) -> bool:
738
        if self.config.test_split is not None:
739
740
741
742
            return True
        else:
            return False

baberabb's avatar
baberabb committed
743
    def training_docs(self) -> datasets.Dataset:
744
        if self.has_training_docs():
745
746
747
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
748
                )
749
            return self.dataset[self.config.training_split]
750

baberabb's avatar
baberabb committed
751
    def validation_docs(self) -> datasets.Dataset:
752
        if self.has_validation_docs():
753
754
755
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
756
                )
757
            return self.dataset[self.config.validation_split]
758

baberabb's avatar
baberabb committed
759
    def test_docs(self) -> datasets.Dataset:
760
        if self.has_test_docs():
761
762
763
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
764

765
    def fewshot_docs(self):
766
        if self.config.fewshot_split is not None:
767
768
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
769
            return self.dataset[self.config.fewshot_split]
770
        else:
771
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
772
                eval_logger.warning(
773
                    f"Task '{self.config.task}': "
774
775
776
777
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
778

lintangsutawika's avatar
lintangsutawika committed
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """

        if num_fewshot == 0:
            # always prepend the (possibly empty) task description
            labeled_examples = self.config.description
        else:
            labeled_examples = self.config.description + self.sampler.get_context(
                doc, num_fewshot
            )

        example = self.doc_to_text(doc)
801
802
803
804
805
806
807
808
809
810
811
812
813
        if self.multiple_input:
            return labeled_examples
        else:
            if isinstance(example, str):
                return labeled_examples + example
            elif isinstance(example, list):
                return [labeled_examples + ex for ex in example]
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    return labeled_examples + choices[example]
                else:
                    return labeled_examples + str(example)
lintangsutawika's avatar
lintangsutawika committed
814

815
816
817
818
819
820
821
822
    def apply_filters(self):
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances, self.task_docs)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

823
    def should_decontaminate(self):
824
        return self.config.should_decontaminate
825
826

    def doc_to_decontamination_query(self, doc):
827
        if self.config.should_decontaminate:
828
829
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
830
            else:
831
832
833
834
835
836
837
838
839
840
841
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
842

843
844
845
846
847
848
849
850
851
852
853
854
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
855
856
        if self.prompt is not None:
            doc_to_text = self.prompt
857
        else:
858
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
859

860
        if isinstance(doc_to_text, int):
861
            return doc_to_text
862
        elif isinstance(doc_to_text, str):
863
            if doc_to_text in self.features:
864
                # if self.config.doc_to_choice is not None:
865
866
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
867
868
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
869
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
870
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
871
872
873
                    return ast.literal_eval(text_string)
                else:
                    return text_string
874
        elif callable(doc_to_text):
875
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
876
        # Used when applying a Promptsource template
877
        elif hasattr(doc_to_text, "apply"):
878
879
880
881
882
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
883
                return self.config.fewshot_delimiter
884
        else:
885
            print(type(doc_to_text))
886
            raise TypeError
887

888
    def doc_to_target(self, doc: dict) -> Union[int, str, list]:
889
890
        if self.prompt is not None:
            doc_to_target = self.prompt
891
        else:
892
            doc_to_target = self.config.doc_to_target
893

894
        if isinstance(doc_to_target, int):
895
            return doc_to_target
896
        elif isinstance(doc_to_target, str):
897
            if doc_to_target in self.features:
898
                # if self.config.doc_to_choice is not None:
899
900
901
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
902
            else:
lintangsutawika's avatar
lintangsutawika committed
903
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
904
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
905
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
906
907
908
909
910
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
911
912
913
914
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
915
916
                else:
                    return target_string
917
        elif isinstance(doc_to_target, list):
918
            return doc_to_target
919
        elif callable(doc_to_target):
920
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
921
        # Used when applying a Promptsource template
922
        elif hasattr(doc_to_target, "apply"):
923
            applied_prompt = doc_to_target.apply(doc)
924
925
926
927
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
928
                return self.config.fewshot_delimiter
929
930
        else:
            raise TypeError
931

baberabb's avatar
baberabb committed
932
    def doc_to_choice(self, doc: Any) -> List[str]:
933
934
        if self.prompt is not None:
            doc_to_choice = self.prompt
935
        elif self.config.doc_to_choice is None:
936
937
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
938
            doc_to_choice = self.config.doc_to_choice
939

940
        if isinstance(doc_to_choice, str):
941
942
943
944
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
945
        elif isinstance(doc_to_choice, list):
946
            return doc_to_choice
947
        elif isinstance(doc_to_choice, dict):
948
949
950
951
952
953
954
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
955

baberabb's avatar
baberabb committed
956
957
958
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
959
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
960
            arguments = (ctx, self.doc_to_target(doc))
961
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
962
            arguments = (self.doc_to_target(doc),)
963
        elif self.OUTPUT_TYPE == "multiple_choice":
964
            choices = self.doc_to_choice(doc)
965
            target_delimiter = self.config.target_delimiter
966
967
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
968
                cont = self.doc_to_target(doc)
969
970
971
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
972
            else:
973
                # Otherwise they are placed in the continuation
974
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
975

976
            request_list = [
977
978
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
979
                    doc=doc,
980
                    arguments=arg,
981
                    idx=i,
982
983
                    **kwargs,
                )
984
                for i, arg in enumerate(arguments)
985
            ]
986
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
987
            if "acc_mutual_info" in self._metric_fn_list.keys():
988
989
990
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
991
                # here mutual info refers to calculating
992
993
994
995
996
997
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
998
                            doc=doc,
999
                            arguments=("", "{}".format(choice)),
1000
1001
1002
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
1003
                        for i, choice in enumerate(choices)
1004
1005
1006
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
1007

1008
        elif self.OUTPUT_TYPE == "generate_until":
1009
            arguments = (ctx, self.config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
1010
1011

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
1012
1013
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
1014
1015

    def process_results(self, doc, results):
1016
1017
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1018

1019
        result_dict = {}
1020
        use_metric = list(self._metric_fn_list.keys())
1021
1022
1023
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1024
1025
1026
1027
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1028
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1029
            (loglikelihood,) = results
1030
1031
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1032
            return {
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1048
            }
1049
        elif self.OUTPUT_TYPE == "multiple_choice":
1050
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1051

1052
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1053
            choices = self.doc_to_choice(doc)
1054
1055
            completion_len = np.array([float(len(i)) for i in choices])

1056
1057
            if (
                2 * len(choices) == len(lls)
1058
                and "acc_mutual_info" in self._metric_fn_list.keys()
1059
1060
1061
1062
1063
1064
1065
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1066

1067
1068
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1069

1070
1071
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1072
            else:
1073
                gold = self.doc_to_target(doc)
1074
1075

            gold_index_error = False
1076
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1077
1078
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1079
1080
                    gold_index_error = True
            else:
1081
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1082
                    gold = gold if gold < len(choices) else -100
1083
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1084
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1085

Lintang Sutawika's avatar
Lintang Sutawika committed
1086
                if gold == -100:
1087
1088
1089
1090
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1091
                    f"Label index was not in within range of available choices,"
1092
1093
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1094

1095
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1096
1097
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1098
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1099
1100
1101
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1102
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1103
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1104
1105

            result_dict = {
1106
                **({"acc": acc} if "acc" in use_metric else {}),
1107
1108
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1109
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1110
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
1111
1112
            }

1113
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1114
1115
1116
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1117
1118
1119
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1120
        elif self.OUTPUT_TYPE == "generate_until":
1121
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1122
            result = results[0]
1123
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1124
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1125
                # it assumes that doc_to_target returns a number.
1126
1127
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1128
1129
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1130
                gold = list(gold)
Chris's avatar
Chris committed
1131
1132
1133
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1134

lintangsutawika's avatar
lintangsutawika committed
1135
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1136
1137
1138
1139
1140
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1141
1142
1143
1144
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1145
1146
1147
1148
1149
1150
1151
1152
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1153
                    else:
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1175
                else:
1176
                    try:
1177
                        result_score = self._metric_fn_list[metric](
1178
1179
                            references=[gold],
                            predictions=[result],
1180
                            **self._metric_fn_kwargs[metric],
1181
                        )
1182
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1183
                        result_score = self._metric_fn_list[metric]([gold, result])
1184
1185
1186
1187
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1188
        else:
lintangsutawika's avatar
lintangsutawika committed
1189
1190
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1191
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1192
            )
1193
1194
1195
1196
1197
1198
1199

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
1200
        return self._higher_is_better
1201
1202
1203
1204
1205


class MultipleChoiceTask(Task):
    OUTPUT_TYPE: str = "loglikelihood"

baberabb's avatar
baberabb committed
1206
    def doc_to_target(self, doc: dict) -> str:
1207
1208
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1209
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1210
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1211
1212
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1213
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1214
                doc=doc,
1215
                arguments=(ctx, " {}".format(choice)),
1216
                idx=i,
1217
1218
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1219
1220
            for i, choice in enumerate(doc["choices"])
        ]
1221

baberabb's avatar
baberabb committed
1222
    def process_results(self, doc: dict, results: List[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1223
1224
1225
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1237
    def higher_is_better(self) -> dict:
1238
1239
1240
1241
1242
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1243
    def aggregation(self) -> dict:
1244
1245
1246
1247
1248
1249
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1250
class PerplexityTask(Task):
1251
1252
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1253
    def has_training_docs(self) -> bool:
1254
1255
        return False

baberabb's avatar
baberabb committed
1256
    def fewshot_examples(self, k: int, rnd) -> List:
1257
1258
1259
        assert k == 0
        return []

baberabb's avatar
baberabb committed
1260
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1261
1262
1263
1264
1265
1266
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."

        return ""

baberabb's avatar
baberabb committed
1267
    def higher_is_better(self) -> dict:
1268
1269
1270
1271
1272
1273
1274
1275
1276
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1277
    def doc_to_text(self, doc) -> str:
1278
1279
1280
1281
1282
        return ""

    def doc_to_target(self, doc):
        return doc

baberabb's avatar
baberabb committed
1283
    def construct_requests(self, doc: dict, ctx: Union[str, None], **kwargs):
1284
1285
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1286
1287
1288
1289
1290
1291
1292
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1293

baberabb's avatar
baberabb committed
1294
    def process_results(self, doc: dict, results: float) -> dict:
1295
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1296
1297
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1298
1299
1300
1301
1302
1303
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1304
    def aggregation(self) -> dict:
1305
1306
1307
1308
1309
1310
1311
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1312
    def count_bytes(cls, doc) -> int:
1313
1314
1315
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1316
    def count_words(cls, doc) -> int:
1317
1318
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))