sd.py 56.8 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
import torch
2
import contextlib
3
import copy
4
import inspect
5
import math
comfyanonymous's avatar
comfyanonymous committed
6

7
from comfy import model_management
8
9
from .ldm.util import instantiate_from_config
from .ldm.models.autoencoder import AutoencoderKL
10
import yaml
comfyanonymous's avatar
comfyanonymous committed
11
from .cldm import cldm
12
from .t2i_adapter import adapter
comfyanonymous's avatar
comfyanonymous committed
13
14

from . import utils
15
from . import clip_vision
16
from . import gligen
17
from . import diffusers_convert
comfyanonymous's avatar
comfyanonymous committed
18
from . import model_base
19
from . import model_detection
20

21
22
from . import sd1_clip
from . import sd2_clip
23
from . import sdxl_clip
comfyanonymous's avatar
comfyanonymous committed
24

25
def load_model_weights(model, sd):
comfyanonymous's avatar
comfyanonymous committed
26
    m, u = model.load_state_dict(sd, strict=False)
27
28
    m = set(m)
    unexpected_keys = set(u)
comfyanonymous's avatar
comfyanonymous committed
29
30
31

    k = list(sd.keys())
    for x in k:
32
33
34
35
36
37
38
39
40
41
        if x not in unexpected_keys:
            w = sd.pop(x)
            del w
    if len(m) > 0:
        print("missing", m)
    return model

def load_clip_weights(model, sd):
    k = list(sd.keys())
    for x in k:
comfyanonymous's avatar
comfyanonymous committed
42
43
44
45
        if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
            y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
            sd[y] = sd.pop(x)

comfyanonymous's avatar
comfyanonymous committed
46
47
48
49
    if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in sd:
        ids = sd['cond_stage_model.transformer.text_model.embeddings.position_ids']
        if ids.dtype == torch.float32:
            sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
50

51
52
    sd = utils.transformers_convert(sd, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24)
    return load_model_weights(model, sd)
comfyanonymous's avatar
comfyanonymous committed
53

54
55
56
57
58
59
60
61
62
63
LORA_CLIP_MAP = {
    "mlp.fc1": "mlp_fc1",
    "mlp.fc2": "mlp_fc2",
    "self_attn.k_proj": "self_attn_k_proj",
    "self_attn.q_proj": "self_attn_q_proj",
    "self_attn.v_proj": "self_attn_v_proj",
    "self_attn.out_proj": "self_attn_out_proj",
}


64
def load_lora(lora, to_load):
65
66
67
    patch_dict = {}
    loaded_keys = set()
    for x in to_load:
comfyanonymous's avatar
comfyanonymous committed
68
69
70
71
72
73
        alpha_name = "{}.alpha".format(x)
        alpha = None
        if alpha_name in lora.keys():
            alpha = lora[alpha_name].item()
            loaded_keys.add(alpha_name)

74
75
        regular_lora = "{}.lora_up.weight".format(x)
        diffusers_lora = "{}_lora.up.weight".format(x)
76
        transformers_lora = "{}.lora_linear_layer.up.weight".format(x)
77
78
79
80
81
82
83
84
85
86
        A_name = None

        if regular_lora in lora.keys():
            A_name = regular_lora
            B_name = "{}.lora_down.weight".format(x)
            mid_name = "{}.lora_mid.weight".format(x)
        elif diffusers_lora in lora.keys():
            A_name = diffusers_lora
            B_name = "{}_lora.down.weight".format(x)
            mid_name = None
87
88
89
90
        elif transformers_lora in lora.keys():
            A_name = transformers_lora
            B_name ="{}.lora_linear_layer.down.weight".format(x)
            mid_name = None
91
92

        if A_name is not None:
93
            mid = None
94
            if mid_name is not None and mid_name in lora.keys():
95
96
97
                mid = lora[mid_name]
                loaded_keys.add(mid_name)
            patch_dict[to_load[x]] = (lora[A_name], lora[B_name], alpha, mid)
98
99
            loaded_keys.add(A_name)
            loaded_keys.add(B_name)
comfyanonymous's avatar
comfyanonymous committed
100

comfyanonymous's avatar
comfyanonymous committed
101
102

        ######## loha
comfyanonymous's avatar
comfyanonymous committed
103
104
105
106
        hada_w1_a_name = "{}.hada_w1_a".format(x)
        hada_w1_b_name = "{}.hada_w1_b".format(x)
        hada_w2_a_name = "{}.hada_w2_a".format(x)
        hada_w2_b_name = "{}.hada_w2_b".format(x)
107
108
        hada_t1_name = "{}.hada_t1".format(x)
        hada_t2_name = "{}.hada_t2".format(x)
comfyanonymous's avatar
comfyanonymous committed
109
        if hada_w1_a_name in lora.keys():
110
111
112
113
114
115
116
117
118
            hada_t1 = None
            hada_t2 = None
            if hada_t1_name in lora.keys():
                hada_t1 = lora[hada_t1_name]
                hada_t2 = lora[hada_t2_name]
                loaded_keys.add(hada_t1_name)
                loaded_keys.add(hada_t2_name)

            patch_dict[to_load[x]] = (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2)
comfyanonymous's avatar
comfyanonymous committed
119
120
121
122
123
            loaded_keys.add(hada_w1_a_name)
            loaded_keys.add(hada_w1_b_name)
            loaded_keys.add(hada_w2_a_name)
            loaded_keys.add(hada_w2_b_name)

comfyanonymous's avatar
comfyanonymous committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

        ######## lokr
        lokr_w1_name = "{}.lokr_w1".format(x)
        lokr_w2_name = "{}.lokr_w2".format(x)
        lokr_w1_a_name = "{}.lokr_w1_a".format(x)
        lokr_w1_b_name = "{}.lokr_w1_b".format(x)
        lokr_t2_name = "{}.lokr_t2".format(x)
        lokr_w2_a_name = "{}.lokr_w2_a".format(x)
        lokr_w2_b_name = "{}.lokr_w2_b".format(x)

        lokr_w1 = None
        if lokr_w1_name in lora.keys():
            lokr_w1 = lora[lokr_w1_name]
            loaded_keys.add(lokr_w1_name)

        lokr_w2 = None
        if lokr_w2_name in lora.keys():
            lokr_w2 = lora[lokr_w2_name]
            loaded_keys.add(lokr_w2_name)

        lokr_w1_a = None
        if lokr_w1_a_name in lora.keys():
            lokr_w1_a = lora[lokr_w1_a_name]
            loaded_keys.add(lokr_w1_a_name)

        lokr_w1_b = None
        if lokr_w1_b_name in lora.keys():
            lokr_w1_b = lora[lokr_w1_b_name]
            loaded_keys.add(lokr_w1_b_name)

        lokr_w2_a = None
        if lokr_w2_a_name in lora.keys():
            lokr_w2_a = lora[lokr_w2_a_name]
            loaded_keys.add(lokr_w2_a_name)

        lokr_w2_b = None
        if lokr_w2_b_name in lora.keys():
            lokr_w2_b = lora[lokr_w2_b_name]
            loaded_keys.add(lokr_w2_b_name)

        lokr_t2 = None
        if lokr_t2_name in lora.keys():
            lokr_t2 = lora[lokr_t2_name]
            loaded_keys.add(lokr_t2_name)

        if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
            patch_dict[to_load[x]] = (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2)

172
173
174
175
176
    for x in lora.keys():
        if x not in loaded_keys:
            print("lora key not loaded", x)
    return patch_dict

177
def model_lora_keys_clip(model, key_map={}):
178
179
    sdk = model.state_dict().keys()

comfyanonymous's avatar
comfyanonymous committed
180
    text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
181
182
    clip_l_present = False
    for b in range(32):
183
184
185
        for c in LORA_CLIP_MAP:
            k = "transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
186
                lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
187
                key_map[lora_key] = k
comfyanonymous's avatar
comfyanonymous committed
188
189
                lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c])
                key_map[lora_key] = k
190
191
                lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
                key_map[lora_key] = k
comfyanonymous's avatar
comfyanonymous committed
192

193
194
195
196
197
            k = "clip_l.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
                lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
                key_map[lora_key] = k
                clip_l_present = True
198
199
                lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
                key_map[lora_key] = k
200
201
202
203
204

            k = "clip_g.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
                if clip_l_present:
                    lora_key = "lora_te2_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
205
206
207
                    key_map[lora_key] = k
                    lora_key = "text_encoder_2.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
                    key_map[lora_key] = k
208
209
                else:
                    lora_key = "lora_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #TODO: test if this is correct for SDXL-Refiner
210
211
212
                    key_map[lora_key] = k
                    lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
                    key_map[lora_key] = k
213

214
    return key_map
comfyanonymous's avatar
comfyanonymous committed
215

216
217
def model_lora_keys_unet(model, key_map={}):
    sdk = model.state_dict().keys()
comfyanonymous's avatar
comfyanonymous committed
218

219
220
221
222
223
    for k in sdk:
        if k.startswith("diffusion_model.") and k.endswith(".weight"):
            key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
            key_map["lora_unet_{}".format(key_lora)] = k

224
225
226
    diffusers_keys = utils.unet_to_diffusers(model.model_config.unet_config)
    for k in diffusers_keys:
        if k.endswith(".weight"):
227
            unet_key = "diffusion_model.{}".format(diffusers_keys[k])
228
            key_lora = k[:-len(".weight")].replace(".", "_")
229
230
231
232
233
234
235
236
            key_map["lora_unet_{}".format(key_lora)] = unet_key

            diffusers_lora_prefix = ["", "unet."]
            for p in diffusers_lora_prefix:
                diffusers_lora_key = "{}{}".format(p, k[:-len(".weight")].replace(".to_", ".processor.to_"))
                if diffusers_lora_key.endswith(".to_out.0"):
                    diffusers_lora_key = diffusers_lora_key[:-2]
                key_map[diffusers_lora_key] = unet_key
237
238
    return key_map

239
240
241
242
243
244
245
246
def set_attr(obj, attr, value):
    attrs = attr.split(".")
    for name in attrs[:-1]:
        obj = getattr(obj, name)
    prev = getattr(obj, attrs[-1])
    setattr(obj, attrs[-1], torch.nn.Parameter(value))
    del prev

comfyanonymous's avatar
comfyanonymous committed
247
248
249
250
251
252
253
def get_attr(obj, attr):
    attrs = attr.split(".")
    for name in attrs:
        obj = getattr(obj, name)
    return obj


254
class ModelPatcher:
comfyanonymous's avatar
comfyanonymous committed
255
    def __init__(self, model, load_device, offload_device, size=0, current_device=None):
256
        self.size = size
257
        self.model = model
258
        self.patches = {}
259
        self.backup = {}
260
        self.model_options = {"transformer_options":{}}
261
        self.model_size()
262
263
        self.load_device = load_device
        self.offload_device = offload_device
comfyanonymous's avatar
comfyanonymous committed
264
265
266
267
        if current_device is None:
            self.current_device = self.offload_device
        else:
            self.current_device = current_device
268
269
270
271
272
273
274
275
276
277

    def model_size(self):
        if self.size > 0:
            return self.size
        model_sd = self.model.state_dict()
        size = 0
        for k in model_sd:
            t = model_sd[k]
            size += t.nelement() * t.element_size()
        self.size = size
278
        self.model_keys = set(model_sd.keys())
279
        return size
280
281

    def clone(self):
comfyanonymous's avatar
comfyanonymous committed
282
        n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size, self.current_device)
283
284
285
286
        n.patches = {}
        for k in self.patches:
            n.patches[k] = self.patches[k][:]

287
        n.model_options = copy.deepcopy(self.model_options)
288
        n.model_keys = self.model_keys
289
290
        return n

comfyanonymous's avatar
comfyanonymous committed
291
292
293
294
295
    def is_clone(self, other):
        if hasattr(other, 'model') and self.model is other.model:
            return True
        return False

296
    def set_model_sampler_cfg_function(self, sampler_cfg_function):
297
298
299
300
        if len(inspect.signature(sampler_cfg_function).parameters) == 3:
            self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way
        else:
            self.model_options["sampler_cfg_function"] = sampler_cfg_function
301

302
303
304
    def set_model_unet_function_wrapper(self, unet_wrapper_function):
        self.model_options["model_function_wrapper"] = unet_wrapper_function

305
306
307
308
309
310
    def set_model_patch(self, patch, name):
        to = self.model_options["transformer_options"]
        if "patches" not in to:
            to["patches"] = {}
        to["patches"][name] = to["patches"].get(name, []) + [patch]

311
312
313
314
315
316
317
318
    def set_model_patch_replace(self, patch, name, block_name, number):
        to = self.model_options["transformer_options"]
        if "patches_replace" not in to:
            to["patches_replace"] = {}
        if name not in to["patches_replace"]:
            to["patches_replace"][name] = {}
        to["patches_replace"][name][(block_name, number)] = patch

319
320
321
322
323
324
    def set_model_attn1_patch(self, patch):
        self.set_model_patch(patch, "attn1_patch")

    def set_model_attn2_patch(self, patch):
        self.set_model_patch(patch, "attn2_patch")

325
326
327
328
329
330
331
332
333
    def set_model_attn1_replace(self, patch, block_name, number):
        self.set_model_patch_replace(patch, "attn1", block_name, number)

    def set_model_attn2_replace(self, patch, block_name, number):
        self.set_model_patch_replace(patch, "attn2", block_name, number)

    def set_model_attn1_output_patch(self, patch):
        self.set_model_patch(patch, "attn1_output_patch")

334
335
336
    def set_model_attn2_output_patch(self, patch):
        self.set_model_patch(patch, "attn2_output_patch")

337
338
339
340
341
342
343
344
345
    def model_patches_to(self, device):
        to = self.model_options["transformer_options"]
        if "patches" in to:
            patches = to["patches"]
            for name in patches:
                patch_list = patches[name]
                for i in range(len(patch_list)):
                    if hasattr(patch_list[i], "to"):
                        patch_list[i] = patch_list[i].to(device)
346
347
348
349
350
351
352
        if "patches_replace" in to:
            patches = to["patches_replace"]
            for name in patches:
                patch_list = patches[name]
                for k in patch_list:
                    if hasattr(patch_list[k], "to"):
                        patch_list[k] = patch_list[k].to(device)
353

354
    def model_dtype(self):
355
356
        if hasattr(self.model, "get_dtype"):
            return self.model.get_dtype()
357

358
    def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
359
        p = set()
360
        for k in patches:
361
            if k in self.model_keys:
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
                p.add(k)
                current_patches = self.patches.get(k, [])
                current_patches.append((strength_patch, patches[k], strength_model))
                self.patches[k] = current_patches

        return list(p)

    def get_key_patches(self, filter_prefix=None):
        model_sd = self.model_state_dict()
        p = {}
        for k in model_sd:
            if filter_prefix is not None:
                if not k.startswith(filter_prefix):
                    continue
            if k in self.patches:
                p[k] = [model_sd[k]] + self.patches[k]
            else:
                p[k] = (model_sd[k],)
        return p
381

382
    def model_state_dict(self, filter_prefix=None):
383
384
        sd = self.model.state_dict()
        keys = list(sd.keys())
385
386
387
388
        if filter_prefix is not None:
            for k in keys:
                if not k.startswith(filter_prefix):
                    sd.pop(k)
389
390
        return sd

391
    def patch_model(self, device_to=None):
392
        model_sd = self.model_state_dict()
393
394
395
396
        for key in self.patches:
            if key not in model_sd:
                print("could not patch. key doesn't exist in model:", k)
                continue
397

398
            weight = model_sd[key]
399

400
            if key not in self.backup:
401
                self.backup[key] = weight.to(self.offload_device)
402

403
404
405
406
            if device_to is not None:
                temp_weight = weight.float().to(device_to, copy=True)
            else:
                temp_weight = weight.to(torch.float32, copy=True)
407
408
            out_weight = self.calculate_weight(self.patches[key], temp_weight, key).to(weight.dtype)
            set_attr(self.model, key, out_weight)
409
            del temp_weight
comfyanonymous's avatar
comfyanonymous committed
410
411
412
413
414

        if device_to is not None:
            self.model.to(device_to)
            self.current_device = device_to

415
        return self.model
comfyanonymous's avatar
comfyanonymous committed
416

417
418
419
420
421
422
423
424
425
426
427
428
429
430
    def calculate_weight(self, patches, weight, key):
        for p in patches:
            alpha = p[0]
            v = p[1]
            strength_model = p[2]

            if strength_model != 1.0:
                weight *= strength_model

            if isinstance(v, list):
                v = (self.calculate_weight(v[1:], v[0].clone(), key), )

            if len(v) == 1:
                w1 = v[0]
431
432
433
434
435
                if alpha != 0.0:
                    if w1.shape != weight.shape:
                        print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
                    else:
                        weight += alpha * w1.type(weight.dtype).to(weight.device)
436
            elif len(v) == 4: #lora/locon
comfyanonymous's avatar
comfyanonymous committed
437
438
                mat1 = v[0].float().to(weight.device)
                mat2 = v[1].float().to(weight.device)
439
440
441
442
                if v[2] is not None:
                    alpha *= v[2] / mat2.shape[0]
                if v[3] is not None:
                    #locon mid weights, hopefully the math is fine because I didn't properly test it
comfyanonymous's avatar
comfyanonymous committed
443
444
445
                    mat3 = v[3].float().to(weight.device)
                    final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
                    mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
446
447
448
449
                try:
                    weight += (alpha * torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1))).reshape(weight.shape).type(weight.dtype)
                except Exception as e:
                    print("ERROR", key, e)
450
451
452
453
454
455
456
457
458
459
460
461
462
            elif len(v) == 8: #lokr
                w1 = v[0]
                w2 = v[1]
                w1_a = v[3]
                w1_b = v[4]
                w2_a = v[5]
                w2_b = v[6]
                t2 = v[7]
                dim = None

                if w1 is None:
                    dim = w1_b.shape[0]
                    w1 = torch.mm(w1_a.float(), w1_b.float())
comfyanonymous's avatar
comfyanonymous committed
463
464
                else:
                    w1 = w1.float().to(weight.device)
465
466
467
468

                if w2 is None:
                    dim = w2_b.shape[0]
                    if t2 is None:
comfyanonymous's avatar
comfyanonymous committed
469
                        w2 = torch.mm(w2_a.float().to(weight.device), w2_b.float().to(weight.device))
470
                    else:
comfyanonymous's avatar
comfyanonymous committed
471
472
473
                        w2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float().to(weight.device), w2_b.float().to(weight.device), w2_a.float().to(weight.device))
                else:
                    w2 = w2.float().to(weight.device)
474
475
476
477
478
479

                if len(w2.shape) == 4:
                    w1 = w1.unsqueeze(2).unsqueeze(2)
                if v[2] is not None and dim is not None:
                    alpha *= v[2] / dim

480
481
482
483
                try:
                    weight += alpha * torch.kron(w1, w2).reshape(weight.shape).type(weight.dtype)
                except Exception as e:
                    print("ERROR", key, e)
484
485
486
487
488
489
490
491
492
493
            else: #loha
                w1a = v[0]
                w1b = v[1]
                if v[2] is not None:
                    alpha *= v[2] / w1b.shape[0]
                w2a = v[3]
                w2b = v[4]
                if v[5] is not None: #cp decomposition
                    t1 = v[5]
                    t2 = v[6]
comfyanonymous's avatar
comfyanonymous committed
494
495
                    m1 = torch.einsum('i j k l, j r, i p -> p r k l', t1.float().to(weight.device), w1b.float().to(weight.device), w1a.float().to(weight.device))
                    m2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float().to(weight.device), w2b.float().to(weight.device), w2a.float().to(weight.device))
496
                else:
comfyanonymous's avatar
comfyanonymous committed
497
498
                    m1 = torch.mm(w1a.float().to(weight.device), w1b.float().to(weight.device))
                    m2 = torch.mm(w2a.float().to(weight.device), w2b.float().to(weight.device))
499

500
501
502
503
504
                try:
                    weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype)
                except Exception as e:
                    print("ERROR", key, e)

505
        return weight
506

comfyanonymous's avatar
comfyanonymous committed
507
    def unpatch_model(self, device_to=None):
508
        keys = list(self.backup.keys())
509

510
        for k in keys:
511
            set_attr(self.model, k, self.backup[k])
512

513
514
        self.backup = {}

comfyanonymous's avatar
comfyanonymous committed
515
516
517
518
519
        if device_to is not None:
            self.model.to(device_to)
            self.current_device = device_to


520
def load_lora_for_models(model, clip, lora, strength_model, strength_clip):
521
522
    key_map = model_lora_keys_unet(model.model)
    key_map = model_lora_keys_clip(clip.cond_stage_model, key_map)
523
    loaded = load_lora(lora, key_map)
524
525
526
527
528
529
530
531
532
533
534
    new_modelpatcher = model.clone()
    k = new_modelpatcher.add_patches(loaded, strength_model)
    new_clip = clip.clone()
    k1 = new_clip.add_patches(loaded, strength_clip)
    k = set(k)
    k1 = set(k1)
    for x in loaded:
        if (x not in k) and (x not in k1):
            print("NOT LOADED", x)

    return (new_modelpatcher, new_clip)
comfyanonymous's avatar
comfyanonymous committed
535
536
537


class CLIP:
538
    def __init__(self, target=None, embedding_directory=None, no_init=False):
539
540
        if no_init:
            return
comfyanonymous's avatar
comfyanonymous committed
541
        params = target.params.copy()
542
543
        clip = target.clip
        tokenizer = target.tokenizer
544

545
546
        load_device = model_management.text_encoder_device()
        offload_device = model_management.text_encoder_offload_device()
comfyanonymous's avatar
comfyanonymous committed
547
        params['device'] = load_device
548
        if model_management.should_use_fp16(load_device, prioritize_performance=False):
549
550
551
552
553
            params['dtype'] = torch.float16
        else:
            params['dtype'] = torch.float32

        self.cond_stage_model = clip(**(params))
554

555
        self.tokenizer = tokenizer(embedding_directory=embedding_directory)
556
        self.patcher = ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device)
557
        self.layer_idx = None
558
559
560
561
562
563

    def clone(self):
        n = CLIP(no_init=True)
        n.patcher = self.patcher.clone()
        n.cond_stage_model = self.cond_stage_model
        n.tokenizer = self.tokenizer
comfyanonymous's avatar
comfyanonymous committed
564
        n.layer_idx = self.layer_idx
565
566
        return n

567
568
    def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
        return self.patcher.add_patches(patches, strength_patch, strength_model)
comfyanonymous's avatar
comfyanonymous committed
569

570
    def clip_layer(self, layer_idx):
comfyanonymous's avatar
comfyanonymous committed
571
        self.layer_idx = layer_idx
572

573
574
    def tokenize(self, text, return_word_ids=False):
        return self.tokenizer.tokenize_with_weights(text, return_word_ids)
BlenderNeko's avatar
BlenderNeko committed
575

576
    def encode_from_tokens(self, tokens, return_pooled=False):
577
578
        if self.layer_idx is not None:
            self.cond_stage_model.clip_layer(self.layer_idx)
579
580
        else:
            self.cond_stage_model.reset_clip_layer()
581

582
        self.load_model()
583
        cond, pooled = self.cond_stage_model.encode_token_weights(tokens)
584
        if return_pooled:
585
586
            return cond, pooled
        return cond
comfyanonymous's avatar
comfyanonymous committed
587

588
    def encode(self, text):
589
        tokens = self.tokenize(text)
590
591
        return self.encode_from_tokens(tokens)

592
593
    def load_sd(self, sd):
        return self.cond_stage_model.load_sd(sd)
594

595
596
597
    def get_sd(self):
        return self.cond_stage_model.state_dict()

598
599
600
    def load_model(self):
        model_management.load_model_gpu(self.patcher)
        return self.patcher
601

602
603
604
    def get_key_patches(self):
        return self.patcher.get_key_patches()

comfyanonymous's avatar
comfyanonymous committed
605
class VAE:
606
    def __init__(self, ckpt_path=None, device=None, config=None):
comfyanonymous's avatar
comfyanonymous committed
607
608
609
        if config is None:
            #default SD1.x/SD2.x VAE parameters
            ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
610
            self.first_stage_model = AutoencoderKL(ddconfig, {'target': 'torch.nn.Identity'}, 4, monitor="val/rec_loss")
comfyanonymous's avatar
comfyanonymous committed
611
        else:
612
            self.first_stage_model = AutoencoderKL(**(config['params']))
comfyanonymous's avatar
comfyanonymous committed
613
        self.first_stage_model = self.first_stage_model.eval()
614
615
616
617
618
619
        if ckpt_path is not None:
            sd = utils.load_torch_file(ckpt_path)
            if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format
                sd = diffusers_convert.convert_vae_state_dict(sd)
            self.first_stage_model.load_state_dict(sd, strict=False)

620
        if device is None:
621
            device = model_management.vae_device()
comfyanonymous's avatar
comfyanonymous committed
622
        self.device = device
623
        self.offload_device = model_management.vae_offload_device()
624
625
        self.vae_dtype = model_management.vae_dtype()
        self.first_stage_model.to(self.vae_dtype)
comfyanonymous's avatar
comfyanonymous committed
626

627
    def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
pythongosssss's avatar
pythongosssss committed
628
        steps = samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
comfyanonymous's avatar
comfyanonymous committed
629
630
        steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
        steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
pythongosssss's avatar
pythongosssss committed
631
        pbar = utils.ProgressBar(steps)
632

633
        decode_fn = lambda a: (self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)) + 1.0).float()
634
        output = torch.clamp((
635
636
637
            (utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8, pbar = pbar) +
            utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8, pbar = pbar) +
             utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8, pbar = pbar))
638
639
640
            / 3.0) / 2.0, min=0.0, max=1.0)
        return output

641
642
643
644
645
646
    def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
        steps = pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
        steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
        steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
        pbar = utils.ProgressBar(steps)

647
        encode_fn = lambda a: self.first_stage_model.encode(2. * a.to(self.vae_dtype).to(self.device) - 1.).sample().float()
648
649
650
651
652
653
        samples = utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
        samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
        samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
        samples /= 3.0
        return samples

654
    def decode(self, samples_in):
comfyanonymous's avatar
comfyanonymous committed
655
        self.first_stage_model = self.first_stage_model.to(self.device)
656
        try:
657
            memory_used = (2562 * samples_in.shape[2] * samples_in.shape[3] * 64) * 1.7
comfyanonymous's avatar
comfyanonymous committed
658
            model_management.free_memory(memory_used, self.device)
659
            free_memory = model_management.get_free_memory(self.device)
comfyanonymous's avatar
comfyanonymous committed
660
            batch_number = int(free_memory / memory_used)
661
662
663
664
            batch_number = max(1, batch_number)

            pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * 8), round(samples_in.shape[3] * 8)), device="cpu")
            for x in range(0, samples_in.shape[0], batch_number):
665
666
                samples = samples_in[x:x+batch_number].to(self.vae_dtype).to(self.device)
                pixel_samples[x:x+batch_number] = torch.clamp((self.first_stage_model.decode(samples) + 1.0) / 2.0, min=0.0, max=1.0).cpu().float()
667
668
669
670
        except model_management.OOM_EXCEPTION as e:
            print("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
            pixel_samples = self.decode_tiled_(samples_in)

671
        self.first_stage_model = self.first_stage_model.to(self.offload_device)
comfyanonymous's avatar
comfyanonymous committed
672
673
674
        pixel_samples = pixel_samples.cpu().movedim(1,-1)
        return pixel_samples

675
    def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16):
676
        self.first_stage_model = self.first_stage_model.to(self.device)
677
        output = self.decode_tiled_(samples, tile_x, tile_y, overlap)
678
        self.first_stage_model = self.first_stage_model.to(self.offload_device)
679
680
        return output.movedim(1,-1)

comfyanonymous's avatar
comfyanonymous committed
681
682
    def encode(self, pixel_samples):
        self.first_stage_model = self.first_stage_model.to(self.device)
683
684
        pixel_samples = pixel_samples.movedim(-1,1)
        try:
685
            memory_used = (2078 * pixel_samples.shape[2] * pixel_samples.shape[3]) * 1.7 #NOTE: this constant along with the one in the decode above are estimated from the mem usage for the VAE and could change.
comfyanonymous's avatar
comfyanonymous committed
686
            model_management.free_memory(memory_used, self.device)
687
            free_memory = model_management.get_free_memory(self.device)
comfyanonymous's avatar
comfyanonymous committed
688
            batch_number = int(free_memory / memory_used)
689
            batch_number = max(1, batch_number)
690
691
            samples = torch.empty((pixel_samples.shape[0], 4, round(pixel_samples.shape[2] // 8), round(pixel_samples.shape[3] // 8)), device="cpu")
            for x in range(0, pixel_samples.shape[0], batch_number):
692
693
                pixels_in = (2. * pixel_samples[x:x+batch_number] - 1.).to(self.vae_dtype).to(self.device)
                samples[x:x+batch_number] = self.first_stage_model.encode(pixels_in).sample().cpu().float()
694

695
696
697
698
        except model_management.OOM_EXCEPTION as e:
            print("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.")
            samples = self.encode_tiled_(pixel_samples)

699
        self.first_stage_model = self.first_stage_model.to(self.offload_device)
comfyanonymous's avatar
comfyanonymous committed
700
701
        return samples

comfyanonymous's avatar
comfyanonymous committed
702
703
    def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
        self.first_stage_model = self.first_stage_model.to(self.device)
704
705
        pixel_samples = pixel_samples.movedim(-1,1)
        samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap)
706
        self.first_stage_model = self.first_stage_model.to(self.offload_device)
comfyanonymous's avatar
comfyanonymous committed
707
        return samples
708

709
710
711
712
    def get_sd(self):
        return self.first_stage_model.state_dict()


BlenderNeko's avatar
BlenderNeko committed
713
def broadcast_image_to(tensor, target_batch_size, batched_number):
714
    current_batch_size = tensor.shape[0]
715
    #print(current_batch_size, target_batch_size)
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
    if current_batch_size == 1:
        return tensor

    per_batch = target_batch_size // batched_number
    tensor = tensor[:per_batch]

    if per_batch > tensor.shape[0]:
        tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)

    current_batch_size = tensor.shape[0]
    if current_batch_size == target_batch_size:
        return tensor
    else:
        return torch.cat([tensor] * batched_number, dim=0)

731
732
class ControlBase:
    def __init__(self, device=None):
comfyanonymous's avatar
comfyanonymous committed
733
734
        self.cond_hint_original = None
        self.cond_hint = None
735
        self.strength = 1.0
736
737
738
        self.timestep_percent_range = (1.0, 0.0)
        self.timestep_range = None

739
740
        if device is None:
            device = model_management.get_torch_device()
741
        self.device = device
comfyanonymous's avatar
comfyanonymous committed
742
        self.previous_controlnet = None
743
        self.global_average_pooling = False
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778

    def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(1.0, 0.0)):
        self.cond_hint_original = cond_hint
        self.strength = strength
        self.timestep_percent_range = timestep_percent_range
        return self

    def pre_run(self, model, percent_to_timestep_function):
        self.timestep_range = (percent_to_timestep_function(self.timestep_percent_range[0]), percent_to_timestep_function(self.timestep_percent_range[1]))
        if self.previous_controlnet is not None:
            self.previous_controlnet.pre_run(model, percent_to_timestep_function)

    def set_previous_controlnet(self, controlnet):
        self.previous_controlnet = controlnet
        return self

    def cleanup(self):
        if self.previous_controlnet is not None:
            self.previous_controlnet.cleanup()
        if self.cond_hint is not None:
            del self.cond_hint
            self.cond_hint = None
        self.timestep_range = None

    def get_models(self):
        out = []
        if self.previous_controlnet is not None:
            out += self.previous_controlnet.get_models()
        return out

    def copy_to(self, c):
        c.cond_hint_original = self.cond_hint_original
        c.strength = self.strength
        c.timestep_percent_range = self.timestep_percent_range

779
780
781
782
783
    def inference_memory_requirements(self, dtype):
        if self.previous_controlnet is not None:
            return self.previous_controlnet.inference_memory_requirements(dtype)
        return 0

784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
    def control_merge(self, control_input, control_output, control_prev, output_dtype):
        out = {'input':[], 'middle':[], 'output': []}

        if control_input is not None:
            for i in range(len(control_input)):
                key = 'input'
                x = control_input[i]
                if x is not None:
                    x *= self.strength
                    if x.dtype != output_dtype:
                        x = x.to(output_dtype)
                out[key].insert(0, x)

        if control_output is not None:
            for i in range(len(control_output)):
                if i == (len(control_output) - 1):
                    key = 'middle'
                    index = 0
                else:
                    key = 'output'
                    index = i
                x = control_output[i]
                if x is not None:
                    if self.global_average_pooling:
                        x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])

                    x *= self.strength
                    if x.dtype != output_dtype:
                        x = x.to(output_dtype)

                out[key].append(x)
        if control_prev is not None:
            for x in ['input', 'middle', 'output']:
                o = out[x]
                for i in range(len(control_prev[x])):
                    prev_val = control_prev[x][i]
                    if i >= len(o):
                        o.append(prev_val)
                    elif prev_val is not None:
                        if o[i] is None:
                            o[i] = prev_val
                        else:
                            o[i] += prev_val
        return out

829
830
831
832
class ControlNet(ControlBase):
    def __init__(self, control_model, global_average_pooling=False, device=None):
        super().__init__(device)
        self.control_model = control_model
comfyanonymous's avatar
comfyanonymous committed
833
        self.control_model_wrapped = ModelPatcher(self.control_model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device())
834
        self.global_average_pooling = global_average_pooling
comfyanonymous's avatar
comfyanonymous committed
835

836
    def get_control(self, x_noisy, t, cond, batched_number):
comfyanonymous's avatar
comfyanonymous committed
837
838
        control_prev = None
        if self.previous_controlnet is not None:
839
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
comfyanonymous's avatar
comfyanonymous committed
840

841
842
843
844
845
846
847
        if self.timestep_range is not None:
            if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
                if control_prev is not None:
                    return control_prev
                else:
                    return {}

848
        output_dtype = x_noisy.dtype
comfyanonymous's avatar
comfyanonymous committed
849
850
851
852
        if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
            self.cond_hint = None
BlenderNeko's avatar
BlenderNeko committed
853
854
855
            self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(self.control_model.dtype).to(self.device)
        if x_noisy.shape[0] != self.cond_hint.shape[0]:
            self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
856
857


858
859
860
861
862
        context = torch.cat(cond['c_crossattn'], 1)
        y = cond.get('c_adm', None)
        if y is not None:
            y = y.to(self.control_model.dtype)
        control = self.control_model(x=x_noisy.to(self.control_model.dtype), hint=self.cond_hint, timesteps=t, context=context.to(self.control_model.dtype), y=y)
863
        return self.control_merge(None, control, control_prev, output_dtype)
comfyanonymous's avatar
comfyanonymous committed
864
865

    def copy(self):
866
        c = ControlNet(self.control_model, global_average_pooling=self.global_average_pooling)
867
        self.copy_to(c)
comfyanonymous's avatar
comfyanonymous committed
868
869
        return c

870
871
    def get_models(self):
        out = super().get_models()
comfyanonymous's avatar
comfyanonymous committed
872
        out.append(self.control_model_wrapped)
873
874
        return out

comfyanonymous's avatar
comfyanonymous committed
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
class ControlLoraOps:
    class Linear(torch.nn.Module):
        def __init__(self, in_features: int, out_features: int, bias: bool = True,
                    device=None, dtype=None) -> None:
            factory_kwargs = {'device': device, 'dtype': dtype}
            super().__init__()
            self.in_features = in_features
            self.out_features = out_features
            self.weight = None
            self.up = None
            self.down = None
            self.bias = None

        def forward(self, input):
            if self.up is not None:
comfyanonymous's avatar
comfyanonymous committed
890
                return torch.nn.functional.linear(input, self.weight.to(input.device) + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), self.bias)
comfyanonymous's avatar
comfyanonymous committed
891
            else:
comfyanonymous's avatar
comfyanonymous committed
892
                return torch.nn.functional.linear(input, self.weight.to(input.device), self.bias)
comfyanonymous's avatar
comfyanonymous committed
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928

    class Conv2d(torch.nn.Module):
        def __init__(
            self,
            in_channels,
            out_channels,
            kernel_size,
            stride=1,
            padding=0,
            dilation=1,
            groups=1,
            bias=True,
            padding_mode='zeros',
            device=None,
            dtype=None
        ):
            super().__init__()
            self.in_channels = in_channels
            self.out_channels = out_channels
            self.kernel_size = kernel_size
            self.stride = stride
            self.padding = padding
            self.dilation = dilation
            self.transposed = False
            self.output_padding = 0
            self.groups = groups
            self.padding_mode = padding_mode

            self.weight = None
            self.bias = None
            self.up = None
            self.down = None


        def forward(self, input):
            if self.up is not None:
comfyanonymous's avatar
comfyanonymous committed
929
                return torch.nn.functional.conv2d(input, self.weight.to(input.device) + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), self.bias, self.stride, self.padding, self.dilation, self.groups)
comfyanonymous's avatar
comfyanonymous committed
930
            else:
comfyanonymous's avatar
comfyanonymous committed
931
                return torch.nn.functional.conv2d(input, self.weight.to(input.device), self.bias, self.stride, self.padding, self.dilation, self.groups)
comfyanonymous's avatar
comfyanonymous committed
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952

    def conv_nd(self, dims, *args, **kwargs):
        if dims == 2:
            return self.Conv2d(*args, **kwargs)
        else:
            raise ValueError(f"unsupported dimensions: {dims}")


class ControlLora(ControlNet):
    def __init__(self, control_weights, global_average_pooling=False, device=None):
        ControlBase.__init__(self, device)
        self.control_weights = control_weights
        self.global_average_pooling = global_average_pooling

    def pre_run(self, model, percent_to_timestep_function):
        super().pre_run(model, percent_to_timestep_function)
        controlnet_config = model.model_config.unet_config.copy()
        controlnet_config.pop("out_channels")
        controlnet_config["hint_channels"] = self.control_weights["input_hint_block.0.weight"].shape[1]
        controlnet_config["operations"] = ControlLoraOps()
        self.control_model = cldm.ControlNet(**controlnet_config)
953
954
        dtype = model.get_dtype()
        self.control_model.to(dtype)
comfyanonymous's avatar
comfyanonymous committed
955
956
957
958
959
960
        self.control_model.to(model_management.get_torch_device())
        diffusion_model = model.diffusion_model
        sd = diffusion_model.state_dict()
        cm = self.control_model.state_dict()

        for k in sd:
comfyanonymous's avatar
comfyanonymous committed
961
962
963
964
965
966
            weight = sd[k]
            if weight.device == torch.device("meta"): #lowvram NOTE: this depends on the inner working of the accelerate library so it might break.
                key_split = k.split('.')              # I have no idea why they don't just leave the weight there instead of using the meta device.
                op = get_attr(diffusion_model, '.'.join(key_split[:-1]))
                weight = op._hf_hook.weights_map[key_split[-1]]

comfyanonymous's avatar
comfyanonymous committed
967
            try:
comfyanonymous's avatar
comfyanonymous committed
968
                set_attr(self.control_model, k, weight)
comfyanonymous's avatar
comfyanonymous committed
969
970
971
972
973
            except:
                pass

        for k in self.control_weights:
            if k not in {"lora_controlnet"}:
974
                set_attr(self.control_model, k, self.control_weights[k].to(dtype).to(model_management.get_torch_device()))
comfyanonymous's avatar
comfyanonymous committed
975
976
977
978
979
980
981
982
983
984
985
986
987
988

    def copy(self):
        c = ControlLora(self.control_weights, global_average_pooling=self.global_average_pooling)
        self.copy_to(c)
        return c

    def cleanup(self):
        del self.control_model
        self.control_model = None
        super().cleanup()

    def get_models(self):
        out = ControlBase.get_models(self)
        return out
989

990
991
992
    def inference_memory_requirements(self, dtype):
        return utils.calculate_parameters(self.control_weights) * model_management.dtype_size(dtype) + ControlBase.inference_memory_requirements(self, dtype)

993
def load_controlnet(ckpt_path, model=None):
994
    controlnet_data = utils.load_torch_file(ckpt_path, safe_load=True)
comfyanonymous's avatar
comfyanonymous committed
995
996
    if "lora_controlnet" in controlnet_data:
        return ControlLora(controlnet_data)
997
998
999
1000

    controlnet_config = None
    if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format
        use_fp16 = model_management.should_use_fp16()
1001
        controlnet_config = model_detection.unet_config_from_diffusers_unet(controlnet_data, use_fp16)
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
        diffusers_keys = utils.unet_to_diffusers(controlnet_config)
        diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
        diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"

        count = 0
        loop = True
        while loop:
            suffix = [".weight", ".bias"]
            for s in suffix:
                k_in = "controlnet_down_blocks.{}{}".format(count, s)
                k_out = "zero_convs.{}.0{}".format(count, s)
                if k_in not in controlnet_data:
                    loop = False
                    break
                diffusers_keys[k_in] = k_out
            count += 1

        count = 0
        loop = True
        while loop:
            suffix = [".weight", ".bias"]
            for s in suffix:
                if count == 0:
                    k_in = "controlnet_cond_embedding.conv_in{}".format(s)
                else:
                    k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s)
                k_out = "input_hint_block.{}{}".format(count * 2, s)
                if k_in not in controlnet_data:
                    k_in = "controlnet_cond_embedding.conv_out{}".format(s)
                    loop = False
                diffusers_keys[k_in] = k_out
            count += 1

        new_sd = {}
        for k in diffusers_keys:
            if k in controlnet_data:
                new_sd[diffusers_keys[k]] = controlnet_data.pop(k)

1040
1041
1042
        leftover_keys = controlnet_data.keys()
        if len(leftover_keys) > 0:
            print("leftover keys:", leftover_keys)
1043
1044
        controlnet_data = new_sd

1045
    pth_key = 'control_model.zero_convs.0.0.weight'
comfyanonymous's avatar
comfyanonymous committed
1046
    pth = False
1047
    key = 'zero_convs.0.0.weight'
comfyanonymous's avatar
comfyanonymous committed
1048
1049
1050
    if pth_key in controlnet_data:
        pth = True
        key = pth_key
1051
        prefix = "control_model."
comfyanonymous's avatar
comfyanonymous committed
1052
    elif key in controlnet_data:
1053
        prefix = ""
comfyanonymous's avatar
comfyanonymous committed
1054
    else:
1055
1056
1057
1058
        net = load_t2i_adapter(controlnet_data)
        if net is None:
            print("error checkpoint does not contain controlnet or t2i adapter data", ckpt_path)
        return net
comfyanonymous's avatar
comfyanonymous committed
1059

1060
1061
1062
    if controlnet_config is None:
        use_fp16 = model_management.should_use_fp16()
        controlnet_config = model_detection.model_config_from_unet(controlnet_data, prefix, use_fp16).unet_config
1063
    controlnet_config.pop("out_channels")
1064
    controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
1065
1066
    control_model = cldm.ControlNet(**controlnet_config)

comfyanonymous's avatar
comfyanonymous committed
1067
    if pth:
1068
1069
        if 'difference' in controlnet_data:
            if model is not None:
1070
1071
                model_management.load_models_gpu([model])
                model_sd = model.model_state_dict()
1072
1073
1074
                for x in controlnet_data:
                    c_m = "control_model."
                    if x.startswith(c_m):
comfyanonymous's avatar
comfyanonymous committed
1075
                        sd_key = "diffusion_model.{}".format(x[len(c_m):])
1076
1077
1078
1079
1080
1081
                        if sd_key in model_sd:
                            cd = controlnet_data[x]
                            cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
            else:
                print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")

comfyanonymous's avatar
comfyanonymous committed
1082
1083
1084
1085
        class WeightsLoader(torch.nn.Module):
            pass
        w = WeightsLoader()
        w.control_model = control_model
1086
        missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
comfyanonymous's avatar
comfyanonymous committed
1087
    else:
1088
1089
        missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
    print(missing, unexpected)
comfyanonymous's avatar
comfyanonymous committed
1090

1091
1092
1093
    if use_fp16:
        control_model = control_model.half()

1094
1095
1096
1097
1098
    global_average_pooling = False
    if ckpt_path.endswith("_shuffle.pth") or ckpt_path.endswith("_shuffle.safetensors") or ckpt_path.endswith("_shuffle_fp16.safetensors"): #TODO: smarter way of enabling global_average_pooling
        global_average_pooling = True

    control = ControlNet(control_model, global_average_pooling=global_average_pooling)
comfyanonymous's avatar
comfyanonymous committed
1099
1100
    return control

1101
class T2IAdapter(ControlBase):
1102
    def __init__(self, t2i_model, channels_in, device=None):
1103
        super().__init__(device)
1104
1105
1106
1107
        self.t2i_model = t2i_model
        self.channels_in = channels_in
        self.control_input = None

1108
1109
1110
1111
1112
1113
    def scale_image_to(self, width, height):
        unshuffle_amount = self.t2i_model.unshuffle_amount
        width = math.ceil(width / unshuffle_amount) * unshuffle_amount
        height = math.ceil(height / unshuffle_amount) * unshuffle_amount
        return width, height

1114
    def get_control(self, x_noisy, t, cond, batched_number):
1115
1116
        control_prev = None
        if self.previous_controlnet is not None:
1117
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
1118

1119
1120
1121
1122
1123
1124
1125
        if self.timestep_range is not None:
            if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
                if control_prev is not None:
                    return control_prev
                else:
                    return {}

1126
1127
1128
        if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
BlenderNeko's avatar
BlenderNeko committed
1129
            self.control_input = None
1130
            self.cond_hint = None
1131
1132
            width, height = self.scale_image_to(x_noisy.shape[3] * 8, x_noisy.shape[2] * 8)
            self.cond_hint = utils.common_upscale(self.cond_hint_original, width, height, 'nearest-exact', "center").float().to(self.device)
1133
1134
            if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
                self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
BlenderNeko's avatar
BlenderNeko committed
1135
1136
1137
        if x_noisy.shape[0] != self.cond_hint.shape[0]:
            self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
        if self.control_input is None:
1138
            self.t2i_model.to(x_noisy.dtype)
1139
            self.t2i_model.to(self.device)
1140
            self.control_input = self.t2i_model(self.cond_hint.to(x_noisy.dtype))
1141
1142
            self.t2i_model.cpu()

1143
        control_input = list(map(lambda a: None if a is None else a.clone(), self.control_input))
comfyanonymous's avatar
comfyanonymous committed
1144
1145
1146
1147
1148
        mid = None
        if self.t2i_model.xl == True:
            mid = control_input[-1:]
            control_input = control_input[:-1]
        return self.control_merge(control_input, mid, control_prev, x_noisy.dtype)
1149
1150
1151

    def copy(self):
        c = T2IAdapter(self.t2i_model, self.channels_in)
1152
        self.copy_to(c)
1153
1154
        return c

1155
def load_t2i_adapter(t2i_data):
1156
    keys = t2i_data.keys()
1157
1158
1159
    if 'adapter' in keys:
        t2i_data = t2i_data['adapter']
        keys = t2i_data.keys()
1160
    if "body.0.in_conv.weight" in keys:
1161
1162
        cin = t2i_data['body.0.in_conv.weight'].shape[1]
        model_ad = adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
1163
    elif 'conv_in.weight' in keys:
1164
        cin = t2i_data['conv_in.weight'].shape[1]
1165
1166
1167
1168
1169
1170
        channel = t2i_data['conv_in.weight'].shape[0]
        ksize = t2i_data['body.0.block2.weight'].shape[2]
        use_conv = False
        down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys))
        if len(down_opts) > 0:
            use_conv = True
comfyanonymous's avatar
comfyanonymous committed
1171
1172
1173
1174
        xl = False
        if cin == 256:
            xl = True
        model_ad = adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv, xl=xl)
1175
1176
    else:
        return None
comfyanonymous's avatar
comfyanonymous committed
1177
1178
1179
1180
1181
1182
1183
1184
    missing, unexpected = model_ad.load_state_dict(t2i_data)
    if len(missing) > 0:
        print("t2i missing", missing)

    if len(unexpected) > 0:
        print("t2i unexpected", unexpected)

    return T2IAdapter(model_ad, model_ad.input_channels)
comfyanonymous's avatar
comfyanonymous committed
1185

1186
1187
1188
1189
1190
1191
1192
1193
1194
1195

class StyleModel:
    def __init__(self, model, device="cpu"):
        self.model = model

    def get_cond(self, input):
        return self.model(input.last_hidden_state)


def load_style_model(ckpt_path):
1196
    model_data = utils.load_torch_file(ckpt_path, safe_load=True)
1197
1198
1199
1200
1201
1202
1203
1204
1205
    keys = model_data.keys()
    if "style_embedding" in keys:
        model = adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
    else:
        raise Exception("invalid style model {}".format(ckpt_path))
    model.load_state_dict(model_data)
    return StyleModel(model)


1206
1207
1208
1209
1210
def load_clip(ckpt_paths, embedding_directory=None):
    clip_data = []
    for p in ckpt_paths:
        clip_data.append(utils.load_torch_file(p, safe_load=True))

comfyanonymous's avatar
comfyanonymous committed
1211
1212
1213
    class EmptyClass:
        pass

1214
1215
1216
1217
    for i in range(len(clip_data)):
        if "transformer.resblocks.0.ln_1.weight" in clip_data[i]:
            clip_data[i] = utils.transformers_convert(clip_data[i], "", "text_model.", 32)

comfyanonymous's avatar
comfyanonymous committed
1218
1219
    clip_target = EmptyClass()
    clip_target.params = {}
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
    if len(clip_data) == 1:
        if "text_model.encoder.layers.30.mlp.fc1.weight" in clip_data[0]:
            clip_target.clip = sdxl_clip.SDXLRefinerClipModel
            clip_target.tokenizer = sdxl_clip.SDXLTokenizer
        elif "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data[0]:
            clip_target.clip = sd2_clip.SD2ClipModel
            clip_target.tokenizer = sd2_clip.SD2Tokenizer
        else:
            clip_target.clip = sd1_clip.SD1ClipModel
            clip_target.tokenizer = sd1_clip.SD1Tokenizer
1230
    else:
1231
1232
        clip_target.clip = sdxl_clip.SDXLClipModel
        clip_target.tokenizer = sdxl_clip.SDXLTokenizer
comfyanonymous's avatar
comfyanonymous committed
1233
1234

    clip = CLIP(clip_target, embedding_directory=embedding_directory)
1235
1236
1237
1238
1239
1240
1241
    for c in clip_data:
        m, u = clip.load_sd(c)
        if len(m) > 0:
            print("clip missing:", m)

        if len(u) > 0:
            print("clip unexpected:", u)
1242
    return clip
comfyanonymous's avatar
comfyanonymous committed
1243

1244
def load_gligen(ckpt_path):
1245
    data = utils.load_torch_file(ckpt_path, safe_load=True)
1246
1247
1248
    model = gligen.load_gligen(data)
    if model_management.should_use_fp16():
        model = model.half()
comfyanonymous's avatar
comfyanonymous committed
1249
    return ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device())
1250

comfyanonymous's avatar
comfyanonymous committed
1251
def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None):
1252
    #TODO: this function is a mess and should be removed eventually
comfyanonymous's avatar
comfyanonymous committed
1253
1254
1255
    if config is None:
        with open(config_path, 'r') as stream:
            config = yaml.safe_load(stream)
comfyanonymous's avatar
comfyanonymous committed
1256
1257
1258
1259
1260
    model_config_params = config['model']['params']
    clip_config = model_config_params['cond_stage_config']
    scale_factor = model_config_params['scale_factor']
    vae_config = model_config_params['first_stage_config']

1261
1262
1263
    fp16 = False
    if "unet_config" in model_config_params:
        if "params" in model_config_params["unet_config"]:
comfyanonymous's avatar
comfyanonymous committed
1264
1265
1266
1267
1268
1269
1270
1271
            unet_config = model_config_params["unet_config"]["params"]
            if "use_fp16" in unet_config:
                fp16 = unet_config["use_fp16"]

    noise_aug_config = None
    if "noise_aug_config" in model_config_params:
        noise_aug_config = model_config_params["noise_aug_config"]

1272
    model_type = model_base.ModelType.EPS
comfyanonymous's avatar
comfyanonymous committed
1273
1274
1275

    if "parameterization" in model_config_params:
        if model_config_params["parameterization"] == "v":
1276
            model_type = model_base.ModelType.V_PREDICTION
1277

comfyanonymous's avatar
comfyanonymous committed
1278
1279
1280
1281
1282
1283
    clip = None
    vae = None

    class WeightsLoader(torch.nn.Module):
        pass

1284
1285
    if state_dict is None:
        state_dict = utils.load_torch_file(ckpt_path)
comfyanonymous's avatar
comfyanonymous committed
1286

1287
1288
1289
1290
1291
1292
1293
1294
    class EmptyClass:
        pass

    model_config = EmptyClass()
    model_config.unet_config = unet_config
    from . import latent_formats
    model_config.latent_format = latent_formats.SD15(scale_factor=scale_factor)

comfyanonymous's avatar
comfyanonymous committed
1295
    if config['model']["target"].endswith("LatentInpaintDiffusion"):
1296
        model = model_base.SDInpaint(model_config, model_type=model_type)
comfyanonymous's avatar
comfyanonymous committed
1297
    elif config['model']["target"].endswith("ImageEmbeddingConditionedLatentDiffusion"):
1298
        model = model_base.SD21UNCLIP(model_config, noise_aug_config["params"], model_type=model_type)
comfyanonymous's avatar
comfyanonymous committed
1299
    else:
1300
        model = model_base.BaseModel(model_config, model_type=model_type)
comfyanonymous's avatar
comfyanonymous committed
1301

1302
1303
1304
    if fp16:
        model = model.half()

1305
1306
    offload_device = model_management.unet_offload_device()
    model = model.to(offload_device)
1307
1308
1309
1310
    model.load_model_weights(state_dict, "model.diffusion_model.")

    if output_vae:
        w = WeightsLoader()
1311
        vae = VAE(config=vae_config)
1312
1313
1314
1315
1316
1317
        w.first_stage_model = vae.first_stage_model
        load_model_weights(w, state_dict)

    if output_clip:
        w = WeightsLoader()
        clip_target = EmptyClass()
1318
        clip_target.params = clip_config.get("params", {})
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
        if clip_config["target"].endswith("FrozenOpenCLIPEmbedder"):
            clip_target.clip = sd2_clip.SD2ClipModel
            clip_target.tokenizer = sd2_clip.SD2Tokenizer
        elif clip_config["target"].endswith("FrozenCLIPEmbedder"):
            clip_target.clip = sd1_clip.SD1ClipModel
            clip_target.tokenizer = sd1_clip.SD1Tokenizer
        clip = CLIP(clip_target, embedding_directory=embedding_directory)
        w.cond_stage_model = clip.cond_stage_model
        load_clip_weights(w, state_dict)

1329
    return (ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device), clip, vae)
1330

1331
1332
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None):
    sd = utils.load_torch_file(ckpt_path)
1333
1334
    sd_keys = sd.keys()
    clip = None
1335
    clipvision = None
1336
    vae = None
1337
1338
    model = None
    clip_target = None
1339

1340
    parameters = utils.calculate_parameters(sd, "model.diffusion_model.")
1341
    fp16 = model_management.should_use_fp16(model_params=parameters)
1342

1343
1344
1345
    class WeightsLoader(torch.nn.Module):
        pass

1346
1347
1348
    model_config = model_detection.model_config_from_unet(sd, "model.diffusion_model.", fp16)
    if model_config is None:
        raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path))
1349

1350
    if model_config.clip_vision_prefix is not None:
1351
        if output_clipvision:
1352
            clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True)
1353

comfyanonymous's avatar
comfyanonymous committed
1354
1355
1356
1357
1358
    dtype = torch.float32
    if fp16:
        dtype = torch.float16

    inital_load_device = model_management.unet_inital_load_device(parameters, dtype)
1359
    offload_device = model_management.unet_offload_device()
comfyanonymous's avatar
comfyanonymous committed
1360
    model = model_config.get_model(sd, "model.diffusion_model.", device=inital_load_device)
1361
    model.load_model_weights(sd, "model.diffusion_model.")
1362

1363
    if output_vae:
1364
        vae = VAE()
1365
1366
1367
        w = WeightsLoader()
        w.first_stage_model = vae.first_stage_model
        load_model_weights(w, sd)
1368

1369
1370
1371
1372
1373
1374
1375
    if output_clip:
        w = WeightsLoader()
        clip_target = model_config.clip_target()
        clip = CLIP(clip_target, embedding_directory=embedding_directory)
        w.cond_stage_model = clip.cond_stage_model
        sd = model_config.process_clip_state_dict(sd)
        load_model_weights(w, sd)
comfyanonymous's avatar
comfyanonymous committed
1376

1377
1378
1379
    left_over = sd.keys()
    if len(left_over) > 0:
        print("left over keys:", left_over)
1380

comfyanonymous's avatar
comfyanonymous committed
1381
1382
1383
1384
1385
1386
    model_patcher = ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device(), current_device=inital_load_device)
    if inital_load_device != torch.device("cpu"):
        print("loaded straight to GPU")
        model_management.load_model_gpu(model_patcher)

    return (model_patcher, clip, vae, clipvision)
1387

1388
1389
1390

def load_unet(unet_path): #load unet in diffusers format
    sd = utils.load_torch_file(unet_path)
1391
    parameters = utils.calculate_parameters(sd)
1392
1393
    fp16 = model_management.should_use_fp16(model_params=parameters)

1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
    model_config = model_detection.model_config_from_diffusers_unet(sd, fp16)
    if model_config is None:
        print("ERROR UNSUPPORTED UNET", unet_path)
        return None

    diffusers_keys = utils.unet_to_diffusers(model_config.unet_config)

    new_sd = {}
    for k in diffusers_keys:
        if k in sd:
            new_sd[diffusers_keys[k]] = sd.pop(k)
        else:
            print(diffusers_keys[k], k)
    offload_device = model_management.unet_offload_device()
    model = model_config.get_model(new_sd, "")
    model = model.to(offload_device)
    model.load_model_weights(new_sd, "")
    return ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device)
1412

1413
def save_checkpoint(output_path, model, clip, vae, metadata=None):
1414
1415
1416
    model_management.load_models_gpu([model, clip.load_model()])
    sd = model.model.state_dict_for_saving(clip.get_sd(), vae.get_sd())
    utils.save_torch_file(sd, output_path, metadata=metadata)