sd.py 37.8 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
import torch
2
import contextlib
3
import copy
comfyanonymous's avatar
comfyanonymous committed
4
5
6

import sd1_clip
import sd2_clip
7
import model_management
8
9
from .ldm.util import instantiate_from_config
from .ldm.models.autoencoder import AutoencoderKL
10
import yaml
comfyanonymous's avatar
comfyanonymous committed
11
from .cldm import cldm
12
from .t2i_adapter import adapter
comfyanonymous's avatar
comfyanonymous committed
13
14

from . import utils
15
from . import clip_vision
16

17
def load_model_weights(model, sd, verbose=False, load_state_dict_to=[]):
comfyanonymous's avatar
comfyanonymous committed
18
19
20
21
22
23
24
25
26
    m, u = model.load_state_dict(sd, strict=False)

    k = list(sd.keys())
    for x in k:
        # print(x)
        if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
            y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
            sd[y] = sd.pop(x)

comfyanonymous's avatar
comfyanonymous committed
27
28
29
30
    if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in sd:
        ids = sd['cond_stage_model.transformer.text_model.embeddings.position_ids']
        if ids.dtype == torch.float32:
            sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
31

32
33
34
35
36
37
38
39
40
41
42
    keys_to_replace = {
        "cond_stage_model.model.positional_embedding": "cond_stage_model.transformer.text_model.embeddings.position_embedding.weight",
        "cond_stage_model.model.token_embedding.weight": "cond_stage_model.transformer.text_model.embeddings.token_embedding.weight",
        "cond_stage_model.model.ln_final.weight": "cond_stage_model.transformer.text_model.final_layer_norm.weight",
        "cond_stage_model.model.ln_final.bias": "cond_stage_model.transformer.text_model.final_layer_norm.bias",
    }

    for x in keys_to_replace:
        if x in sd:
            sd[keys_to_replace[x]] = sd.pop(x)

43
    sd = utils.transformers_convert(sd, "cond_stage_model.model", "cond_stage_model.transformer.text_model", 24)
44

comfyanonymous's avatar
comfyanonymous committed
45
46
47
48
49
50
51
52
53
54
55
56
57
    for x in load_state_dict_to:
        x.load_state_dict(sd, strict=False)

    if len(m) > 0 and verbose:
        print("missing keys:")
        print(m)
    if len(u) > 0 and verbose:
        print("unexpected keys:")
        print(u)

    model.eval()
    return model

58
59
60
61
62
63
64
65
66
LORA_CLIP_MAP = {
    "mlp.fc1": "mlp_fc1",
    "mlp.fc2": "mlp_fc2",
    "self_attn.k_proj": "self_attn_k_proj",
    "self_attn.q_proj": "self_attn_q_proj",
    "self_attn.v_proj": "self_attn_v_proj",
    "self_attn.out_proj": "self_attn_out_proj",
}

comfyanonymous's avatar
comfyanonymous committed
67
LORA_UNET_MAP_ATTENTIONS = {
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    "proj_in": "proj_in",
    "proj_out": "proj_out",
    "transformer_blocks.0.attn1.to_q": "transformer_blocks_0_attn1_to_q",
    "transformer_blocks.0.attn1.to_k": "transformer_blocks_0_attn1_to_k",
    "transformer_blocks.0.attn1.to_v": "transformer_blocks_0_attn1_to_v",
    "transformer_blocks.0.attn1.to_out.0": "transformer_blocks_0_attn1_to_out_0",
    "transformer_blocks.0.attn2.to_q": "transformer_blocks_0_attn2_to_q",
    "transformer_blocks.0.attn2.to_k": "transformer_blocks_0_attn2_to_k",
    "transformer_blocks.0.attn2.to_v": "transformer_blocks_0_attn2_to_v",
    "transformer_blocks.0.attn2.to_out.0": "transformer_blocks_0_attn2_to_out_0",
    "transformer_blocks.0.ff.net.0.proj": "transformer_blocks_0_ff_net_0_proj",
    "transformer_blocks.0.ff.net.2": "transformer_blocks_0_ff_net_2",
}

comfyanonymous's avatar
comfyanonymous committed
82
83
84
85
86
87
LORA_UNET_MAP_RESNET = {
    "in_layers.2": "resnets_{}_conv1",
    "emb_layers.1": "resnets_{}_time_emb_proj",
    "out_layers.3": "resnets_{}_conv2",
    "skip_connection": "resnets_{}_conv_shortcut"
}
88
89

def load_lora(path, to_load):
90
    lora = utils.load_torch_file(path)
91
92
93
    patch_dict = {}
    loaded_keys = set()
    for x in to_load:
comfyanonymous's avatar
comfyanonymous committed
94
95
96
97
98
99
        alpha_name = "{}.alpha".format(x)
        alpha = None
        if alpha_name in lora.keys():
            alpha = lora[alpha_name].item()
            loaded_keys.add(alpha_name)

100
101
        A_name = "{}.lora_up.weight".format(x)
        B_name = "{}.lora_down.weight".format(x)
102
        mid_name = "{}.lora_mid.weight".format(x)
comfyanonymous's avatar
comfyanonymous committed
103

104
        if A_name in lora.keys():
105
106
107
108
109
            mid = None
            if mid_name in lora.keys():
                mid = lora[mid_name]
                loaded_keys.add(mid_name)
            patch_dict[to_load[x]] = (lora[A_name], lora[B_name], alpha, mid)
110
111
            loaded_keys.add(A_name)
            loaded_keys.add(B_name)
comfyanonymous's avatar
comfyanonymous committed
112
113
114
115
116

        hada_w1_a_name = "{}.hada_w1_a".format(x)
        hada_w1_b_name = "{}.hada_w1_b".format(x)
        hada_w2_a_name = "{}.hada_w2_a".format(x)
        hada_w2_b_name = "{}.hada_w2_b".format(x)
117
118
        hada_t1_name = "{}.hada_t1".format(x)
        hada_t2_name = "{}.hada_t2".format(x)
comfyanonymous's avatar
comfyanonymous committed
119
        if hada_w1_a_name in lora.keys():
120
121
122
123
124
125
126
127
128
            hada_t1 = None
            hada_t2 = None
            if hada_t1_name in lora.keys():
                hada_t1 = lora[hada_t1_name]
                hada_t2 = lora[hada_t2_name]
                loaded_keys.add(hada_t1_name)
                loaded_keys.add(hada_t2_name)

            patch_dict[to_load[x]] = (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2)
comfyanonymous's avatar
comfyanonymous committed
129
130
131
132
133
            loaded_keys.add(hada_w1_a_name)
            loaded_keys.add(hada_w1_b_name)
            loaded_keys.add(hada_w2_a_name)
            loaded_keys.add(hada_w2_b_name)

134
135
136
137
138
139
140
141
142
143
144
145
    for x in lora.keys():
        if x not in loaded_keys:
            print("lora key not loaded", x)
    return patch_dict

def model_lora_keys(model, key_map={}):
    sdk = model.state_dict().keys()

    counter = 0
    for b in range(12):
        tk = "model.diffusion_model.input_blocks.{}.1".format(b)
        up_counter = 0
comfyanonymous's avatar
comfyanonymous committed
146
        for c in LORA_UNET_MAP_ATTENTIONS:
147
148
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
149
                lora_key = "lora_unet_down_blocks_{}_attentions_{}_{}".format(counter // 2, counter % 2, LORA_UNET_MAP_ATTENTIONS[c])
150
                key_map[lora_key] = k
151
152
153
                up_counter += 1
        if up_counter >= 4:
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
154
    for c in LORA_UNET_MAP_ATTENTIONS:
155
156
        k = "model.diffusion_model.middle_block.1.{}.weight".format(c)
        if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
157
            lora_key = "lora_unet_mid_block_attentions_0_{}".format(LORA_UNET_MAP_ATTENTIONS[c])
158
            key_map[lora_key] = k
159
160
161
162
    counter = 3
    for b in range(12):
        tk = "model.diffusion_model.output_blocks.{}.1".format(b)
        up_counter = 0
comfyanonymous's avatar
comfyanonymous committed
163
        for c in LORA_UNET_MAP_ATTENTIONS:
164
165
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
166
                lora_key = "lora_unet_up_blocks_{}_attentions_{}_{}".format(counter // 3, counter % 3, LORA_UNET_MAP_ATTENTIONS[c])
167
                key_map[lora_key] = k
168
169
170
171
                up_counter += 1
        if up_counter >= 4:
            counter += 1
    counter = 0
comfyanonymous's avatar
comfyanonymous committed
172
    text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
173
    for b in range(24):
174
175
176
        for c in LORA_CLIP_MAP:
            k = "transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
177
                lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
178
                key_map[lora_key] = k
comfyanonymous's avatar
comfyanonymous committed
179

comfyanonymous's avatar
comfyanonymous committed
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

    #Locon stuff
    ds_counter = 0
    counter = 0
    for b in range(12):
        tk = "model.diffusion_model.input_blocks.{}.0".format(b)
        key_in = False
        for c in LORA_UNET_MAP_RESNET:
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
                lora_key = "lora_unet_down_blocks_{}_{}".format(counter // 2, LORA_UNET_MAP_RESNET[c].format(counter % 2))
                key_map[lora_key] = k
                key_in = True
        for bb in range(3):
            k = "{}.{}.op.weight".format(tk[:-2], bb)
            if k in sdk:
                lora_key = "lora_unet_down_blocks_{}_downsamplers_0_conv".format(ds_counter)
                key_map[lora_key] = k
                ds_counter += 1
        if key_in:
            counter += 1

    counter = 0
    for b in range(3):
        tk = "model.diffusion_model.middle_block.{}".format(b)
        key_in = False
        for c in LORA_UNET_MAP_RESNET:
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
                lora_key = "lora_unet_mid_block_{}".format(LORA_UNET_MAP_RESNET[c].format(counter))
                key_map[lora_key] = k
                key_in = True
        if key_in:
            counter += 1

    counter = 0
    us_counter = 0
    for b in range(12):
        tk = "model.diffusion_model.output_blocks.{}.0".format(b)
        key_in = False
        for c in LORA_UNET_MAP_RESNET:
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
                lora_key = "lora_unet_up_blocks_{}_{}".format(counter // 3, LORA_UNET_MAP_RESNET[c].format(counter % 3))
                key_map[lora_key] = k
                key_in = True
        for bb in range(3):
            k = "{}.{}.conv.weight".format(tk[:-2], bb)
            if k in sdk:
                lora_key = "lora_unet_up_blocks_{}_upsamplers_0_conv".format(us_counter)
                key_map[lora_key] = k
                us_counter += 1
        if key_in:
            counter += 1

235
236
237
238
239
240
241
    return key_map

class ModelPatcher:
    def __init__(self, model):
        self.model = model
        self.patches = []
        self.backup = {}
242
        self.model_options = {"transformer_options":{}}
243
244
245
246

    def clone(self):
        n = ModelPatcher(self.model)
        n.patches = self.patches[:]
247
        n.model_options = copy.deepcopy(self.model_options)
248
249
        return n

250
251
252
253
254
255
    def set_model_tomesd(self, ratio):
        self.model_options["transformer_options"]["tomesd"] = {"ratio": ratio}

    def model_dtype(self):
        return self.model.diffusion_model.dtype

256
257
258
259
    def add_patches(self, patches, strength=1.0):
        p = {}
        model_sd = self.model.state_dict()
        for k in patches:
260
            if k in model_sd:
261
262
263
264
265
266
267
268
269
                p[k] = patches[k]
        self.patches += [(strength, p)]
        return p.keys()

    def patch_model(self):
        model_sd = self.model.state_dict()
        for p in self.patches:
            for k in p[1]:
                v = p[1][k]
270
                key = k
comfyanonymous's avatar
comfyanonymous committed
271
                if key not in model_sd:
272
273
274
                    print("could not patch. key doesn't exist in model:", k)
                    continue

comfyanonymous's avatar
comfyanonymous committed
275
276
277
                weight = model_sd[key]
                if key not in self.backup:
                    self.backup[key] = weight.clone()
278
279

                alpha = p[0]
comfyanonymous's avatar
comfyanonymous committed
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297

                if len(v) == 4: #lora/locon
                    mat1 = v[0]
                    mat2 = v[1]
                    if v[2] is not None:
                        alpha *= v[2] / mat2.shape[0]
                    if v[3] is not None:
                        #locon mid weights, hopefully the math is fine because I didn't properly test it
                        final_shape = [mat2.shape[1], mat2.shape[0], v[3].shape[2], v[3].shape[3]]
                        mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1).float(), v[3].transpose(0, 1).flatten(start_dim=1).float()).reshape(final_shape).transpose(0, 1)
                    weight += (alpha * torch.mm(mat1.flatten(start_dim=1).float(), mat2.flatten(start_dim=1).float())).reshape(weight.shape).type(weight.dtype).to(weight.device)
                else: #loha
                    w1a = v[0]
                    w1b = v[1]
                    if v[2] is not None:
                        alpha *= v[2] / w1b.shape[0]
                    w2a = v[3]
                    w2b = v[4]
298
299
300
301
302
303
304
305
306
307
                    if v[5] is not None: #cp decomposition
                        t1 = v[5]
                        t2 = v[6]
                        m1 = torch.einsum('i j k l, j r, i p -> p r k l', t1.float(), w1b.float(), w1a.float())
                        m2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float(), w2b.float(), w2a.float())
                    else:
                        m1 = torch.mm(w1a.float(), w1b.float())
                        m2 = torch.mm(w2a.float(), w2b.float())

                    weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype).to(weight.device)
308
309
310
        return self.model
    def unpatch_model(self):
        model_sd = self.model.state_dict()
311
312
        keys = list(self.backup.keys())
        for k in keys:
313
            model_sd[k][:] = self.backup[k]
314
315
            del self.backup[k]

316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
        self.backup = {}

def load_lora_for_models(model, clip, lora_path, strength_model, strength_clip):
    key_map = model_lora_keys(model.model)
    key_map = model_lora_keys(clip.cond_stage_model, key_map)
    loaded = load_lora(lora_path, key_map)
    new_modelpatcher = model.clone()
    k = new_modelpatcher.add_patches(loaded, strength_model)
    new_clip = clip.clone()
    k1 = new_clip.add_patches(loaded, strength_clip)
    k = set(k)
    k1 = set(k1)
    for x in loaded:
        if (x not in k) and (x not in k1):
            print("NOT LOADED", x)

    return (new_modelpatcher, new_clip)
comfyanonymous's avatar
comfyanonymous committed
333
334
335


class CLIP:
336
337
338
    def __init__(self, config={}, embedding_directory=None, no_init=False):
        if no_init:
            return
comfyanonymous's avatar
comfyanonymous committed
339
        self.target_clip = config["target"]
340
341
342
343
344
        if "params" in config:
            params = config["params"]
        else:
            params = {}

comfyanonymous's avatar
comfyanonymous committed
345
346
347
348
349
350
        if self.target_clip == "ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder":
            clip = sd2_clip.SD2ClipModel
            tokenizer = sd2_clip.SD2Tokenizer
        elif self.target_clip == "ldm.modules.encoders.modules.FrozenCLIPEmbedder":
            clip = sd1_clip.SD1ClipModel
            tokenizer = sd1_clip.SD1Tokenizer
351
352

        self.cond_stage_model = clip(**(params))
353
        self.tokenizer = tokenizer(embedding_directory=embedding_directory)
354
        self.patcher = ModelPatcher(self.cond_stage_model)
355
        self.layer_idx = None
356
357
358
359
360
361
362

    def clone(self):
        n = CLIP(no_init=True)
        n.target_clip = self.target_clip
        n.patcher = self.patcher.clone()
        n.cond_stage_model = self.cond_stage_model
        n.tokenizer = self.tokenizer
comfyanonymous's avatar
comfyanonymous committed
363
        n.layer_idx = self.layer_idx
364
365
        return n

366
367
368
    def load_from_state_dict(self, sd):
        self.cond_stage_model.transformer.load_state_dict(sd, strict=False)

369
370
    def add_patches(self, patches, strength=1.0):
        return self.patcher.add_patches(patches, strength)
comfyanonymous's avatar
comfyanonymous committed
371

372
    def clip_layer(self, layer_idx):
comfyanonymous's avatar
comfyanonymous committed
373
        self.layer_idx = layer_idx
374

comfyanonymous's avatar
comfyanonymous committed
375
    def encode(self, text):
376
377
        if self.layer_idx is not None:
            self.cond_stage_model.clip_layer(self.layer_idx)
comfyanonymous's avatar
comfyanonymous committed
378
        tokens = self.tokenizer.tokenize_with_weights(text)
379
380
381
382
383
384
385
        try:
            self.patcher.patch_model()
            cond = self.cond_stage_model.encode_token_weights(tokens)
            self.patcher.unpatch_model()
        except Exception as e:
            self.patcher.unpatch_model()
            raise e
comfyanonymous's avatar
comfyanonymous committed
386
387
388
        return cond

class VAE:
389
    def __init__(self, ckpt_path=None, scale_factor=0.18215, device=None, config=None):
comfyanonymous's avatar
comfyanonymous committed
390
391
392
393
394
395
396
397
        if config is None:
            #default SD1.x/SD2.x VAE parameters
            ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
            self.first_stage_model = AutoencoderKL(ddconfig, {'target': 'torch.nn.Identity'}, 4, monitor="val/rec_loss", ckpt_path=ckpt_path)
        else:
            self.first_stage_model = AutoencoderKL(**(config['params']), ckpt_path=ckpt_path)
        self.first_stage_model = self.first_stage_model.eval()
        self.scale_factor = scale_factor
398
399
        if device is None:
            device = model_management.get_torch_device()
comfyanonymous's avatar
comfyanonymous committed
400
401
        self.device = device

402
403
404
405
406
407
408
409
410
411
    def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
        decode_fn = lambda a: (self.first_stage_model.decode(1. / self.scale_factor * a.to(self.device)) + 1.0)
        output = torch.clamp((
            (utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8) +
            utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8) +
             utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8))
            / 3.0) / 2.0, min=0.0, max=1.0)
        return output

    def decode(self, samples_in):
412
        model_management.unload_model()
comfyanonymous's avatar
comfyanonymous committed
413
        self.first_stage_model = self.first_stage_model.to(self.device)
414
        try:
415
416
417
418
419
420
421
422
            free_memory = model_management.get_free_memory(self.device)
            batch_number = int((free_memory * 0.7) / (2562 * samples_in.shape[2] * samples_in.shape[3] * 64))
            batch_number = max(1, batch_number)

            pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * 8), round(samples_in.shape[3] * 8)), device="cpu")
            for x in range(0, samples_in.shape[0], batch_number):
                samples = samples_in[x:x+batch_number].to(self.device)
                pixel_samples[x:x+batch_number] = torch.clamp((self.first_stage_model.decode(1. / self.scale_factor * samples) + 1.0) / 2.0, min=0.0, max=1.0).cpu()
423
424
425
426
        except model_management.OOM_EXCEPTION as e:
            print("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
            pixel_samples = self.decode_tiled_(samples_in)

comfyanonymous's avatar
comfyanonymous committed
427
428
429
430
        self.first_stage_model = self.first_stage_model.cpu()
        pixel_samples = pixel_samples.cpu().movedim(1,-1)
        return pixel_samples

431
    def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16):
432
433
        model_management.unload_model()
        self.first_stage_model = self.first_stage_model.to(self.device)
434
        output = self.decode_tiled_(samples, tile_x, tile_y, overlap)
435
436
437
        self.first_stage_model = self.first_stage_model.cpu()
        return output.movedim(1,-1)

comfyanonymous's avatar
comfyanonymous committed
438
    def encode(self, pixel_samples):
439
        model_management.unload_model()
comfyanonymous's avatar
comfyanonymous committed
440
441
442
443
444
445
446
        self.first_stage_model = self.first_stage_model.to(self.device)
        pixel_samples = pixel_samples.movedim(-1,1).to(self.device)
        samples = self.first_stage_model.encode(2. * pixel_samples - 1.).sample() * self.scale_factor
        self.first_stage_model = self.first_stage_model.cpu()
        samples = samples.cpu()
        return samples

comfyanonymous's avatar
comfyanonymous committed
447
448
449
450
451
    def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
        model_management.unload_model()
        self.first_stage_model = self.first_stage_model.to(self.device)
        pixel_samples = pixel_samples.movedim(-1,1).to(self.device)
        samples = utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4)
452
453
454
        samples += utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4)
        samples += utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4)
        samples /= 3.0
comfyanonymous's avatar
comfyanonymous committed
455
456
457
        self.first_stage_model = self.first_stage_model.cpu()
        samples = samples.cpu()
        return samples
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479

def resize_image_to(tensor, target_latent_tensor, batched_number):
    tensor = utils.common_upscale(tensor, target_latent_tensor.shape[3] * 8, target_latent_tensor.shape[2] * 8, 'nearest-exact', "center")
    target_batch_size = target_latent_tensor.shape[0]

    current_batch_size = tensor.shape[0]
    print(current_batch_size, target_batch_size)
    if current_batch_size == 1:
        return tensor

    per_batch = target_batch_size // batched_number
    tensor = tensor[:per_batch]

    if per_batch > tensor.shape[0]:
        tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)

    current_batch_size = tensor.shape[0]
    if current_batch_size == target_batch_size:
        return tensor
    else:
        return torch.cat([tensor] * batched_number, dim=0)

comfyanonymous's avatar
comfyanonymous committed
480
class ControlNet:
481
    def __init__(self, control_model, device=None):
comfyanonymous's avatar
comfyanonymous committed
482
483
484
        self.control_model = control_model
        self.cond_hint_original = None
        self.cond_hint = None
485
        self.strength = 1.0
486
487
        if device is None:
            device = model_management.get_torch_device()
488
        self.device = device
comfyanonymous's avatar
comfyanonymous committed
489
        self.previous_controlnet = None
comfyanonymous's avatar
comfyanonymous committed
490

491
    def get_control(self, x_noisy, t, cond_txt, batched_number):
comfyanonymous's avatar
comfyanonymous committed
492
493
        control_prev = None
        if self.previous_controlnet is not None:
494
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond_txt, batched_number)
comfyanonymous's avatar
comfyanonymous committed
495

496
        output_dtype = x_noisy.dtype
comfyanonymous's avatar
comfyanonymous committed
497
498
499
500
        if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
            self.cond_hint = None
501
            self.cond_hint = resize_image_to(self.cond_hint_original, x_noisy, batched_number).to(self.control_model.dtype).to(self.device)
502
503
504
505
506
507

        if self.control_model.dtype == torch.float16:
            precision_scope = torch.autocast
        else:
            precision_scope = contextlib.nullcontext

508
        with precision_scope(model_management.get_autocast_device(self.device)):
509
            self.control_model = model_management.load_if_low_vram(self.control_model)
510
            control = self.control_model(x=x_noisy, hint=self.cond_hint, timesteps=t, context=cond_txt)
511
            self.control_model = model_management.unload_if_low_vram(self.control_model)
512
        out = {'middle':[], 'output': []}
513
        autocast_enabled = torch.is_autocast_enabled()
comfyanonymous's avatar
comfyanonymous committed
514
515

        for i in range(len(control)):
comfyanonymous's avatar
comfyanonymous committed
516
517
518
519
520
521
            if i == (len(control) - 1):
                key = 'middle'
                index = 0
            else:
                key = 'output'
                index = i
comfyanonymous's avatar
comfyanonymous committed
522
            x = control[i]
523
            x *= self.strength
524
525
            if x.dtype != output_dtype and not autocast_enabled:
                x = x.to(output_dtype)
comfyanonymous's avatar
comfyanonymous committed
526

comfyanonymous's avatar
comfyanonymous committed
527
528
529
530
531
532
533
            if control_prev is not None and key in control_prev:
                prev = control_prev[key][index]
                if prev is not None:
                    x += prev
            out[key].append(x)
        if control_prev is not None and 'input' in control_prev:
            out['input'] = control_prev['input']
534
        return out
comfyanonymous's avatar
comfyanonymous committed
535

536
    def set_cond_hint(self, cond_hint, strength=1.0):
comfyanonymous's avatar
comfyanonymous committed
537
        self.cond_hint_original = cond_hint
538
        self.strength = strength
comfyanonymous's avatar
comfyanonymous committed
539
540
        return self

comfyanonymous's avatar
comfyanonymous committed
541
542
543
544
    def set_previous_controlnet(self, controlnet):
        self.previous_controlnet = controlnet
        return self

comfyanonymous's avatar
comfyanonymous committed
545
    def cleanup(self):
comfyanonymous's avatar
comfyanonymous committed
546
547
        if self.previous_controlnet is not None:
            self.previous_controlnet.cleanup()
comfyanonymous's avatar
comfyanonymous committed
548
549
550
551
552
553
554
        if self.cond_hint is not None:
            del self.cond_hint
            self.cond_hint = None

    def copy(self):
        c = ControlNet(self.control_model)
        c.cond_hint_original = self.cond_hint_original
555
        c.strength = self.strength
comfyanonymous's avatar
comfyanonymous committed
556
557
        return c

comfyanonymous's avatar
comfyanonymous committed
558
559
560
561
562
563
564
    def get_control_models(self):
        out = []
        if self.previous_controlnet is not None:
            out += self.previous_controlnet.get_control_models()
        out.append(self.control_model)
        return out

565
def load_controlnet(ckpt_path, model=None):
566
    controlnet_data = utils.load_torch_file(ckpt_path)
comfyanonymous's avatar
comfyanonymous committed
567
568
569
570
571
572
573
574
575
576
    pth_key = 'control_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight'
    pth = False
    sd2 = False
    key = 'input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight'
    if pth_key in controlnet_data:
        pth = True
        key = pth_key
    elif key in controlnet_data:
        pass
    else:
577
578
579
580
        net = load_t2i_adapter(controlnet_data)
        if net is None:
            print("error checkpoint does not contain controlnet or t2i adapter data", ckpt_path)
        return net
comfyanonymous's avatar
comfyanonymous committed
581
582

    context_dim = controlnet_data[key].shape[1]
583
584

    use_fp16 = False
585
    if model_management.should_use_fp16() and controlnet_data[key].dtype == torch.float16:
586
587
        use_fp16 = True

comfyanonymous's avatar
comfyanonymous committed
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
    if context_dim == 768:
        #SD1.x
        control_model = cldm.ControlNet(image_size=32,
                                        in_channels=4,
                                        hint_channels=3,
                                        model_channels=320,
                                        attention_resolutions=[ 4, 2, 1 ],
                                        num_res_blocks=2,
                                        channel_mult=[ 1, 2, 4, 4 ],
                                        num_heads=8,
                                        use_spatial_transformer=True,
                                        transformer_depth=1,
                                        context_dim=context_dim,
                                        use_checkpoint=True,
                                        legacy=False,
                                        use_fp16=use_fp16)
    else:
        #SD2.x
        control_model = cldm.ControlNet(image_size=32,
                                        in_channels=4,
                                        hint_channels=3,
                                        model_channels=320,
                                        attention_resolutions=[ 4, 2, 1 ],
                                        num_res_blocks=2,
                                        channel_mult=[ 1, 2, 4, 4 ],
                                        num_head_channels=64,
                                        use_spatial_transformer=True,
                                        use_linear_in_transformer=True,
                                        transformer_depth=1,
                                        context_dim=context_dim,
                                        use_checkpoint=True,
                                        legacy=False,
                                        use_fp16=use_fp16)
comfyanonymous's avatar
comfyanonymous committed
621
    if pth:
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
        if 'difference' in controlnet_data:
            if model is not None:
                m = model.patch_model()
                model_sd = m.state_dict()
                for x in controlnet_data:
                    c_m = "control_model."
                    if x.startswith(c_m):
                        sd_key = "model.diffusion_model.{}".format(x[len(c_m):])
                        if sd_key in model_sd:
                            cd = controlnet_data[x]
                            cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
                model.unpatch_model()
            else:
                print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")

comfyanonymous's avatar
comfyanonymous committed
637
638
639
640
641
642
643
644
        class WeightsLoader(torch.nn.Module):
            pass
        w = WeightsLoader()
        w.control_model = control_model
        w.load_state_dict(controlnet_data, strict=False)
    else:
        control_model.load_state_dict(controlnet_data, strict=False)

645
646
647
    if use_fp16:
        control_model = control_model.half()

comfyanonymous's avatar
comfyanonymous committed
648
649
650
    control = ControlNet(control_model)
    return control

651
class T2IAdapter:
652
    def __init__(self, t2i_model, channels_in, device=None):
653
654
655
        self.t2i_model = t2i_model
        self.channels_in = channels_in
        self.strength = 1.0
656
657
        if device is None:
            device = model_management.get_torch_device()
658
659
660
661
662
663
        self.device = device
        self.previous_controlnet = None
        self.control_input = None
        self.cond_hint_original = None
        self.cond_hint = None

664
    def get_control(self, x_noisy, t, cond_txt, batched_number):
665
666
        control_prev = None
        if self.previous_controlnet is not None:
667
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond_txt, batched_number)
668
669
670
671
672

        if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
            self.cond_hint = None
673
            self.cond_hint = resize_image_to(self.cond_hint_original, x_noisy, batched_number).float().to(self.device)
674
675
676
677
678
679
680
681
682
            if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
                self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
            self.t2i_model.to(self.device)
            self.control_input = self.t2i_model(self.cond_hint)
            self.t2i_model.cpu()

        output_dtype = x_noisy.dtype
        out = {'input':[]}

comfyanonymous's avatar
comfyanonymous committed
683
        autocast_enabled = torch.is_autocast_enabled()
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
        for i in range(len(self.control_input)):
            key = 'input'
            x = self.control_input[i] * self.strength
            if x.dtype != output_dtype and not autocast_enabled:
                x = x.to(output_dtype)

            if control_prev is not None and key in control_prev:
                index = len(control_prev[key]) - i * 3 - 3
                prev = control_prev[key][index]
                if prev is not None:
                    x += prev
            out[key].insert(0, None)
            out[key].insert(0, None)
            out[key].insert(0, x)

        if control_prev is not None and 'input' in control_prev:
            for i in range(len(out['input'])):
                if out['input'][i] is None:
                    out['input'][i] = control_prev['input'][i]
        if control_prev is not None and 'middle' in control_prev:
            out['middle'] = control_prev['middle']
        if control_prev is not None and 'output' in control_prev:
            out['output'] = control_prev['output']
        return out

    def set_cond_hint(self, cond_hint, strength=1.0):
        self.cond_hint_original = cond_hint
        self.strength = strength
        return self

    def set_previous_controlnet(self, controlnet):
        self.previous_controlnet = controlnet
        return self

    def copy(self):
        c = T2IAdapter(self.t2i_model, self.channels_in)
        c.cond_hint_original = self.cond_hint_original
        c.strength = self.strength
        return c

    def cleanup(self):
        if self.previous_controlnet is not None:
            self.previous_controlnet.cleanup()
        if self.cond_hint is not None:
            del self.cond_hint
            self.cond_hint = None

    def get_control_models(self):
        out = []
        if self.previous_controlnet is not None:
            out += self.previous_controlnet.get_control_models()
        return out

737
def load_t2i_adapter(t2i_data):
738
    keys = t2i_data.keys()
739
    if "body.0.in_conv.weight" in keys:
740
741
        cin = t2i_data['body.0.in_conv.weight'].shape[1]
        model_ad = adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
742
    elif 'conv_in.weight' in keys:
743
744
        cin = t2i_data['conv_in.weight'].shape[1]
        model_ad = adapter.Adapter(cin=cin, channels=[320, 640, 1280, 1280][:4], nums_rb=2, ksize=1, sk=True, use_conv=False)
745
746
    else:
        return None
747
748
    model_ad.load_state_dict(t2i_data)
    return T2IAdapter(model_ad, cin // 64)
comfyanonymous's avatar
comfyanonymous committed
749

750
751
752
753
754
755
756
757
758
759

class StyleModel:
    def __init__(self, model, device="cpu"):
        self.model = model

    def get_cond(self, input):
        return self.model(input.last_hidden_state)


def load_style_model(ckpt_path):
760
    model_data = utils.load_torch_file(ckpt_path)
761
762
763
764
765
766
767
768
769
    keys = model_data.keys()
    if "style_embedding" in keys:
        model = adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
    else:
        raise Exception("invalid style model {}".format(ckpt_path))
    model.load_state_dict(model_data)
    return StyleModel(model)


770
def load_clip(ckpt_path, embedding_directory=None):
771
    clip_data = utils.load_torch_file(ckpt_path)
772
773
774
775
776
777
778
779
    config = {}
    if "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data:
        config['target'] = 'ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder'
    else:
        config['target'] = 'ldm.modules.encoders.modules.FrozenCLIPEmbedder'
    clip = CLIP(config=config, embedding_directory=embedding_directory)
    clip.load_from_state_dict(clip_data)
    return clip
comfyanonymous's avatar
comfyanonymous committed
780

781
def load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=None):
782
783
    with open(config_path, 'r') as stream:
        config = yaml.safe_load(stream)
comfyanonymous's avatar
comfyanonymous committed
784
785
786
787
788
    model_config_params = config['model']['params']
    clip_config = model_config_params['cond_stage_config']
    scale_factor = model_config_params['scale_factor']
    vae_config = model_config_params['first_stage_config']

789
790
791
792
793
794
    fp16 = False
    if "unet_config" in model_config_params:
        if "params" in model_config_params["unet_config"]:
            if "use_fp16" in model_config_params["unet_config"]["params"]:
                fp16 = model_config_params["unet_config"]["params"]["use_fp16"]

comfyanonymous's avatar
comfyanonymous committed
795
796
797
798
799
800
801
802
803
804
805
806
807
808
    clip = None
    vae = None

    class WeightsLoader(torch.nn.Module):
        pass

    w = WeightsLoader()
    load_state_dict_to = []
    if output_vae:
        vae = VAE(scale_factor=scale_factor, config=vae_config)
        w.first_stage_model = vae.first_stage_model
        load_state_dict_to = [w]

    if output_clip:
809
        clip = CLIP(config=clip_config, embedding_directory=embedding_directory)
comfyanonymous's avatar
comfyanonymous committed
810
811
812
        w.cond_stage_model = clip.cond_stage_model
        load_state_dict_to = [w]

813
    model = instantiate_from_config(config["model"])
814
    sd = utils.load_torch_file(ckpt_path)
815
    model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to)
816
817
818
819

    if fp16:
        model = model.half()

820
    return (ModelPatcher(model), clip, vae)
821
822


823
824
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None):
    sd = utils.load_torch_file(ckpt_path)
825
826
    sd_keys = sd.keys()
    clip = None
827
    clipvision = None
828
829
    vae = None

830
831
    fp16 = model_management.should_use_fp16()

832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
    class WeightsLoader(torch.nn.Module):
        pass

    w = WeightsLoader()
    load_state_dict_to = []
    if output_vae:
        vae = VAE()
        w.first_stage_model = vae.first_stage_model
        load_state_dict_to = [w]

    if output_clip:
        clip_config = {}
        if "cond_stage_model.model.transformer.resblocks.22.attn.out_proj.weight" in sd_keys:
            clip_config['target'] = 'ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder'
        else:
            clip_config['target'] = 'ldm.modules.encoders.modules.FrozenCLIPEmbedder'
        clip = CLIP(config=clip_config, embedding_directory=embedding_directory)
        w.cond_stage_model = clip.cond_stage_model
        load_state_dict_to = [w]

852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
    clipvision_key = "embedder.model.visual.transformer.resblocks.0.attn.in_proj_weight"
    noise_aug_config = None
    if clipvision_key in sd_keys:
        size = sd[clipvision_key].shape[1]

        if output_clipvision:
            clipvision = clip_vision.load_clipvision_from_sd(sd)

        noise_aug_key = "noise_augmentor.betas"
        if noise_aug_key in sd_keys:
            noise_aug_config = {}
            params = {}
            noise_schedule_config = {}
            noise_schedule_config["timesteps"] = sd[noise_aug_key].shape[0]
            noise_schedule_config["beta_schedule"] = "squaredcos_cap_v2"
            params["noise_schedule_config"] = noise_schedule_config
            noise_aug_config['target'] = "ldm.modules.encoders.noise_aug_modules.CLIPEmbeddingNoiseAugmentation"
            if size == 1280: #h
                params["timestep_dim"] = 1024
            elif size == 1024: #l
                params["timestep_dim"] = 768
            noise_aug_config['params'] = params

875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
    sd_config = {
        "linear_start": 0.00085,
        "linear_end": 0.012,
        "num_timesteps_cond": 1,
        "log_every_t": 200,
        "timesteps": 1000,
        "first_stage_key": "jpg",
        "cond_stage_key": "txt",
        "image_size": 64,
        "channels": 4,
        "cond_stage_trainable": False,
        "monitor": "val/loss_simple_ema",
        "scale_factor": 0.18215,
        "use_ema": False,
    }

    unet_config = {
        "use_checkpoint": True,
        "image_size": 32,
        "out_channels": 4,
        "attention_resolutions": [
            4,
            2,
            1
        ],
        "num_res_blocks": 2,
        "channel_mult": [
            1,
            2,
            4,
            4
        ],
        "use_spatial_transformer": True,
        "transformer_depth": 1,
        "legacy": False
    }

    if len(sd['model.diffusion_model.input_blocks.1.1.proj_in.weight'].shape) == 2:
        unet_config['use_linear_in_transformer'] = True

    unet_config["use_fp16"] = fp16
    unet_config["model_channels"] = sd['model.diffusion_model.input_blocks.0.0.weight'].shape[0]
    unet_config["in_channels"] = sd['model.diffusion_model.input_blocks.0.0.weight'].shape[1]
    unet_config["context_dim"] = sd['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight'].shape[1]

    sd_config["unet_config"] = {"target": "ldm.modules.diffusionmodules.openaimodel.UNetModel", "params": unet_config}
    model_config = {"target": "ldm.models.diffusion.ddpm.LatentDiffusion", "params": sd_config}

923
924
925
926
927
928
929
    if noise_aug_config is not None: #SD2.x unclip model
        sd_config["noise_aug_config"] = noise_aug_config
        sd_config["image_size"] = 96
        sd_config["embedding_dropout"] = 0.25
        sd_config["conditioning_key"] = 'crossattn-adm'
        model_config["target"] = "ldm.models.diffusion.ddpm.ImageEmbeddingConditionedLatentDiffusion"
    elif unet_config["in_channels"] > 4: #inpainting model
930
931
932
933
934
935
936
937
938
939
940
        sd_config["conditioning_key"] = "hybrid"
        sd_config["finetune_keys"] = None
        model_config["target"] = "ldm.models.diffusion.ddpm.LatentInpaintDiffusion"
    else:
        sd_config["conditioning_key"] = "crossattn"

    if unet_config["context_dim"] == 1024:
        unet_config["num_head_channels"] = 64 #SD2.x
    else:
        unet_config["num_heads"] = 8 #SD1.x

941
942
943
944
945
    unclip = 'model.diffusion_model.label_emb.0.0.weight'
    if unclip in sd_keys:
        unet_config["num_classes"] = "sequential"
        unet_config["adm_in_channels"] = sd[unclip].shape[1]

comfyanonymous's avatar
comfyanonymous committed
946
947
948
949
950
    if unet_config["context_dim"] == 1024 and unet_config["in_channels"] == 4: #only SD2.x non inpainting models are v prediction
        k = "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1.bias"
        out = sd[k]
        if torch.std(out, unbiased=False) > 0.09: # not sure how well this will actually work. I guess we will find out.
            sd_config["parameterization"] = 'v'
951
952
953
954

    model = instantiate_from_config(model_config)
    model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to)

955
956
957
    if fp16:
        model = model.half()

958
    return (ModelPatcher(model), clip, vae, clipvision)