check_repo.py 34.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
18
19
import importlib
import inspect
import os
import re
20
import warnings
21
from collections import OrderedDict
22
from difflib import get_close_matches
23
from pathlib import Path
24

25
from transformers import is_flax_available, is_tf_available, is_torch_available
26
from transformers.models.auto import get_values
27
from transformers.utils import ENV_VARS_TRUE_VALUES
28

29
30
31
32
33

# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
34
PATH_TO_DOC = "docs/source/en"
35

36
37
# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
Jongjyh's avatar
Jongjyh committed
38
    "AltRobertaModel",
39
    "DPRSpanPredictor",
Daniel Stancl's avatar
Daniel Stancl committed
40
    "LongT5Stack",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
41
    "RealmBertModel",
42
    "T5Stack",
43
    "MT5Stack",
44
    "SwitchTransformersStack",
45
    "TFDPRSpanPredictor",
46
47
    "MaskFormerSwinModel",
    "MaskFormerSwinPreTrainedModel",
48
49
    "BridgeTowerTextModel",
    "BridgeTowerVisionModel",
50
51
]

52
53
# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
54
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
55
    # models to ignore for not tested
NielsRogge's avatar
NielsRogge committed
56
57
    "DetaEncoder",  # Building part of bigger (tested) model.
    "DetaDecoder",  # Building part of bigger (tested) model.
58
59
    "GraphormerEncoder",  # Building part of bigger (tested) model.
    "GraphormerDecoderHead",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
60
    "CLIPSegDecoder",  # Building part of bigger (tested) model.
61
62
    "TableTransformerEncoder",  # Building part of bigger (tested) model.
    "TableTransformerDecoder",  # Building part of bigger (tested) model.
63
64
    "TimeSeriesTransformerEncoder",  # Building part of bigger (tested) model.
    "TimeSeriesTransformerDecoder",  # Building part of bigger (tested) model.
65
66
    "JukeboxVQVAE",  # Building part of bigger (tested) model.
    "JukeboxPrior",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
67
68
    "DeformableDetrEncoder",  # Building part of bigger (tested) model.
    "DeformableDetrDecoder",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
69
    "OPTDecoder",  # Building part of bigger (tested) model.
70
71
    "WhisperDecoder",  # Building part of bigger (tested) model.
    "WhisperEncoder",  # Building part of bigger (tested) model.
72
    "DecisionTransformerGPT2Model",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
73
    "SegformerDecodeHead",  # Building part of bigger (tested) model.
Gunjan Chhablani's avatar
Gunjan Chhablani committed
74
75
76
    "PLBartEncoder",  # Building part of bigger (tested) model.
    "PLBartDecoder",  # Building part of bigger (tested) model.
    "PLBartDecoderWrapper",  # Building part of bigger (tested) model.
Vasudev Gupta's avatar
Vasudev Gupta committed
77
78
79
    "BigBirdPegasusEncoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoderWrapper",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
80
81
82
    "DetrEncoder",  # Building part of bigger (tested) model.
    "DetrDecoder",  # Building part of bigger (tested) model.
    "DetrDecoderWrapper",  # Building part of bigger (tested) model.
83
84
    "ConditionalDetrEncoder",  # Building part of bigger (tested) model.
    "ConditionalDetrDecoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
85
86
    "M2M100Encoder",  # Building part of bigger (tested) model.
    "M2M100Decoder",  # Building part of bigger (tested) model.
Chan Woo Kim's avatar
Chan Woo Kim committed
87
    "MCTCTEncoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
88
89
    "Speech2TextEncoder",  # Building part of bigger (tested) model.
    "Speech2TextDecoder",  # Building part of bigger (tested) model.
Patrick von Platen's avatar
Patrick von Platen committed
90
91
    "LEDEncoder",  # Building part of bigger (tested) model.
    "LEDDecoder",  # Building part of bigger (tested) model.
92
    "BartDecoderWrapper",  # Building part of bigger (tested) model.
93
    "BartEncoder",  # Building part of bigger (tested) model.
94
    "BertLMHeadModel",  # Needs to be setup as decoder.
95
    "BlenderbotSmallEncoder",  # Building part of bigger (tested) model.
96
    "BlenderbotSmallDecoderWrapper",  # Building part of bigger (tested) model.
97
    "BlenderbotEncoder",  # Building part of bigger (tested) model.
98
    "BlenderbotDecoderWrapper",  # Building part of bigger (tested) model.
99
    "MBartEncoder",  # Building part of bigger (tested) model.
100
    "MBartDecoderWrapper",  # Building part of bigger (tested) model.
101
102
103
104
    "MegatronBertLMHeadModel",  # Building part of bigger (tested) model.
    "MegatronBertEncoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoderWrapper",  # Building part of bigger (tested) model.
StevenTang1998's avatar
StevenTang1998 committed
105
106
    "MvpDecoderWrapper",  # Building part of bigger (tested) model.
    "MvpEncoder",  # Building part of bigger (tested) model.
107
    "PegasusEncoder",  # Building part of bigger (tested) model.
108
    "PegasusDecoderWrapper",  # Building part of bigger (tested) model.
Jason Phang's avatar
Jason Phang committed
109
110
111
    "PegasusXEncoder",  # Building part of bigger (tested) model.
    "PegasusXDecoder",  # Building part of bigger (tested) model.
    "PegasusXDecoderWrapper",  # Building part of bigger (tested) model.
112
    "DPREncoder",  # Building part of bigger (tested) model.
113
    "ProphetNetDecoderWrapper",  # Building part of bigger (tested) model.
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
114
115
116
117
    "RealmBertModel",  # Building part of bigger (tested) model.
    "RealmReader",  # Not regular model.
    "RealmScorer",  # Not regular model.
    "RealmForOpenQA",  # Not regular model.
118
    "ReformerForMaskedLM",  # Needs to be setup as decoder.
119
    "Speech2Text2DecoderWrapper",  # Building part of bigger (tested) model.
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
120
    "TFDPREncoder",  # Building part of bigger (tested) model.
121
122
    "TFElectraMainLayer",  # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
    "TFRobertaForMultipleChoice",  # TODO: fix
123
    "TFRobertaPreLayerNormForMultipleChoice",  # TODO: fix
124
    "TrOCRDecoderWrapper",  # Building part of bigger (tested) model.
amyeroberts's avatar
amyeroberts committed
125
126
    "TFWhisperEncoder",  # Building part of bigger (tested) model.
    "TFWhisperDecoder",  # Building part of bigger (tested) model.
abhishek thakur's avatar
abhishek thakur committed
127
    "SeparableConv1D",  # Building part of bigger (tested) model.
128
    "FlaxBartForCausalLM",  # Building part of bigger (tested) model.
129
    "FlaxBertForCausalLM",  # Building part of bigger (tested) model. Tested implicitly through FlaxRobertaForCausalLM.
Younes Belkada's avatar
Younes Belkada committed
130
    "OPTDecoderWrapper",
131
    "TFSegformerDecodeHead",  # Not a regular model.
Jongjyh's avatar
Jongjyh committed
132
    "AltRobertaModel",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
133
    "BlipTextLMHeadModel",  # No need to test it as it is tested by BlipTextVision models
134
135
    "BridgeTowerTextModel",  # No need to test it as it is tested by BridgeTowerModel model.
    "BridgeTowerVisionModel",  # No need to test it as it is tested by BridgeTowerModel model.
136
137
138
139
140
]

# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
Yih-Dar's avatar
Yih-Dar committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
    "models/decision_transformer/test_modeling_decision_transformer.py",
    "models/camembert/test_modeling_camembert.py",
    "models/mt5/test_modeling_flax_mt5.py",
    "models/mbart/test_modeling_mbart.py",
    "models/mt5/test_modeling_mt5.py",
    "models/pegasus/test_modeling_pegasus.py",
    "models/camembert/test_modeling_tf_camembert.py",
    "models/mt5/test_modeling_tf_mt5.py",
    "models/xlm_roberta/test_modeling_tf_xlm_roberta.py",
    "models/xlm_roberta/test_modeling_flax_xlm_roberta.py",
    "models/xlm_prophetnet/test_modeling_xlm_prophetnet.py",
    "models/xlm_roberta/test_modeling_xlm_roberta.py",
    "models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py",
    "models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py",
    "models/decision_transformer/test_modeling_decision_transformer.py",
156
157
]

158
159
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
160
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
161
    # models to ignore for model xxx mapping
162
    "GitVisionModel",
163
164
    "GraphormerModel",
    "GraphormerForGraphClassification",
Younes Belkada's avatar
Younes Belkada committed
165
166
167
168
169
170
    "BlipForConditionalGeneration",
    "BlipForImageTextRetrieval",
    "BlipForQuestionAnswering",
    "BlipVisionModel",
    "BlipTextLMHeadModel",
    "BlipTextModel",
NielsRogge's avatar
NielsRogge committed
171
    "Swin2SRForImageSuperResolution",
172
173
    "BridgeTowerForImageAndTextRetrieval",
    "BridgeTowerForMaskedLM",
NielsRogge's avatar
NielsRogge committed
174
175
176
    "CLIPSegForImageSegmentation",
    "CLIPSegVisionModel",
    "CLIPSegTextModel",
Matt's avatar
Matt committed
177
    "EsmForProteinFolding",
178
    "TimeSeriesTransformerForPrediction",
179
180
    "JukeboxVQVAE",
    "JukeboxPrior",
Jason Phang's avatar
Jason Phang committed
181
182
183
184
185
186
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
187
    "DPTForDepthEstimation",
188
    "DecisionTransformerGPT2Model",
NielsRogge's avatar
NielsRogge committed
189
    "GLPNForDepthEstimation",
NielsRogge's avatar
NielsRogge committed
190
191
    "ViltForImagesAndTextClassification",
    "ViltForImageAndTextRetrieval",
192
    "ViltForTokenClassification",
NielsRogge's avatar
NielsRogge committed
193
    "ViltForMaskedLM",
Suraj Patil's avatar
Suraj Patil committed
194
195
196
    "XGLMEncoder",
    "XGLMDecoder",
    "XGLMDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
197
198
    "PerceiverForMultimodalAutoencoding",
    "PerceiverForOpticalFlow",
NielsRogge's avatar
NielsRogge committed
199
    "SegformerDecodeHead",
200
    "TFSegformerDecodeHead",
Kamal Raj's avatar
Kamal Raj committed
201
    "FlaxBeitForMaskedImageModeling",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
202
203
204
    "PLBartEncoder",
    "PLBartDecoder",
    "PLBartDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
205
    "BeitForMaskedImageModeling",
206
207
    "ChineseCLIPTextModel",
    "ChineseCLIPVisionModel",
Suraj Patil's avatar
Suraj Patil committed
208
    "CLIPTextModel",
209
    "CLIPTextModelWithProjection",
Suraj Patil's avatar
Suraj Patil committed
210
    "CLIPVisionModel",
211
    "CLIPVisionModelWithProjection",
212
213
    "GroupViTTextModel",
    "GroupViTVisionModel",
Yih-Dar's avatar
Yih-Dar committed
214
215
    "TFCLIPTextModel",
    "TFCLIPVisionModel",
216
217
    "TFGroupViTTextModel",
    "TFGroupViTVisionModel",
Suraj Patil's avatar
Suraj Patil committed
218
219
    "FlaxCLIPTextModel",
    "FlaxCLIPVisionModel",
220
    "FlaxWav2Vec2ForCTC",
NielsRogge's avatar
NielsRogge committed
221
    "DetrForSegmentation",
222
    "ConditionalDetrForSegmentation",
223
224
    "DPRReader",
    "FlaubertForQuestionAnswering",
225
226
227
228
    "FlavaImageCodebook",
    "FlavaTextModel",
    "FlavaImageModel",
    "FlavaMultimodalModel",
229
    "GPT2DoubleHeadsModel",
230
    "GPTSw3DoubleHeadsModel",
231
    "LayoutLMForQuestionAnswering",
Ryokan RI's avatar
Ryokan RI committed
232
    "LukeForMaskedLM",
NielsRogge's avatar
NielsRogge committed
233
234
235
    "LukeForEntityClassification",
    "LukeForEntityPairClassification",
    "LukeForEntitySpanClassification",
236
    "OpenAIGPTDoubleHeadsModel",
237
238
239
    "OwlViTTextModel",
    "OwlViTVisionModel",
    "OwlViTForObjectDetection",
240
241
242
    "RagModel",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
243
244
245
246
    "RealmEmbedder",
    "RealmForOpenQA",
    "RealmScorer",
    "RealmReader",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
247
    "TFDPRReader",
248
    "TFGPT2DoubleHeadsModel",
249
    "TFLayoutLMForQuestionAnswering",
250
    "TFOpenAIGPTDoubleHeadsModel",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
251
252
253
    "TFRagModel",
    "TFRagSequenceForGeneration",
    "TFRagTokenForGeneration",
254
    "Wav2Vec2ForCTC",
Patrick von Platen's avatar
Patrick von Platen committed
255
    "HubertForCTC",
256
257
    "SEWForCTC",
    "SEWDForCTC",
258
259
    "XLMForQuestionAnswering",
    "XLNetForQuestionAnswering",
abhishek thakur's avatar
abhishek thakur committed
260
    "SeparableConv1D",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
261
262
263
264
    "VisualBertForRegionToPhraseAlignment",
    "VisualBertForVisualReasoning",
    "VisualBertForQuestionAnswering",
    "VisualBertForMultipleChoice",
Will Rice's avatar
Will Rice committed
265
    "TFWav2Vec2ForCTC",
Will Rice's avatar
Will Rice committed
266
    "TFHubertForCTC",
NielsRogge's avatar
NielsRogge committed
267
268
    "XCLIPVisionModel",
    "XCLIPTextModel",
Jongjyh's avatar
Jongjyh committed
269
270
271
    "AltCLIPTextModel",
    "AltCLIPVisionModel",
    "AltRobertaModel",
272
273
]

274
275
276
277
278
279
# Update this list for models that have multiple model types for the same
# model doc
MODEL_TYPE_TO_DOC_MAPPING = OrderedDict(
    [
        ("data2vec-text", "data2vec"),
        ("data2vec-audio", "data2vec"),
280
        ("data2vec-vision", "data2vec"),
NielsRogge's avatar
NielsRogge committed
281
        ("donut-swin", "donut"),
282
283
284
285
    ]
)


286
287
288
289
290
291
292
293
294
# This is to make sure the transformers module imported is the one in the repo.
spec = importlib.util.spec_from_file_location(
    "transformers",
    os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"),
    submodule_search_locations=[PATH_TO_TRANSFORMERS],
)
transformers = spec.loader.load_module()


295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
def check_model_list():
    """Check the model list inside the transformers library."""
    # Get the models from the directory structure of `src/transformers/models/`
    models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
    _models = []
    for model in os.listdir(models_dir):
        model_dir = os.path.join(models_dir, model)
        if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
            _models.append(model)

    # Get the models from the directory structure of `src/transformers/models/`
    models = [model for model in dir(transformers.models) if not model.startswith("__")]

    missing_models = sorted(list(set(_models).difference(models)))
    if missing_models:
        raise Exception(
            f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
        )


315
316
317
# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
def get_model_modules():
Patrick von Platen's avatar
Patrick von Platen committed
318
    """Get the model modules inside the transformers library."""
319
320
321
322
323
324
325
326
    _ignore_modules = [
        "modeling_auto",
        "modeling_encoder_decoder",
        "modeling_marian",
        "modeling_mmbt",
        "modeling_outputs",
        "modeling_retribert",
        "modeling_utils",
Sylvain Gugger's avatar
Sylvain Gugger committed
327
        "modeling_flax_auto",
328
        "modeling_flax_encoder_decoder",
Stas Bekman's avatar
Stas Bekman committed
329
        "modeling_flax_utils",
330
        "modeling_speech_encoder_decoder",
331
        "modeling_flax_speech_encoder_decoder",
332
        "modeling_flax_vision_encoder_decoder",
333
334
        "modeling_transfo_xl_utilities",
        "modeling_tf_auto",
335
        "modeling_tf_encoder_decoder",
336
337
338
339
        "modeling_tf_outputs",
        "modeling_tf_pytorch_utils",
        "modeling_tf_utils",
        "modeling_tf_transfo_xl_utilities",
340
        "modeling_tf_vision_encoder_decoder",
341
        "modeling_vision_encoder_decoder",
342
343
    ]
    modules = []
Sylvain Gugger's avatar
Sylvain Gugger committed
344
345
346
347
348
349
350
351
352
    for model in dir(transformers.models):
        # There are some magic dunder attributes in the dir, we ignore them
        if not model.startswith("__"):
            model_module = getattr(transformers.models, model)
            for submodule in dir(model_module):
                if submodule.startswith("modeling") and submodule not in _ignore_modules:
                    modeling_module = getattr(model_module, submodule)
                    if inspect.ismodule(modeling_module):
                        modules.append(modeling_module)
353
354
355
    return modules


356
def get_models(module, include_pretrained=False):
Patrick von Platen's avatar
Patrick von Platen committed
357
    """Get the objects in module that are models."""
358
    models = []
359
    model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
360
    for attr_name in dir(module):
361
        if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
362
363
364
365
366
367
368
            continue
        attr = getattr(module, attr_name)
        if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
            models.append((attr_name, attr))
    return models


369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
def is_a_private_model(model):
    """Returns True if the model should not be in the main init."""
    if model in PRIVATE_MODELS:
        return True

    # Wrapper, Encoder and Decoder are all privates
    if model.endswith("Wrapper"):
        return True
    if model.endswith("Encoder"):
        return True
    if model.endswith("Decoder"):
        return True
    return False


def check_models_are_in_init():
    """Checks all models defined in the library are in the main init."""
    models_not_in_init = []
    dir_transformers = dir(transformers)
    for module in get_model_modules():
        models_not_in_init += [
            model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
        ]

    # Remove private models
    models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
    if len(models_not_in_init) > 0:
        raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")


399
400
401
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
def get_model_test_files():
Yih-Dar's avatar
Yih-Dar committed
402
403
404
405
406
407
    """Get the model test files.

    The returned files should NOT contain the `tests` (i.e. `PATH_TO_TESTS` defined in this script). They will be
    considered as paths relative to `tests`. A caller has to use `os.path.join(PATH_TO_TESTS, ...)` to access the files.
    """

408
409
410
    _ignore_files = [
        "test_modeling_common",
        "test_modeling_encoder_decoder",
411
        "test_modeling_flax_encoder_decoder",
412
        "test_modeling_flax_speech_encoder_decoder",
413
414
        "test_modeling_marian",
        "test_modeling_tf_common",
415
        "test_modeling_tf_encoder_decoder",
416
417
    ]
    test_files = []
Yih-Dar's avatar
Yih-Dar committed
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
    # Check both `PATH_TO_TESTS` and `PATH_TO_TESTS/models`
    model_test_root = os.path.join(PATH_TO_TESTS, "models")
    model_test_dirs = []
    for x in os.listdir(model_test_root):
        x = os.path.join(model_test_root, x)
        if os.path.isdir(x):
            model_test_dirs.append(x)

    for target_dir in [PATH_TO_TESTS] + model_test_dirs:
        for file_or_dir in os.listdir(target_dir):
            path = os.path.join(target_dir, file_or_dir)
            if os.path.isfile(path):
                filename = os.path.split(path)[-1]
                if "test_modeling" in filename and not os.path.splitext(filename)[0] in _ignore_files:
                    file = os.path.join(*path.split(os.sep)[1:])
                    test_files.append(file)

435
436
437
438
439
440
    return test_files


# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
def find_tested_models(test_file):
Patrick von Platen's avatar
Patrick von Platen committed
441
    """Parse the content of test_file to detect what's in all_model_classes"""
Sylvain Gugger's avatar
Sylvain Gugger committed
442
    # This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class
443
    with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
444
        content = f.read()
Sylvain Gugger's avatar
Sylvain Gugger committed
445
    all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
446
447
    # Check with one less parenthesis as well
    all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
448
    if len(all_models) > 0:
449
        model_tested = []
Sylvain Gugger's avatar
Sylvain Gugger committed
450
451
452
453
454
        for entry in all_models:
            for line in entry.split(","):
                name = line.strip()
                if len(name) > 0:
                    model_tested.append(name)
455
456
457
458
        return model_tested


def check_models_are_tested(module, test_file):
Patrick von Platen's avatar
Patrick von Platen committed
459
    """Check models defined in module are tested in test_file."""
460
    # XxxPreTrainedModel are not tested
461
462
463
    defined_models = get_models(module)
    tested_models = find_tested_models(test_file)
    if tested_models is None:
464
        if test_file.replace(os.path.sep, "/") in TEST_FILES_WITH_NO_COMMON_TESTS:
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
            return
        return [
            f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
            + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
            + "`utils/check_repo.py`."
        ]
    failures = []
    for model_name, _ in defined_models:
        if model_name not in tested_models and model_name not in IGNORE_NON_TESTED:
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not tested in "
                + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
                + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def check_all_models_are_tested():
Patrick von Platen's avatar
Patrick von Platen committed
484
    """Check all models are properly tested."""
485
486
487
488
    modules = get_model_modules()
    test_files = get_model_test_files()
    failures = []
    for module in modules:
489
490
        test_file = [file for file in test_files if f"test_{module.__name__.split('.')[-1]}.py" in file]
        if len(test_file) == 0:
491
            failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
492
493
494
495
        elif len(test_file) > 1:
            failures.append(f"{module.__name__} has several test files: {test_file}.")
        else:
            test_file = test_file[0]
496
497
498
            new_failures = check_models_are_tested(module, test_file)
            if new_failures is not None:
                failures += new_failures
499
500
501
502
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


503
def get_all_auto_configured_models():
Patrick von Platen's avatar
Patrick von Platen committed
504
    """Return the list of all models in at least one auto class."""
505
    result = set()  # To avoid duplicates we concatenate all model classes in a set.
506
507
    if is_torch_available():
        for attr_name in dir(transformers.models.auto.modeling_auto):
508
            if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
509
510
511
                result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
    if is_tf_available():
        for attr_name in dir(transformers.models.auto.modeling_tf_auto):
512
            if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
513
514
515
                result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
    if is_flax_available():
        for attr_name in dir(transformers.models.auto.modeling_flax_auto):
516
            if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
517
                result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
518
    return [cls for cls in result]
519
520


521
522
523
524
525
526
527
528
529
530
531
def ignore_unautoclassed(model_name):
    """Rules to determine if `name` should be in an auto class."""
    # Special white list
    if model_name in IGNORE_NON_AUTO_CONFIGURED:
        return True
    # Encoder and Decoder should be ignored
    if "Encoder" in model_name or "Decoder" in model_name:
        return True
    return False


532
def check_models_are_auto_configured(module, all_auto_models):
Patrick von Platen's avatar
Patrick von Platen committed
533
    """Check models defined in module are each in an auto class."""
534
535
536
    defined_models = get_models(module)
    failures = []
    for model_name, _ in defined_models:
537
        if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
538
539
540
541
542
543
544
545
546
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
                "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
                "`utils/check_repo.py`."
            )
    return failures


def check_all_models_are_auto_configured():
Patrick von Platen's avatar
Patrick von Platen committed
547
    """Check all models are each in an auto class."""
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
    missing_backends = []
    if not is_torch_available():
        missing_backends.append("PyTorch")
    if not is_tf_available():
        missing_backends.append("TensorFlow")
    if not is_flax_available():
        missing_backends.append("Flax")
    if len(missing_backends) > 0:
        missing = ", ".join(missing_backends)
        if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
            raise Exception(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}."
            )
        else:
            warnings.warn(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
                "didn't make any change in one of those backends modeling files, you should probably execute the "
                "command above to be on the safe side."
            )
569
570
571
572
573
574
575
576
577
578
579
    modules = get_model_modules()
    all_auto_models = get_all_auto_configured_models()
    failures = []
    for module in modules:
        new_failures = check_models_are_auto_configured(module, all_auto_models)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
580
581
582
583
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")


def check_decorator_order(filename):
Patrick von Platen's avatar
Patrick von Platen committed
584
    """Check that in the test file `filename` the slow decorator is always last."""
585
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
Sylvain Gugger's avatar
Sylvain Gugger committed
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
        lines = f.readlines()
    decorator_before = None
    errors = []
    for i, line in enumerate(lines):
        search = _re_decorator.search(line)
        if search is not None:
            decorator_name = search.groups()[0]
            if decorator_before is not None and decorator_name.startswith("parameterized"):
                errors.append(i)
            decorator_before = decorator_name
        elif decorator_before is not None:
            decorator_before = None
    return errors


def check_all_decorator_order():
Patrick von Platen's avatar
Patrick von Platen committed
602
    """Check that in all test files, the slow decorator is always last."""
Sylvain Gugger's avatar
Sylvain Gugger committed
603
604
605
606
607
608
609
610
611
    errors = []
    for fname in os.listdir(PATH_TO_TESTS):
        if fname.endswith(".py"):
            filename = os.path.join(PATH_TO_TESTS, fname)
            new_errors = check_decorator_order(filename)
            errors += [f"- {filename}, line {i}" for i in new_errors]
    if len(errors) > 0:
        msg = "\n".join(errors)
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
612
613
            "The parameterized decorator (and its variants) should always be first, but this is not the case in the"
            f" following files:\n{msg}"
Sylvain Gugger's avatar
Sylvain Gugger committed
614
615
616
        )


617
def find_all_documented_objects():
Patrick von Platen's avatar
Patrick von Platen committed
618
    """Parse the content of all doc files to detect which classes and functions it documents"""
619
620
    documented_obj = []
    for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
Julien Plu's avatar
Julien Plu committed
621
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
622
623
624
            content = f.read()
        raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
Sylvain Gugger's avatar
Sylvain Gugger committed
625
626
627
628
629
    for doc_file in Path(PATH_TO_DOC).glob("**/*.mdx"):
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
            content = f.read()
        raw_doc_objs = re.findall("\[\[autodoc\]\]\s+(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
630
631
632
633
634
635
    return documented_obj


# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
    "AutoModelWithLMHead",
636
    "BartPretrainedModel",
637
638
    "DataCollator",
    "DataCollatorForSOP",
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
    "GlueDataset",
    "GlueDataTrainingArguments",
    "LineByLineTextDataset",
    "LineByLineWithRefDataset",
    "LineByLineWithSOPTextDataset",
    "PretrainedBartModel",
    "PretrainedFSMTModel",
    "SingleSentenceClassificationProcessor",
    "SquadDataTrainingArguments",
    "SquadDataset",
    "SquadExample",
    "SquadFeatures",
    "SquadV1Processor",
    "SquadV2Processor",
    "TFAutoModelWithLMHead",
654
    "TFBartPretrainedModel",
655
656
    "TextDataset",
    "TextDatasetForNextSentencePrediction",
657
    "Wav2Vec2ForMaskedLM",
658
    "Wav2Vec2Tokenizer",
659
660
661
662
663
664
665
666
667
668
    "glue_compute_metrics",
    "glue_convert_examples_to_features",
    "glue_output_modes",
    "glue_processors",
    "glue_tasks_num_labels",
    "squad_convert_examples_to_features",
    "xnli_compute_metrics",
    "xnli_output_modes",
    "xnli_processors",
    "xnli_tasks_num_labels",
669
670
    "TFTrainer",
    "TFTrainingArguments",
671
672
673
674
675
676
677
]

# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
    "AddedToken",  # This is a tokenizers class.
    "BasicTokenizer",  # Internal, should never have been in the main init.
678
    "CharacterTokenizer",  # Internal, should never have been in the main init.
679
    "DPRPretrainedReader",  # Like an Encoder.
Sylvain Gugger's avatar
Sylvain Gugger committed
680
    "DummyObject",  # Just picked by mistake sometimes.
681
    "MecabTokenizer",  # Internal, should never have been in the main init.
682
683
684
685
686
687
688
689
690
691
692
    "ModelCard",  # Internal type.
    "SqueezeBertModule",  # Internal building block (should have been called SqueezeBertLayer)
    "TFDPRPretrainedReader",  # Like an Encoder.
    "TransfoXLCorpus",  # Internal type.
    "WordpieceTokenizer",  # Internal, should never have been in the main init.
    "absl",  # External module
    "add_end_docstrings",  # Internal, should never have been in the main init.
    "add_start_docstrings",  # Internal, should never have been in the main init.
    "convert_tf_weight_name_to_pt_weight_name",  # Internal used to convert model weights
    "logger",  # Internal logger
    "logging",  # External module
693
    "requires_backends",  # Internal function
Jongjyh's avatar
Jongjyh committed
694
    "AltRobertaModel",  # Internal module
695
696
697
698
699
700
701
702
703
]

# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
    # Benchmarks
    "PyTorchBenchmark",
    "PyTorchBenchmarkArguments",
    "TensorFlowBenchmark",
    "TensorFlowBenchmarkArguments",
704
    "AutoBackbone",
NielsRogge's avatar
NielsRogge committed
705
706
    "BitBackbone",
    "ConvNextBackbone",
707
    "DinatBackbone",
NielsRogge's avatar
NielsRogge committed
708
    "MaskFormerSwinBackbone",
709
710
    "MaskFormerSwinConfig",
    "MaskFormerSwinModel",
NielsRogge's avatar
NielsRogge committed
711
712
    "NatBackbone",
    "ResNetBackbone",
NielsRogge's avatar
NielsRogge committed
713
    "SwinBackbone",
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
]


def ignore_undocumented(name):
    """Rules to determine if `name` should be undocumented."""
    # NOT DOCUMENTED ON PURPOSE.
    # Constants uppercase are not documented.
    if name.isupper():
        return True
    # PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
    if (
        name.endswith("PreTrainedModel")
        or name.endswith("Decoder")
        or name.endswith("Encoder")
        or name.endswith("Layer")
        or name.endswith("Embeddings")
        or name.endswith("Attention")
    ):
        return True
    # Submodules are not documented.
    if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
        os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
    ):
        return True
    # All load functions are not documented.
    if name.startswith("load_tf") or name.startswith("load_pytorch"):
        return True
    # is_xxx_available functions are not documented.
    if name.startswith("is_") and name.endswith("_available"):
        return True
    # Deprecated objects are not documented.
    if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
        return True
    # MMBT model does not really work.
    if name.startswith("MMBT"):
        return True
    if name in SHOULD_HAVE_THEIR_OWN_PAGE:
        return True
    return False


def check_all_objects_are_documented():
Patrick von Platen's avatar
Patrick von Platen committed
756
    """Check all models are properly documented."""
757
    documented_objs = find_all_documented_objects()
758
759
760
    modules = transformers._modules
    objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
    undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
761
762
763
764
765
    if len(undocumented_objs) > 0:
        raise Exception(
            "The following objects are in the public init so should be documented:\n - "
            + "\n - ".join(undocumented_objs)
        )
766
    check_docstrings_are_in_md()
767
768
769
770
771
772
773
774
775
    check_model_type_doc_match()


def check_model_type_doc_match():
    """Check all doc pages have a corresponding model type."""
    model_doc_folder = Path(PATH_TO_DOC) / "model_doc"
    model_docs = [m.stem for m in model_doc_folder.glob("*.mdx")]

    model_types = list(transformers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())
776
    model_types = [MODEL_TYPE_TO_DOC_MAPPING[m] if m in MODEL_TYPE_TO_DOC_MAPPING else m for m in model_types]
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794

    errors = []
    for m in model_docs:
        if m not in model_types and m != "auto":
            close_matches = get_close_matches(m, model_types)
            error_message = f"{m} is not a proper model identifier."
            if len(close_matches) > 0:
                close_matches = "/".join(close_matches)
                error_message += f" Did you mean {close_matches}?"
            errors.append(error_message)

    if len(errors) > 0:
        raise ValueError(
            "Some model doc pages do not match any existing model type:\n"
            + "\n".join(errors)
            + "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in "
            "models/auto/configuration_auto.py."
        )
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821


# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
# Re pattern to catch things between double backquotes.
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
# Re pattern to catch example introduction.
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)


def is_rst_docstring(docstring):
    """
    Returns `True` if `docstring` is written in rst.
    """
    if _re_rst_special_words.search(docstring) is not None:
        return True
    if _re_double_backquotes.search(docstring) is not None:
        return True
    if _re_rst_example.search(docstring) is not None:
        return True
    return False


def check_docstrings_are_in_md():
    """Check all docstrings are in md"""
    files_with_rst = []
    for file in Path(PATH_TO_TRANSFORMERS).glob("**/*.py"):
822
        with open(file, encoding="utf-8") as f:
823
824
825
826
827
828
829
830
831
832
833
834
835
            code = f.read()
        docstrings = code.split('"""')

        for idx, docstring in enumerate(docstrings):
            if idx % 2 == 0 or not is_rst_docstring(docstring):
                continue
            files_with_rst.append(file)
            break

    if len(files_with_rst) > 0:
        raise ValueError(
            "The following files have docstrings written in rst:\n"
            + "\n".join([f"- {f}" for f in files_with_rst])
Kamal Raj's avatar
Kamal Raj committed
836
            + "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n"
837
838
            "(`pip install git+https://github.com/huggingface/doc-builder`)"
        )
839
840


841
def check_repo_quality():
Patrick von Platen's avatar
Patrick von Platen committed
842
    """Check all models are properly tested and documented."""
843
844
    print("Checking all models are included.")
    check_model_list()
845
846
    print("Checking all models are public.")
    check_models_are_in_init()
847
    print("Checking all models are properly tested.")
Sylvain Gugger's avatar
Sylvain Gugger committed
848
    check_all_decorator_order()
849
    check_all_models_are_tested()
850
    print("Checking all objects are properly documented.")
851
    check_all_objects_are_documented()
852
853
    print("Checking all models are in at least one auto class.")
    check_all_models_are_auto_configured()
854
855
856
857


if __name__ == "__main__":
    check_repo_quality()