sd.py 44.5 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
import torch
2
import contextlib
3
import copy
4
import inspect
comfyanonymous's avatar
comfyanonymous committed
5

6
from comfy import model_management
7
8
from .ldm.util import instantiate_from_config
from .ldm.models.autoencoder import AutoencoderKL
9
import yaml
comfyanonymous's avatar
comfyanonymous committed
10
from .cldm import cldm
11
from .t2i_adapter import adapter
comfyanonymous's avatar
comfyanonymous committed
12
13

from . import utils
14
from . import clip_vision
15
from . import gligen
16
from . import diffusers_convert
comfyanonymous's avatar
comfyanonymous committed
17
from . import model_base
18
from . import model_detection
19

20
21
from . import sd1_clip
from . import sd2_clip
22
from . import sdxl_clip
comfyanonymous's avatar
comfyanonymous committed
23

24
def load_model_weights(model, sd):
comfyanonymous's avatar
comfyanonymous committed
25
    m, u = model.load_state_dict(sd, strict=False)
26
27
    m = set(m)
    unexpected_keys = set(u)
comfyanonymous's avatar
comfyanonymous committed
28
29
30

    k = list(sd.keys())
    for x in k:
31
32
33
34
35
36
37
38
39
40
        if x not in unexpected_keys:
            w = sd.pop(x)
            del w
    if len(m) > 0:
        print("missing", m)
    return model

def load_clip_weights(model, sd):
    k = list(sd.keys())
    for x in k:
comfyanonymous's avatar
comfyanonymous committed
41
42
43
44
        if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
            y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
            sd[y] = sd.pop(x)

comfyanonymous's avatar
comfyanonymous committed
45
46
47
48
    if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in sd:
        ids = sd['cond_stage_model.transformer.text_model.embeddings.position_ids']
        if ids.dtype == torch.float32:
            sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
49

50
51
    sd = utils.transformers_convert(sd, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24)
    return load_model_weights(model, sd)
comfyanonymous's avatar
comfyanonymous committed
52

53
54
55
56
57
58
59
60
61
LORA_CLIP_MAP = {
    "mlp.fc1": "mlp_fc1",
    "mlp.fc2": "mlp_fc2",
    "self_attn.k_proj": "self_attn_k_proj",
    "self_attn.q_proj": "self_attn_q_proj",
    "self_attn.v_proj": "self_attn_v_proj",
    "self_attn.out_proj": "self_attn_out_proj",
}

comfyanonymous's avatar
comfyanonymous committed
62
LORA_UNET_MAP_ATTENTIONS = {
63
64
65
66
    "proj_in": "proj_in",
    "proj_out": "proj_out",
}

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
transformer_lora_blocks = {
    "transformer_blocks.{}.attn1.to_q": "transformer_blocks_{}_attn1_to_q",
    "transformer_blocks.{}.attn1.to_k": "transformer_blocks_{}_attn1_to_k",
    "transformer_blocks.{}.attn1.to_v": "transformer_blocks_{}_attn1_to_v",
    "transformer_blocks.{}.attn1.to_out.0": "transformer_blocks_{}_attn1_to_out_0",
    "transformer_blocks.{}.attn2.to_q": "transformer_blocks_{}_attn2_to_q",
    "transformer_blocks.{}.attn2.to_k": "transformer_blocks_{}_attn2_to_k",
    "transformer_blocks.{}.attn2.to_v": "transformer_blocks_{}_attn2_to_v",
    "transformer_blocks.{}.attn2.to_out.0": "transformer_blocks_{}_attn2_to_out_0",
    "transformer_blocks.{}.ff.net.0.proj": "transformer_blocks_{}_ff_net_0_proj",
    "transformer_blocks.{}.ff.net.2": "transformer_blocks_{}_ff_net_2",
}

for i in range(10):
    for k in transformer_lora_blocks:
        LORA_UNET_MAP_ATTENTIONS[k.format(i)] = transformer_lora_blocks[k].format(i)


comfyanonymous's avatar
comfyanonymous committed
85
86
87
88
89
90
LORA_UNET_MAP_RESNET = {
    "in_layers.2": "resnets_{}_conv1",
    "emb_layers.1": "resnets_{}_time_emb_proj",
    "out_layers.3": "resnets_{}_conv2",
    "skip_connection": "resnets_{}_conv_shortcut"
}
91
92

def load_lora(path, to_load):
93
    lora = utils.load_torch_file(path, safe_load=True)
94
95
96
    patch_dict = {}
    loaded_keys = set()
    for x in to_load:
comfyanonymous's avatar
comfyanonymous committed
97
98
99
100
101
102
        alpha_name = "{}.alpha".format(x)
        alpha = None
        if alpha_name in lora.keys():
            alpha = lora[alpha_name].item()
            loaded_keys.add(alpha_name)

103
104
        A_name = "{}.lora_up.weight".format(x)
        B_name = "{}.lora_down.weight".format(x)
105
        mid_name = "{}.lora_mid.weight".format(x)
comfyanonymous's avatar
comfyanonymous committed
106

107
        if A_name in lora.keys():
108
109
110
111
112
            mid = None
            if mid_name in lora.keys():
                mid = lora[mid_name]
                loaded_keys.add(mid_name)
            patch_dict[to_load[x]] = (lora[A_name], lora[B_name], alpha, mid)
113
114
            loaded_keys.add(A_name)
            loaded_keys.add(B_name)
comfyanonymous's avatar
comfyanonymous committed
115

comfyanonymous's avatar
comfyanonymous committed
116
117

        ######## loha
comfyanonymous's avatar
comfyanonymous committed
118
119
120
121
        hada_w1_a_name = "{}.hada_w1_a".format(x)
        hada_w1_b_name = "{}.hada_w1_b".format(x)
        hada_w2_a_name = "{}.hada_w2_a".format(x)
        hada_w2_b_name = "{}.hada_w2_b".format(x)
122
123
        hada_t1_name = "{}.hada_t1".format(x)
        hada_t2_name = "{}.hada_t2".format(x)
comfyanonymous's avatar
comfyanonymous committed
124
        if hada_w1_a_name in lora.keys():
125
126
127
128
129
130
131
132
133
            hada_t1 = None
            hada_t2 = None
            if hada_t1_name in lora.keys():
                hada_t1 = lora[hada_t1_name]
                hada_t2 = lora[hada_t2_name]
                loaded_keys.add(hada_t1_name)
                loaded_keys.add(hada_t2_name)

            patch_dict[to_load[x]] = (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2)
comfyanonymous's avatar
comfyanonymous committed
134
135
136
137
138
            loaded_keys.add(hada_w1_a_name)
            loaded_keys.add(hada_w1_b_name)
            loaded_keys.add(hada_w2_a_name)
            loaded_keys.add(hada_w2_b_name)

comfyanonymous's avatar
comfyanonymous committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

        ######## lokr
        lokr_w1_name = "{}.lokr_w1".format(x)
        lokr_w2_name = "{}.lokr_w2".format(x)
        lokr_w1_a_name = "{}.lokr_w1_a".format(x)
        lokr_w1_b_name = "{}.lokr_w1_b".format(x)
        lokr_t2_name = "{}.lokr_t2".format(x)
        lokr_w2_a_name = "{}.lokr_w2_a".format(x)
        lokr_w2_b_name = "{}.lokr_w2_b".format(x)

        lokr_w1 = None
        if lokr_w1_name in lora.keys():
            lokr_w1 = lora[lokr_w1_name]
            loaded_keys.add(lokr_w1_name)

        lokr_w2 = None
        if lokr_w2_name in lora.keys():
            lokr_w2 = lora[lokr_w2_name]
            loaded_keys.add(lokr_w2_name)

        lokr_w1_a = None
        if lokr_w1_a_name in lora.keys():
            lokr_w1_a = lora[lokr_w1_a_name]
            loaded_keys.add(lokr_w1_a_name)

        lokr_w1_b = None
        if lokr_w1_b_name in lora.keys():
            lokr_w1_b = lora[lokr_w1_b_name]
            loaded_keys.add(lokr_w1_b_name)

        lokr_w2_a = None
        if lokr_w2_a_name in lora.keys():
            lokr_w2_a = lora[lokr_w2_a_name]
            loaded_keys.add(lokr_w2_a_name)

        lokr_w2_b = None
        if lokr_w2_b_name in lora.keys():
            lokr_w2_b = lora[lokr_w2_b_name]
            loaded_keys.add(lokr_w2_b_name)

        lokr_t2 = None
        if lokr_t2_name in lora.keys():
            lokr_t2 = lora[lokr_t2_name]
            loaded_keys.add(lokr_t2_name)

        if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
            patch_dict[to_load[x]] = (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2)

187
188
189
190
191
192
193
194
195
196
    for x in lora.keys():
        if x not in loaded_keys:
            print("lora key not loaded", x)
    return patch_dict

def model_lora_keys(model, key_map={}):
    sdk = model.state_dict().keys()

    counter = 0
    for b in range(12):
comfyanonymous's avatar
comfyanonymous committed
197
        tk = "diffusion_model.input_blocks.{}.1".format(b)
198
        up_counter = 0
comfyanonymous's avatar
comfyanonymous committed
199
        for c in LORA_UNET_MAP_ATTENTIONS:
200
201
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
202
                lora_key = "lora_unet_down_blocks_{}_attentions_{}_{}".format(counter // 2, counter % 2, LORA_UNET_MAP_ATTENTIONS[c])
203
                key_map[lora_key] = k
204
205
206
                up_counter += 1
        if up_counter >= 4:
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
207
    for c in LORA_UNET_MAP_ATTENTIONS:
comfyanonymous's avatar
comfyanonymous committed
208
        k = "diffusion_model.middle_block.1.{}.weight".format(c)
209
        if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
210
            lora_key = "lora_unet_mid_block_attentions_0_{}".format(LORA_UNET_MAP_ATTENTIONS[c])
211
            key_map[lora_key] = k
212
213
    counter = 3
    for b in range(12):
comfyanonymous's avatar
comfyanonymous committed
214
        tk = "diffusion_model.output_blocks.{}.1".format(b)
215
        up_counter = 0
comfyanonymous's avatar
comfyanonymous committed
216
        for c in LORA_UNET_MAP_ATTENTIONS:
217
218
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
219
                lora_key = "lora_unet_up_blocks_{}_attentions_{}_{}".format(counter // 3, counter % 3, LORA_UNET_MAP_ATTENTIONS[c])
220
                key_map[lora_key] = k
221
222
223
224
                up_counter += 1
        if up_counter >= 4:
            counter += 1
    counter = 0
comfyanonymous's avatar
comfyanonymous committed
225
    text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
226
    for b in range(24):
227
228
229
        for c in LORA_CLIP_MAP:
            k = "transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
230
                lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
231
                key_map[lora_key] = k
comfyanonymous's avatar
comfyanonymous committed
232

comfyanonymous's avatar
comfyanonymous committed
233
234
235
236
237

    #Locon stuff
    ds_counter = 0
    counter = 0
    for b in range(12):
comfyanonymous's avatar
comfyanonymous committed
238
        tk = "diffusion_model.input_blocks.{}.0".format(b)
comfyanonymous's avatar
comfyanonymous committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
        key_in = False
        for c in LORA_UNET_MAP_RESNET:
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
                lora_key = "lora_unet_down_blocks_{}_{}".format(counter // 2, LORA_UNET_MAP_RESNET[c].format(counter % 2))
                key_map[lora_key] = k
                key_in = True
        for bb in range(3):
            k = "{}.{}.op.weight".format(tk[:-2], bb)
            if k in sdk:
                lora_key = "lora_unet_down_blocks_{}_downsamplers_0_conv".format(ds_counter)
                key_map[lora_key] = k
                ds_counter += 1
        if key_in:
            counter += 1

    counter = 0
    for b in range(3):
comfyanonymous's avatar
comfyanonymous committed
257
        tk = "diffusion_model.middle_block.{}".format(b)
comfyanonymous's avatar
comfyanonymous committed
258
259
260
261
262
263
264
265
266
267
268
269
270
        key_in = False
        for c in LORA_UNET_MAP_RESNET:
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
                lora_key = "lora_unet_mid_block_{}".format(LORA_UNET_MAP_RESNET[c].format(counter))
                key_map[lora_key] = k
                key_in = True
        if key_in:
            counter += 1

    counter = 0
    us_counter = 0
    for b in range(12):
comfyanonymous's avatar
comfyanonymous committed
271
        tk = "diffusion_model.output_blocks.{}.0".format(b)
comfyanonymous's avatar
comfyanonymous committed
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
        key_in = False
        for c in LORA_UNET_MAP_RESNET:
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
                lora_key = "lora_unet_up_blocks_{}_{}".format(counter // 3, LORA_UNET_MAP_RESNET[c].format(counter % 3))
                key_map[lora_key] = k
                key_in = True
        for bb in range(3):
            k = "{}.{}.conv.weight".format(tk[:-2], bb)
            if k in sdk:
                lora_key = "lora_unet_up_blocks_{}_upsamplers_0_conv".format(us_counter)
                key_map[lora_key] = k
                us_counter += 1
        if key_in:
            counter += 1

288
289
290
291
292
    for k in sdk:
        if k.startswith("diffusion_model.") and k.endswith(".weight"):
            key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
            key_map["lora_unet_{}".format(key_lora)] = k

293
294
    return key_map

295

296
class ModelPatcher:
297
298
    def __init__(self, model, size=0):
        self.size = size
299
300
301
        self.model = model
        self.patches = []
        self.backup = {}
302
        self.model_options = {"transformer_options":{}}
303
304
305
306
307
308
309
310
311
312
313
        self.model_size()

    def model_size(self):
        if self.size > 0:
            return self.size
        model_sd = self.model.state_dict()
        size = 0
        for k in model_sd:
            t = model_sd[k]
            size += t.nelement() * t.element_size()
        self.size = size
314
        self.model_keys = set(model_sd.keys())
315
        return size
316
317

    def clone(self):
318
        n = ModelPatcher(self.model, self.size)
319
        n.patches = self.patches[:]
320
        n.model_options = copy.deepcopy(self.model_options)
321
        n.model_keys = self.model_keys
322
323
        return n

324
    def set_model_sampler_cfg_function(self, sampler_cfg_function):
325
326
327
328
        if len(inspect.signature(sampler_cfg_function).parameters) == 3:
            self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way
        else:
            self.model_options["sampler_cfg_function"] = sampler_cfg_function
329
330
331
332
333
334
335

    def set_model_patch(self, patch, name):
        to = self.model_options["transformer_options"]
        if "patches" not in to:
            to["patches"] = {}
        to["patches"][name] = to["patches"].get(name, []) + [patch]

336
337
338
339
340
341
342
343
    def set_model_patch_replace(self, patch, name, block_name, number):
        to = self.model_options["transformer_options"]
        if "patches_replace" not in to:
            to["patches_replace"] = {}
        if name not in to["patches_replace"]:
            to["patches_replace"][name] = {}
        to["patches_replace"][name][(block_name, number)] = patch

344
345
346
347
348
349
    def set_model_attn1_patch(self, patch):
        self.set_model_patch(patch, "attn1_patch")

    def set_model_attn2_patch(self, patch):
        self.set_model_patch(patch, "attn2_patch")

350
351
352
353
354
355
356
357
358
    def set_model_attn1_replace(self, patch, block_name, number):
        self.set_model_patch_replace(patch, "attn1", block_name, number)

    def set_model_attn2_replace(self, patch, block_name, number):
        self.set_model_patch_replace(patch, "attn2", block_name, number)

    def set_model_attn1_output_patch(self, patch):
        self.set_model_patch(patch, "attn1_output_patch")

359
360
361
    def set_model_attn2_output_patch(self, patch):
        self.set_model_patch(patch, "attn2_output_patch")

362
363
364
365
366
367
368
369
370
    def model_patches_to(self, device):
        to = self.model_options["transformer_options"]
        if "patches" in to:
            patches = to["patches"]
            for name in patches:
                patch_list = patches[name]
                for i in range(len(patch_list)):
                    if hasattr(patch_list[i], "to"):
                        patch_list[i] = patch_list[i].to(device)
371
372
373
374
375
376
377
        if "patches_replace" in to:
            patches = to["patches_replace"]
            for name in patches:
                patch_list = patches[name]
                for k in patch_list:
                    if hasattr(patch_list[k], "to"):
                        patch_list[k] = patch_list[k].to(device)
378

379
    def model_dtype(self):
comfyanonymous's avatar
comfyanonymous committed
380
        return self.model.get_dtype()
381

382
    def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
383
384
        p = {}
        for k in patches:
385
            if k in self.model_keys:
386
                p[k] = patches[k]
387
        self.patches += [(strength_patch, p, strength_model)]
388
389
        return p.keys()

390
    def model_state_dict(self, filter_prefix=None):
391
392
        sd = self.model.state_dict()
        keys = list(sd.keys())
393
394
395
396
        if filter_prefix is not None:
            for k in keys:
                if not k.startswith(filter_prefix):
                    sd.pop(k)
397
398
        return sd

399
    def patch_model(self):
400
        model_sd = self.model_state_dict()
401
402
403
        for p in self.patches:
            for k in p[1]:
                v = p[1][k]
404
                key = k
comfyanonymous's avatar
comfyanonymous committed
405
                if key not in model_sd:
406
407
408
                    print("could not patch. key doesn't exist in model:", k)
                    continue

comfyanonymous's avatar
comfyanonymous committed
409
410
411
                weight = model_sd[key]
                if key not in self.backup:
                    self.backup[key] = weight.clone()
412
413

                alpha = p[0]
414
415
416
417
                strength_model = p[2]

                if strength_model != 1.0:
                    weight *= strength_model
comfyanonymous's avatar
comfyanonymous committed
418

419
                if len(v) == 1:
420
421
422
423
424
                    w1 = v[0]
                    if w1.shape != weight.shape:
                        print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
                    else:
                        weight += alpha * w1.type(weight.dtype).to(weight.device)
425
                elif len(v) == 4: #lora/locon
comfyanonymous's avatar
comfyanonymous committed
426
427
428
429
430
431
432
433
434
                    mat1 = v[0]
                    mat2 = v[1]
                    if v[2] is not None:
                        alpha *= v[2] / mat2.shape[0]
                    if v[3] is not None:
                        #locon mid weights, hopefully the math is fine because I didn't properly test it
                        final_shape = [mat2.shape[1], mat2.shape[0], v[3].shape[2], v[3].shape[3]]
                        mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1).float(), v[3].transpose(0, 1).flatten(start_dim=1).float()).reshape(final_shape).transpose(0, 1)
                    weight += (alpha * torch.mm(mat1.flatten(start_dim=1).float(), mat2.flatten(start_dim=1).float())).reshape(weight.shape).type(weight.dtype).to(weight.device)
comfyanonymous's avatar
comfyanonymous committed
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
                elif len(v) == 8: #lokr
                    w1 = v[0]
                    w2 = v[1]
                    w1_a = v[3]
                    w1_b = v[4]
                    w2_a = v[5]
                    w2_b = v[6]
                    t2 = v[7]
                    dim = None

                    if w1 is None:
                        dim = w1_b.shape[0]
                        w1 = torch.mm(w1_a.float(), w1_b.float())

                    if w2 is None:
                        dim = w2_b.shape[0]
                        if t2 is None:
                            w2 = torch.mm(w2_a.float(), w2_b.float())
                        else:
                            w2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float(), w2_b.float(), w2_a.float())

                    if len(w2.shape) == 4:
                        w1 = w1.unsqueeze(2).unsqueeze(2)
                    if v[2] is not None and dim is not None:
                        alpha *= v[2] / dim

                    weight += alpha * torch.kron(w1.float(), w2.float()).reshape(weight.shape).type(weight.dtype).to(weight.device)
comfyanonymous's avatar
comfyanonymous committed
462
463
464
465
466
467
468
                else: #loha
                    w1a = v[0]
                    w1b = v[1]
                    if v[2] is not None:
                        alpha *= v[2] / w1b.shape[0]
                    w2a = v[3]
                    w2b = v[4]
469
470
471
472
473
474
475
476
477
478
                    if v[5] is not None: #cp decomposition
                        t1 = v[5]
                        t2 = v[6]
                        m1 = torch.einsum('i j k l, j r, i p -> p r k l', t1.float(), w1b.float(), w1a.float())
                        m2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float(), w2b.float(), w2a.float())
                    else:
                        m1 = torch.mm(w1a.float(), w1b.float())
                        m2 = torch.mm(w2a.float(), w2b.float())

                    weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype).to(weight.device)
479
480
        return self.model
    def unpatch_model(self):
481
        model_sd = self.model_state_dict()
482
483
        keys = list(self.backup.keys())
        for k in keys:
484
            model_sd[k][:] = self.backup[k]
485
486
            del self.backup[k]

487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
        self.backup = {}

def load_lora_for_models(model, clip, lora_path, strength_model, strength_clip):
    key_map = model_lora_keys(model.model)
    key_map = model_lora_keys(clip.cond_stage_model, key_map)
    loaded = load_lora(lora_path, key_map)
    new_modelpatcher = model.clone()
    k = new_modelpatcher.add_patches(loaded, strength_model)
    new_clip = clip.clone()
    k1 = new_clip.add_patches(loaded, strength_clip)
    k = set(k)
    k1 = set(k1)
    for x in loaded:
        if (x not in k) and (x not in k1):
            print("NOT LOADED", x)

    return (new_modelpatcher, new_clip)
comfyanonymous's avatar
comfyanonymous committed
504
505
506


class CLIP:
507
    def __init__(self, target=None, embedding_directory=None, no_init=False):
508
509
        if no_init:
            return
510
511
512
        params = target.params
        clip = target.clip
        tokenizer = target.tokenizer
513

514
515
        self.device = model_management.text_encoder_device()
        params["device"] = self.device
516
        self.cond_stage_model = clip(**(params))
517
518
        self.cond_stage_model = self.cond_stage_model.to(self.device)

519
        self.tokenizer = tokenizer(embedding_directory=embedding_directory)
520
        self.patcher = ModelPatcher(self.cond_stage_model)
521
        self.layer_idx = None
522
523
524
525
526
527

    def clone(self):
        n = CLIP(no_init=True)
        n.patcher = self.patcher.clone()
        n.cond_stage_model = self.cond_stage_model
        n.tokenizer = self.tokenizer
comfyanonymous's avatar
comfyanonymous committed
528
        n.layer_idx = self.layer_idx
529
        n.device = self.device
530
531
        return n

532
    def load_from_state_dict(self, sd):
533
        self.cond_stage_model.load_sd(sd)
534

535
536
    def add_patches(self, patches, strength=1.0):
        return self.patcher.add_patches(patches, strength)
comfyanonymous's avatar
comfyanonymous committed
537

538
    def clip_layer(self, layer_idx):
comfyanonymous's avatar
comfyanonymous committed
539
        self.layer_idx = layer_idx
540

541
542
    def tokenize(self, text, return_word_ids=False):
        return self.tokenizer.tokenize_with_weights(text, return_word_ids)
BlenderNeko's avatar
BlenderNeko committed
543

544
    def encode_from_tokens(self, tokens, return_pooled=False):
545
546
        if self.layer_idx is not None:
            self.cond_stage_model.clip_layer(self.layer_idx)
547
548
        try:
            self.patcher.patch_model()
549
            cond, pooled = self.cond_stage_model.encode_token_weights(tokens)
550
551
552
553
            self.patcher.unpatch_model()
        except Exception as e:
            self.patcher.unpatch_model()
            raise e
554
555

        cond_out = cond
556
        if return_pooled:
557
558
            return cond_out, pooled
        return cond_out
comfyanonymous's avatar
comfyanonymous committed
559

560
    def encode(self, text):
561
        tokens = self.tokenize(text)
562
563
        return self.encode_from_tokens(tokens)

564
565
    def load_sd(self, sd):
        return self.cond_stage_model.load_sd(sd)
566

comfyanonymous's avatar
comfyanonymous committed
567
class VAE:
568
    def __init__(self, ckpt_path=None, device=None, config=None):
comfyanonymous's avatar
comfyanonymous committed
569
570
571
        if config is None:
            #default SD1.x/SD2.x VAE parameters
            ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
572
            self.first_stage_model = AutoencoderKL(ddconfig, {'target': 'torch.nn.Identity'}, 4, monitor="val/rec_loss")
comfyanonymous's avatar
comfyanonymous committed
573
        else:
574
            self.first_stage_model = AutoencoderKL(**(config['params']))
comfyanonymous's avatar
comfyanonymous committed
575
        self.first_stage_model = self.first_stage_model.eval()
576
577
578
579
580
581
        if ckpt_path is not None:
            sd = utils.load_torch_file(ckpt_path)
            if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format
                sd = diffusers_convert.convert_vae_state_dict(sd)
            self.first_stage_model.load_state_dict(sd, strict=False)

582
583
        if device is None:
            device = model_management.get_torch_device()
comfyanonymous's avatar
comfyanonymous committed
584
585
        self.device = device

586
    def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
pythongosssss's avatar
pythongosssss committed
587
        steps = samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
comfyanonymous's avatar
comfyanonymous committed
588
589
        steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
        steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
pythongosssss's avatar
pythongosssss committed
590
        pbar = utils.ProgressBar(steps)
591

592
        decode_fn = lambda a: (self.first_stage_model.decode(a.to(self.device)) + 1.0)
593
        output = torch.clamp((
594
595
596
            (utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8, pbar = pbar) +
            utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8, pbar = pbar) +
             utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8, pbar = pbar))
597
598
599
            / 3.0) / 2.0, min=0.0, max=1.0)
        return output

600
601
602
603
604
605
    def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
        steps = pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
        steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
        steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
        pbar = utils.ProgressBar(steps)

606
        encode_fn = lambda a: self.first_stage_model.encode(2. * a.to(self.device) - 1.).sample()
607
608
609
610
611
612
        samples = utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
        samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
        samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
        samples /= 3.0
        return samples

613
    def decode(self, samples_in):
614
        model_management.unload_model()
comfyanonymous's avatar
comfyanonymous committed
615
        self.first_stage_model = self.first_stage_model.to(self.device)
616
        try:
617
618
619
620
621
622
623
            free_memory = model_management.get_free_memory(self.device)
            batch_number = int((free_memory * 0.7) / (2562 * samples_in.shape[2] * samples_in.shape[3] * 64))
            batch_number = max(1, batch_number)

            pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * 8), round(samples_in.shape[3] * 8)), device="cpu")
            for x in range(0, samples_in.shape[0], batch_number):
                samples = samples_in[x:x+batch_number].to(self.device)
624
                pixel_samples[x:x+batch_number] = torch.clamp((self.first_stage_model.decode(samples) + 1.0) / 2.0, min=0.0, max=1.0).cpu()
625
626
627
628
        except model_management.OOM_EXCEPTION as e:
            print("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
            pixel_samples = self.decode_tiled_(samples_in)

comfyanonymous's avatar
comfyanonymous committed
629
630
631
632
        self.first_stage_model = self.first_stage_model.cpu()
        pixel_samples = pixel_samples.cpu().movedim(1,-1)
        return pixel_samples

633
    def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16):
634
635
        model_management.unload_model()
        self.first_stage_model = self.first_stage_model.to(self.device)
636
        output = self.decode_tiled_(samples, tile_x, tile_y, overlap)
637
638
639
        self.first_stage_model = self.first_stage_model.cpu()
        return output.movedim(1,-1)

comfyanonymous's avatar
comfyanonymous committed
640
    def encode(self, pixel_samples):
641
        model_management.unload_model()
comfyanonymous's avatar
comfyanonymous committed
642
        self.first_stage_model = self.first_stage_model.to(self.device)
643
644
        pixel_samples = pixel_samples.movedim(-1,1)
        try:
645
646
647
            free_memory = model_management.get_free_memory(self.device)
            batch_number = int((free_memory * 0.7) / (2078 * pixel_samples.shape[2] * pixel_samples.shape[3])) #NOTE: this constant along with the one in the decode above are estimated from the mem usage for the VAE and could change.
            batch_number = max(1, batch_number)
648
649
650
            samples = torch.empty((pixel_samples.shape[0], 4, round(pixel_samples.shape[2] // 8), round(pixel_samples.shape[3] // 8)), device="cpu")
            for x in range(0, pixel_samples.shape[0], batch_number):
                pixels_in = (2. * pixel_samples[x:x+batch_number] - 1.).to(self.device)
651
                samples[x:x+batch_number] = self.first_stage_model.encode(pixels_in).sample().cpu()
652

653
654
655
656
        except model_management.OOM_EXCEPTION as e:
            print("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.")
            samples = self.encode_tiled_(pixel_samples)

comfyanonymous's avatar
comfyanonymous committed
657
658
659
        self.first_stage_model = self.first_stage_model.cpu()
        return samples

comfyanonymous's avatar
comfyanonymous committed
660
661
662
    def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
        model_management.unload_model()
        self.first_stage_model = self.first_stage_model.to(self.device)
663
664
        pixel_samples = pixel_samples.movedim(-1,1)
        samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap)
comfyanonymous's avatar
comfyanonymous committed
665
666
        self.first_stage_model = self.first_stage_model.cpu()
        return samples
667

BlenderNeko's avatar
BlenderNeko committed
668
def broadcast_image_to(tensor, target_batch_size, batched_number):
669
    current_batch_size = tensor.shape[0]
670
    #print(current_batch_size, target_batch_size)
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
    if current_batch_size == 1:
        return tensor

    per_batch = target_batch_size // batched_number
    tensor = tensor[:per_batch]

    if per_batch > tensor.shape[0]:
        tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)

    current_batch_size = tensor.shape[0]
    if current_batch_size == target_batch_size:
        return tensor
    else:
        return torch.cat([tensor] * batched_number, dim=0)

comfyanonymous's avatar
comfyanonymous committed
686
class ControlNet:
687
    def __init__(self, control_model, global_average_pooling=False, device=None):
comfyanonymous's avatar
comfyanonymous committed
688
689
690
        self.control_model = control_model
        self.cond_hint_original = None
        self.cond_hint = None
691
        self.strength = 1.0
692
693
        if device is None:
            device = model_management.get_torch_device()
694
        self.device = device
comfyanonymous's avatar
comfyanonymous committed
695
        self.previous_controlnet = None
696
        self.global_average_pooling = global_average_pooling
comfyanonymous's avatar
comfyanonymous committed
697

698
    def get_control(self, x_noisy, t, cond, batched_number):
comfyanonymous's avatar
comfyanonymous committed
699
700
        control_prev = None
        if self.previous_controlnet is not None:
701
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
comfyanonymous's avatar
comfyanonymous committed
702

703
        output_dtype = x_noisy.dtype
comfyanonymous's avatar
comfyanonymous committed
704
705
706
707
        if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
            self.cond_hint = None
BlenderNeko's avatar
BlenderNeko committed
708
709
710
            self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(self.control_model.dtype).to(self.device)
        if x_noisy.shape[0] != self.cond_hint.shape[0]:
            self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
711
712
713
714
715
716

        if self.control_model.dtype == torch.float16:
            precision_scope = torch.autocast
        else:
            precision_scope = contextlib.nullcontext

717
        with precision_scope(model_management.get_autocast_device(self.device)):
718
            self.control_model = model_management.load_if_low_vram(self.control_model)
719
720
721
            context = torch.cat(cond['c_crossattn'], 1)
            y = cond.get('c_adm', None)
            control = self.control_model(x=x_noisy, hint=self.cond_hint, timesteps=t, context=context, y=y)
722
            self.control_model = model_management.unload_if_low_vram(self.control_model)
723
        out = {'middle':[], 'output': []}
724
        autocast_enabled = torch.is_autocast_enabled()
comfyanonymous's avatar
comfyanonymous committed
725
726

        for i in range(len(control)):
comfyanonymous's avatar
comfyanonymous committed
727
728
729
730
731
732
            if i == (len(control) - 1):
                key = 'middle'
                index = 0
            else:
                key = 'output'
                index = i
comfyanonymous's avatar
comfyanonymous committed
733
            x = control[i]
734
735
736
            if self.global_average_pooling:
                x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])

737
            x *= self.strength
738
739
            if x.dtype != output_dtype and not autocast_enabled:
                x = x.to(output_dtype)
comfyanonymous's avatar
comfyanonymous committed
740

comfyanonymous's avatar
comfyanonymous committed
741
742
743
744
745
746
747
            if control_prev is not None and key in control_prev:
                prev = control_prev[key][index]
                if prev is not None:
                    x += prev
            out[key].append(x)
        if control_prev is not None and 'input' in control_prev:
            out['input'] = control_prev['input']
748
        return out
comfyanonymous's avatar
comfyanonymous committed
749

750
    def set_cond_hint(self, cond_hint, strength=1.0):
comfyanonymous's avatar
comfyanonymous committed
751
        self.cond_hint_original = cond_hint
752
        self.strength = strength
comfyanonymous's avatar
comfyanonymous committed
753
754
        return self

comfyanonymous's avatar
comfyanonymous committed
755
756
757
758
    def set_previous_controlnet(self, controlnet):
        self.previous_controlnet = controlnet
        return self

comfyanonymous's avatar
comfyanonymous committed
759
    def cleanup(self):
comfyanonymous's avatar
comfyanonymous committed
760
761
        if self.previous_controlnet is not None:
            self.previous_controlnet.cleanup()
comfyanonymous's avatar
comfyanonymous committed
762
763
764
765
766
        if self.cond_hint is not None:
            del self.cond_hint
            self.cond_hint = None

    def copy(self):
767
        c = ControlNet(self.control_model, global_average_pooling=self.global_average_pooling)
comfyanonymous's avatar
comfyanonymous committed
768
        c.cond_hint_original = self.cond_hint_original
769
        c.strength = self.strength
comfyanonymous's avatar
comfyanonymous committed
770
771
        return c

772
    def get_models(self):
comfyanonymous's avatar
comfyanonymous committed
773
774
        out = []
        if self.previous_controlnet is not None:
775
            out += self.previous_controlnet.get_models()
comfyanonymous's avatar
comfyanonymous committed
776
777
778
        out.append(self.control_model)
        return out

779
def load_controlnet(ckpt_path, model=None):
780
    controlnet_data = utils.load_torch_file(ckpt_path, safe_load=True)
781
    pth_key = 'control_model.zero_convs.0.0.weight'
comfyanonymous's avatar
comfyanonymous committed
782
    pth = False
783
    key = 'zero_convs.0.0.weight'
comfyanonymous's avatar
comfyanonymous committed
784
785
786
    if pth_key in controlnet_data:
        pth = True
        key = pth_key
787
        prefix = "control_model."
comfyanonymous's avatar
comfyanonymous committed
788
    elif key in controlnet_data:
789
        prefix = ""
comfyanonymous's avatar
comfyanonymous committed
790
    else:
791
792
793
794
        net = load_t2i_adapter(controlnet_data)
        if net is None:
            print("error checkpoint does not contain controlnet or t2i adapter data", ckpt_path)
        return net
comfyanonymous's avatar
comfyanonymous committed
795

796
797
798
799
800
801
802
    use_fp16 = model_management.should_use_fp16()

    controlnet_config = model_detection.model_config_from_unet(controlnet_data, prefix, use_fp16).unet_config
    controlnet_config.pop("out_channels")
    controlnet_config["hint_channels"] = 3
    control_model = cldm.ControlNet(**controlnet_config)

comfyanonymous's avatar
comfyanonymous committed
803
    if pth:
804
805
806
807
808
809
810
        if 'difference' in controlnet_data:
            if model is not None:
                m = model.patch_model()
                model_sd = m.state_dict()
                for x in controlnet_data:
                    c_m = "control_model."
                    if x.startswith(c_m):
comfyanonymous's avatar
comfyanonymous committed
811
                        sd_key = "diffusion_model.{}".format(x[len(c_m):])
812
813
814
815
816
817
818
                        if sd_key in model_sd:
                            cd = controlnet_data[x]
                            cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
                model.unpatch_model()
            else:
                print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")

comfyanonymous's avatar
comfyanonymous committed
819
820
821
822
        class WeightsLoader(torch.nn.Module):
            pass
        w = WeightsLoader()
        w.control_model = control_model
823
        missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
comfyanonymous's avatar
comfyanonymous committed
824
    else:
825
826
        missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
    print(missing, unexpected)
comfyanonymous's avatar
comfyanonymous committed
827

828
829
830
    if use_fp16:
        control_model = control_model.half()

831
832
833
834
835
    global_average_pooling = False
    if ckpt_path.endswith("_shuffle.pth") or ckpt_path.endswith("_shuffle.safetensors") or ckpt_path.endswith("_shuffle_fp16.safetensors"): #TODO: smarter way of enabling global_average_pooling
        global_average_pooling = True

    control = ControlNet(control_model, global_average_pooling=global_average_pooling)
comfyanonymous's avatar
comfyanonymous committed
836
837
    return control

838
class T2IAdapter:
839
    def __init__(self, t2i_model, channels_in, device=None):
840
841
842
        self.t2i_model = t2i_model
        self.channels_in = channels_in
        self.strength = 1.0
843
844
        if device is None:
            device = model_management.get_torch_device()
845
846
847
848
849
850
        self.device = device
        self.previous_controlnet = None
        self.control_input = None
        self.cond_hint_original = None
        self.cond_hint = None

851
    def get_control(self, x_noisy, t, cond, batched_number):
852
853
        control_prev = None
        if self.previous_controlnet is not None:
854
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
855
856
857
858

        if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
BlenderNeko's avatar
BlenderNeko committed
859
            self.control_input = None
860
            self.cond_hint = None
BlenderNeko's avatar
BlenderNeko committed
861
            self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").float().to(self.device)
862
863
            if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
                self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
BlenderNeko's avatar
BlenderNeko committed
864
865
866
        if x_noisy.shape[0] != self.cond_hint.shape[0]:
            self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
        if self.control_input is None:
867
868
869
870
871
872
873
            self.t2i_model.to(self.device)
            self.control_input = self.t2i_model(self.cond_hint)
            self.t2i_model.cpu()

        output_dtype = x_noisy.dtype
        out = {'input':[]}

comfyanonymous's avatar
comfyanonymous committed
874
        autocast_enabled = torch.is_autocast_enabled()
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
        for i in range(len(self.control_input)):
            key = 'input'
            x = self.control_input[i] * self.strength
            if x.dtype != output_dtype and not autocast_enabled:
                x = x.to(output_dtype)

            if control_prev is not None and key in control_prev:
                index = len(control_prev[key]) - i * 3 - 3
                prev = control_prev[key][index]
                if prev is not None:
                    x += prev
            out[key].insert(0, None)
            out[key].insert(0, None)
            out[key].insert(0, x)

        if control_prev is not None and 'input' in control_prev:
            for i in range(len(out['input'])):
                if out['input'][i] is None:
                    out['input'][i] = control_prev['input'][i]
        if control_prev is not None and 'middle' in control_prev:
            out['middle'] = control_prev['middle']
        if control_prev is not None and 'output' in control_prev:
            out['output'] = control_prev['output']
        return out

    def set_cond_hint(self, cond_hint, strength=1.0):
        self.cond_hint_original = cond_hint
        self.strength = strength
        return self

    def set_previous_controlnet(self, controlnet):
        self.previous_controlnet = controlnet
        return self

    def copy(self):
        c = T2IAdapter(self.t2i_model, self.channels_in)
        c.cond_hint_original = self.cond_hint_original
        c.strength = self.strength
        return c

    def cleanup(self):
        if self.previous_controlnet is not None:
            self.previous_controlnet.cleanup()
        if self.cond_hint is not None:
            del self.cond_hint
            self.cond_hint = None

922
    def get_models(self):
923
924
        out = []
        if self.previous_controlnet is not None:
925
            out += self.previous_controlnet.get_models()
926
927
        return out

928
def load_t2i_adapter(t2i_data):
929
    keys = t2i_data.keys()
930
931
932
    if 'adapter' in keys:
        t2i_data = t2i_data['adapter']
        keys = t2i_data.keys()
933
    if "body.0.in_conv.weight" in keys:
934
935
        cin = t2i_data['body.0.in_conv.weight'].shape[1]
        model_ad = adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
936
    elif 'conv_in.weight' in keys:
937
        cin = t2i_data['conv_in.weight'].shape[1]
938
939
940
941
942
943
944
        channel = t2i_data['conv_in.weight'].shape[0]
        ksize = t2i_data['body.0.block2.weight'].shape[2]
        use_conv = False
        down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys))
        if len(down_opts) > 0:
            use_conv = True
        model_ad = adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv)
945
946
    else:
        return None
947
948
    model_ad.load_state_dict(t2i_data)
    return T2IAdapter(model_ad, cin // 64)
comfyanonymous's avatar
comfyanonymous committed
949

950
951
952
953
954
955
956
957
958
959

class StyleModel:
    def __init__(self, model, device="cpu"):
        self.model = model

    def get_cond(self, input):
        return self.model(input.last_hidden_state)


def load_style_model(ckpt_path):
960
    model_data = utils.load_torch_file(ckpt_path, safe_load=True)
961
962
963
964
965
966
967
968
969
    keys = model_data.keys()
    if "style_embedding" in keys:
        model = adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
    else:
        raise Exception("invalid style model {}".format(ckpt_path))
    model.load_state_dict(model_data)
    return StyleModel(model)


970
971
972
973
974
def load_clip(ckpt_paths, embedding_directory=None):
    clip_data = []
    for p in ckpt_paths:
        clip_data.append(utils.load_torch_file(p, safe_load=True))

comfyanonymous's avatar
comfyanonymous committed
975
976
977
    class EmptyClass:
        pass

978
979
980
981
    for i in range(len(clip_data)):
        if "transformer.resblocks.0.ln_1.weight" in clip_data[i]:
            clip_data[i] = utils.transformers_convert(clip_data[i], "", "text_model.", 32)

comfyanonymous's avatar
comfyanonymous committed
982
983
    clip_target = EmptyClass()
    clip_target.params = {}
984
985
986
987
988
989
990
991
992
993
    if len(clip_data) == 1:
        if "text_model.encoder.layers.30.mlp.fc1.weight" in clip_data[0]:
            clip_target.clip = sdxl_clip.SDXLRefinerClipModel
            clip_target.tokenizer = sdxl_clip.SDXLTokenizer
        elif "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data[0]:
            clip_target.clip = sd2_clip.SD2ClipModel
            clip_target.tokenizer = sd2_clip.SD2Tokenizer
        else:
            clip_target.clip = sd1_clip.SD1ClipModel
            clip_target.tokenizer = sd1_clip.SD1Tokenizer
994
    else:
995
996
        clip_target.clip = sdxl_clip.SDXLClipModel
        clip_target.tokenizer = sdxl_clip.SDXLTokenizer
comfyanonymous's avatar
comfyanonymous committed
997
998

    clip = CLIP(clip_target, embedding_directory=embedding_directory)
999
1000
1001
1002
1003
1004
1005
    for c in clip_data:
        m, u = clip.load_sd(c)
        if len(m) > 0:
            print("clip missing:", m)

        if len(u) > 0:
            print("clip unexpected:", u)
1006
    return clip
comfyanonymous's avatar
comfyanonymous committed
1007

1008
def load_gligen(ckpt_path):
1009
    data = utils.load_torch_file(ckpt_path, safe_load=True)
1010
1011
1012
1013
1014
    model = gligen.load_gligen(data)
    if model_management.should_use_fp16():
        model = model.half()
    return model

comfyanonymous's avatar
comfyanonymous committed
1015
def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None):
1016
    #TODO: this function is a mess and should be removed eventually
comfyanonymous's avatar
comfyanonymous committed
1017
1018
1019
    if config is None:
        with open(config_path, 'r') as stream:
            config = yaml.safe_load(stream)
comfyanonymous's avatar
comfyanonymous committed
1020
1021
1022
1023
1024
    model_config_params = config['model']['params']
    clip_config = model_config_params['cond_stage_config']
    scale_factor = model_config_params['scale_factor']
    vae_config = model_config_params['first_stage_config']

1025
1026
1027
    fp16 = False
    if "unet_config" in model_config_params:
        if "params" in model_config_params["unet_config"]:
comfyanonymous's avatar
comfyanonymous committed
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
            unet_config = model_config_params["unet_config"]["params"]
            if "use_fp16" in unet_config:
                fp16 = unet_config["use_fp16"]

    noise_aug_config = None
    if "noise_aug_config" in model_config_params:
        noise_aug_config = model_config_params["noise_aug_config"]

    v_prediction = False

    if "parameterization" in model_config_params:
        if model_config_params["parameterization"] == "v":
            v_prediction = True
1041

comfyanonymous's avatar
comfyanonymous committed
1042
1043
1044
1045
1046
1047
    clip = None
    vae = None

    class WeightsLoader(torch.nn.Module):
        pass

1048
1049
    if state_dict is None:
        state_dict = utils.load_torch_file(ckpt_path)
comfyanonymous's avatar
comfyanonymous committed
1050

1051
1052
1053
1054
1055
1056
1057
1058
    class EmptyClass:
        pass

    model_config = EmptyClass()
    model_config.unet_config = unet_config
    from . import latent_formats
    model_config.latent_format = latent_formats.SD15(scale_factor=scale_factor)

comfyanonymous's avatar
comfyanonymous committed
1059
    if config['model']["target"].endswith("LatentInpaintDiffusion"):
1060
        model = model_base.SDInpaint(model_config, v_prediction=v_prediction)
comfyanonymous's avatar
comfyanonymous committed
1061
    elif config['model']["target"].endswith("ImageEmbeddingConditionedLatentDiffusion"):
1062
        model = model_base.SD21UNCLIP(model_config, noise_aug_config["params"], v_prediction=v_prediction)
comfyanonymous's avatar
comfyanonymous committed
1063
    else:
1064
        model = model_base.BaseModel(model_config, v_prediction=v_prediction)
comfyanonymous's avatar
comfyanonymous committed
1065

1066
1067
1068
    if fp16:
        model = model.half()

1069
1070
1071
1072
    model.load_model_weights(state_dict, "model.diffusion_model.")

    if output_vae:
        w = WeightsLoader()
1073
        vae = VAE(config=vae_config)
1074
1075
1076
1077
1078
1079
        w.first_stage_model = vae.first_stage_model
        load_model_weights(w, state_dict)

    if output_clip:
        w = WeightsLoader()
        clip_target = EmptyClass()
1080
        clip_target.params = clip_config.get("params", {})
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
        if clip_config["target"].endswith("FrozenOpenCLIPEmbedder"):
            clip_target.clip = sd2_clip.SD2ClipModel
            clip_target.tokenizer = sd2_clip.SD2Tokenizer
        elif clip_config["target"].endswith("FrozenCLIPEmbedder"):
            clip_target.clip = sd1_clip.SD1ClipModel
            clip_target.tokenizer = sd1_clip.SD1Tokenizer
        clip = CLIP(clip_target, embedding_directory=embedding_directory)
        w.cond_stage_model = clip.cond_stage_model
        load_clip_weights(w, state_dict)

1091
    return (ModelPatcher(model), clip, vae)
1092
1093


1094
1095
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None):
    sd = utils.load_torch_file(ckpt_path)
1096
1097
    sd_keys = sd.keys()
    clip = None
1098
    clipvision = None
1099
    vae = None
1100
1101
    model = None
    clip_target = None
1102

1103
1104
    fp16 = model_management.should_use_fp16()

1105
1106
1107
    class WeightsLoader(torch.nn.Module):
        pass

1108
1109
1110
    model_config = model_detection.model_config_from_unet(sd, "model.diffusion_model.", fp16)
    if model_config is None:
        raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path))
1111

1112
    if model_config.clip_vision_prefix is not None:
1113
        if output_clipvision:
1114
            clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True)
1115

1116
1117
    model = model_config.get_model(sd)
    model.load_model_weights(sd, "model.diffusion_model.")
1118

1119
    if output_vae:
1120
        vae = VAE()
1121
1122
1123
        w = WeightsLoader()
        w.first_stage_model = vae.first_stage_model
        load_model_weights(w, sd)
1124

1125
1126
1127
1128
1129
1130
1131
    if output_clip:
        w = WeightsLoader()
        clip_target = model_config.clip_target()
        clip = CLIP(clip_target, embedding_directory=embedding_directory)
        w.cond_stage_model = clip.cond_stage_model
        sd = model_config.process_clip_state_dict(sd)
        load_model_weights(w, sd)
comfyanonymous's avatar
comfyanonymous committed
1132

1133
1134
1135
    left_over = sd.keys()
    if len(left_over) > 0:
        print("left over keys:", left_over)
1136

1137
    return (ModelPatcher(model), clip, vae, clipvision)