"vscode:/vscode.git/clone" did not exist on "16a493a19042227baadd939fc095305716ae58db"
sd.py 56.4 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
import torch
2
import contextlib
3
import copy
4
import inspect
comfyanonymous's avatar
comfyanonymous committed
5

6
from comfy import model_management
7
8
from .ldm.util import instantiate_from_config
from .ldm.models.autoencoder import AutoencoderKL
9
import yaml
comfyanonymous's avatar
comfyanonymous committed
10
from .cldm import cldm
11
from .t2i_adapter import adapter
comfyanonymous's avatar
comfyanonymous committed
12
13

from . import utils
14
from . import clip_vision
15
from . import gligen
16
from . import diffusers_convert
comfyanonymous's avatar
comfyanonymous committed
17
from . import model_base
18
from . import model_detection
19

20
21
from . import sd1_clip
from . import sd2_clip
22
from . import sdxl_clip
comfyanonymous's avatar
comfyanonymous committed
23

24
def load_model_weights(model, sd):
comfyanonymous's avatar
comfyanonymous committed
25
    m, u = model.load_state_dict(sd, strict=False)
26
27
    m = set(m)
    unexpected_keys = set(u)
comfyanonymous's avatar
comfyanonymous committed
28
29
30

    k = list(sd.keys())
    for x in k:
31
32
33
34
35
36
37
38
39
40
        if x not in unexpected_keys:
            w = sd.pop(x)
            del w
    if len(m) > 0:
        print("missing", m)
    return model

def load_clip_weights(model, sd):
    k = list(sd.keys())
    for x in k:
comfyanonymous's avatar
comfyanonymous committed
41
42
43
44
        if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
            y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
            sd[y] = sd.pop(x)

comfyanonymous's avatar
comfyanonymous committed
45
46
47
48
    if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in sd:
        ids = sd['cond_stage_model.transformer.text_model.embeddings.position_ids']
        if ids.dtype == torch.float32:
            sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
49

50
51
    sd = utils.transformers_convert(sd, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24)
    return load_model_weights(model, sd)
comfyanonymous's avatar
comfyanonymous committed
52

53
54
55
56
57
58
59
60
61
62
LORA_CLIP_MAP = {
    "mlp.fc1": "mlp_fc1",
    "mlp.fc2": "mlp_fc2",
    "self_attn.k_proj": "self_attn_k_proj",
    "self_attn.q_proj": "self_attn_q_proj",
    "self_attn.v_proj": "self_attn_v_proj",
    "self_attn.out_proj": "self_attn_out_proj",
}


63
def load_lora(lora, to_load):
64
65
66
    patch_dict = {}
    loaded_keys = set()
    for x in to_load:
comfyanonymous's avatar
comfyanonymous committed
67
68
69
70
71
72
        alpha_name = "{}.alpha".format(x)
        alpha = None
        if alpha_name in lora.keys():
            alpha = lora[alpha_name].item()
            loaded_keys.add(alpha_name)

73
74
        regular_lora = "{}.lora_up.weight".format(x)
        diffusers_lora = "{}_lora.up.weight".format(x)
75
        transformers_lora = "{}.lora_linear_layer.up.weight".format(x)
76
77
78
79
80
81
82
83
84
85
        A_name = None

        if regular_lora in lora.keys():
            A_name = regular_lora
            B_name = "{}.lora_down.weight".format(x)
            mid_name = "{}.lora_mid.weight".format(x)
        elif diffusers_lora in lora.keys():
            A_name = diffusers_lora
            B_name = "{}_lora.down.weight".format(x)
            mid_name = None
86
87
88
89
        elif transformers_lora in lora.keys():
            A_name = transformers_lora
            B_name ="{}.lora_linear_layer.down.weight".format(x)
            mid_name = None
90
91

        if A_name is not None:
92
            mid = None
93
            if mid_name is not None and mid_name in lora.keys():
94
95
96
                mid = lora[mid_name]
                loaded_keys.add(mid_name)
            patch_dict[to_load[x]] = (lora[A_name], lora[B_name], alpha, mid)
97
98
            loaded_keys.add(A_name)
            loaded_keys.add(B_name)
comfyanonymous's avatar
comfyanonymous committed
99

comfyanonymous's avatar
comfyanonymous committed
100
101

        ######## loha
comfyanonymous's avatar
comfyanonymous committed
102
103
104
105
        hada_w1_a_name = "{}.hada_w1_a".format(x)
        hada_w1_b_name = "{}.hada_w1_b".format(x)
        hada_w2_a_name = "{}.hada_w2_a".format(x)
        hada_w2_b_name = "{}.hada_w2_b".format(x)
106
107
        hada_t1_name = "{}.hada_t1".format(x)
        hada_t2_name = "{}.hada_t2".format(x)
comfyanonymous's avatar
comfyanonymous committed
108
        if hada_w1_a_name in lora.keys():
109
110
111
112
113
114
115
116
117
            hada_t1 = None
            hada_t2 = None
            if hada_t1_name in lora.keys():
                hada_t1 = lora[hada_t1_name]
                hada_t2 = lora[hada_t2_name]
                loaded_keys.add(hada_t1_name)
                loaded_keys.add(hada_t2_name)

            patch_dict[to_load[x]] = (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2)
comfyanonymous's avatar
comfyanonymous committed
118
119
120
121
122
            loaded_keys.add(hada_w1_a_name)
            loaded_keys.add(hada_w1_b_name)
            loaded_keys.add(hada_w2_a_name)
            loaded_keys.add(hada_w2_b_name)

comfyanonymous's avatar
comfyanonymous committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

        ######## lokr
        lokr_w1_name = "{}.lokr_w1".format(x)
        lokr_w2_name = "{}.lokr_w2".format(x)
        lokr_w1_a_name = "{}.lokr_w1_a".format(x)
        lokr_w1_b_name = "{}.lokr_w1_b".format(x)
        lokr_t2_name = "{}.lokr_t2".format(x)
        lokr_w2_a_name = "{}.lokr_w2_a".format(x)
        lokr_w2_b_name = "{}.lokr_w2_b".format(x)

        lokr_w1 = None
        if lokr_w1_name in lora.keys():
            lokr_w1 = lora[lokr_w1_name]
            loaded_keys.add(lokr_w1_name)

        lokr_w2 = None
        if lokr_w2_name in lora.keys():
            lokr_w2 = lora[lokr_w2_name]
            loaded_keys.add(lokr_w2_name)

        lokr_w1_a = None
        if lokr_w1_a_name in lora.keys():
            lokr_w1_a = lora[lokr_w1_a_name]
            loaded_keys.add(lokr_w1_a_name)

        lokr_w1_b = None
        if lokr_w1_b_name in lora.keys():
            lokr_w1_b = lora[lokr_w1_b_name]
            loaded_keys.add(lokr_w1_b_name)

        lokr_w2_a = None
        if lokr_w2_a_name in lora.keys():
            lokr_w2_a = lora[lokr_w2_a_name]
            loaded_keys.add(lokr_w2_a_name)

        lokr_w2_b = None
        if lokr_w2_b_name in lora.keys():
            lokr_w2_b = lora[lokr_w2_b_name]
            loaded_keys.add(lokr_w2_b_name)

        lokr_t2 = None
        if lokr_t2_name in lora.keys():
            lokr_t2 = lora[lokr_t2_name]
            loaded_keys.add(lokr_t2_name)

        if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
            patch_dict[to_load[x]] = (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2)

171
172
173
174
175
    for x in lora.keys():
        if x not in loaded_keys:
            print("lora key not loaded", x)
    return patch_dict

176
def model_lora_keys_clip(model, key_map={}):
177
178
    sdk = model.state_dict().keys()

comfyanonymous's avatar
comfyanonymous committed
179
    text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
180
181
    clip_l_present = False
    for b in range(32):
182
183
184
        for c in LORA_CLIP_MAP:
            k = "transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
185
                lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
186
                key_map[lora_key] = k
comfyanonymous's avatar
comfyanonymous committed
187
188
                lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c])
                key_map[lora_key] = k
189
190
                lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
                key_map[lora_key] = k
comfyanonymous's avatar
comfyanonymous committed
191

192
193
194
195
196
            k = "clip_l.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
                lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
                key_map[lora_key] = k
                clip_l_present = True
197
198
                lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
                key_map[lora_key] = k
199
200
201
202
203

            k = "clip_g.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
                if clip_l_present:
                    lora_key = "lora_te2_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
204
205
206
                    key_map[lora_key] = k
                    lora_key = "text_encoder_2.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
                    key_map[lora_key] = k
207
208
                else:
                    lora_key = "lora_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #TODO: test if this is correct for SDXL-Refiner
209
210
211
                    key_map[lora_key] = k
                    lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
                    key_map[lora_key] = k
212

213
    return key_map
comfyanonymous's avatar
comfyanonymous committed
214

215
216
def model_lora_keys_unet(model, key_map={}):
    sdk = model.state_dict().keys()
comfyanonymous's avatar
comfyanonymous committed
217

218
219
220
221
222
    for k in sdk:
        if k.startswith("diffusion_model.") and k.endswith(".weight"):
            key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
            key_map["lora_unet_{}".format(key_lora)] = k

223
224
225
    diffusers_keys = utils.unet_to_diffusers(model.model_config.unet_config)
    for k in diffusers_keys:
        if k.endswith(".weight"):
226
            unet_key = "diffusion_model.{}".format(diffusers_keys[k])
227
            key_lora = k[:-len(".weight")].replace(".", "_")
228
229
230
231
232
233
234
235
            key_map["lora_unet_{}".format(key_lora)] = unet_key

            diffusers_lora_prefix = ["", "unet."]
            for p in diffusers_lora_prefix:
                diffusers_lora_key = "{}{}".format(p, k[:-len(".weight")].replace(".to_", ".processor.to_"))
                if diffusers_lora_key.endswith(".to_out.0"):
                    diffusers_lora_key = diffusers_lora_key[:-2]
                key_map[diffusers_lora_key] = unet_key
236
237
    return key_map

238
239
240
241
242
243
244
245
def set_attr(obj, attr, value):
    attrs = attr.split(".")
    for name in attrs[:-1]:
        obj = getattr(obj, name)
    prev = getattr(obj, attrs[-1])
    setattr(obj, attrs[-1], torch.nn.Parameter(value))
    del prev

comfyanonymous's avatar
comfyanonymous committed
246
247
248
249
250
251
252
def get_attr(obj, attr):
    attrs = attr.split(".")
    for name in attrs:
        obj = getattr(obj, name)
    return obj


253
class ModelPatcher:
comfyanonymous's avatar
comfyanonymous committed
254
    def __init__(self, model, load_device, offload_device, size=0, current_device=None):
255
        self.size = size
256
        self.model = model
257
        self.patches = {}
258
        self.backup = {}
259
        self.model_options = {"transformer_options":{}}
260
        self.model_size()
261
262
        self.load_device = load_device
        self.offload_device = offload_device
comfyanonymous's avatar
comfyanonymous committed
263
264
265
266
        if current_device is None:
            self.current_device = self.offload_device
        else:
            self.current_device = current_device
267
268
269
270
271
272
273
274
275
276

    def model_size(self):
        if self.size > 0:
            return self.size
        model_sd = self.model.state_dict()
        size = 0
        for k in model_sd:
            t = model_sd[k]
            size += t.nelement() * t.element_size()
        self.size = size
277
        self.model_keys = set(model_sd.keys())
278
        return size
279
280

    def clone(self):
comfyanonymous's avatar
comfyanonymous committed
281
        n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size, self.current_device)
282
283
284
285
        n.patches = {}
        for k in self.patches:
            n.patches[k] = self.patches[k][:]

286
        n.model_options = copy.deepcopy(self.model_options)
287
        n.model_keys = self.model_keys
288
289
        return n

comfyanonymous's avatar
comfyanonymous committed
290
291
292
293
294
    def is_clone(self, other):
        if hasattr(other, 'model') and self.model is other.model:
            return True
        return False

295
    def set_model_sampler_cfg_function(self, sampler_cfg_function):
296
297
298
299
        if len(inspect.signature(sampler_cfg_function).parameters) == 3:
            self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way
        else:
            self.model_options["sampler_cfg_function"] = sampler_cfg_function
300

301
302
303
    def set_model_unet_function_wrapper(self, unet_wrapper_function):
        self.model_options["model_function_wrapper"] = unet_wrapper_function

304
305
306
307
308
309
    def set_model_patch(self, patch, name):
        to = self.model_options["transformer_options"]
        if "patches" not in to:
            to["patches"] = {}
        to["patches"][name] = to["patches"].get(name, []) + [patch]

310
311
312
313
314
315
316
317
    def set_model_patch_replace(self, patch, name, block_name, number):
        to = self.model_options["transformer_options"]
        if "patches_replace" not in to:
            to["patches_replace"] = {}
        if name not in to["patches_replace"]:
            to["patches_replace"][name] = {}
        to["patches_replace"][name][(block_name, number)] = patch

318
319
320
321
322
323
    def set_model_attn1_patch(self, patch):
        self.set_model_patch(patch, "attn1_patch")

    def set_model_attn2_patch(self, patch):
        self.set_model_patch(patch, "attn2_patch")

324
325
326
327
328
329
330
331
332
    def set_model_attn1_replace(self, patch, block_name, number):
        self.set_model_patch_replace(patch, "attn1", block_name, number)

    def set_model_attn2_replace(self, patch, block_name, number):
        self.set_model_patch_replace(patch, "attn2", block_name, number)

    def set_model_attn1_output_patch(self, patch):
        self.set_model_patch(patch, "attn1_output_patch")

333
334
335
    def set_model_attn2_output_patch(self, patch):
        self.set_model_patch(patch, "attn2_output_patch")

336
337
338
339
340
341
342
343
344
    def model_patches_to(self, device):
        to = self.model_options["transformer_options"]
        if "patches" in to:
            patches = to["patches"]
            for name in patches:
                patch_list = patches[name]
                for i in range(len(patch_list)):
                    if hasattr(patch_list[i], "to"):
                        patch_list[i] = patch_list[i].to(device)
345
346
347
348
349
350
351
        if "patches_replace" in to:
            patches = to["patches_replace"]
            for name in patches:
                patch_list = patches[name]
                for k in patch_list:
                    if hasattr(patch_list[k], "to"):
                        patch_list[k] = patch_list[k].to(device)
352

353
    def model_dtype(self):
354
355
        if hasattr(self.model, "get_dtype"):
            return self.model.get_dtype()
356

357
    def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
358
        p = set()
359
        for k in patches:
360
            if k in self.model_keys:
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
                p.add(k)
                current_patches = self.patches.get(k, [])
                current_patches.append((strength_patch, patches[k], strength_model))
                self.patches[k] = current_patches

        return list(p)

    def get_key_patches(self, filter_prefix=None):
        model_sd = self.model_state_dict()
        p = {}
        for k in model_sd:
            if filter_prefix is not None:
                if not k.startswith(filter_prefix):
                    continue
            if k in self.patches:
                p[k] = [model_sd[k]] + self.patches[k]
            else:
                p[k] = (model_sd[k],)
        return p
380

381
    def model_state_dict(self, filter_prefix=None):
382
383
        sd = self.model.state_dict()
        keys = list(sd.keys())
384
385
386
387
        if filter_prefix is not None:
            for k in keys:
                if not k.startswith(filter_prefix):
                    sd.pop(k)
388
389
        return sd

390
    def patch_model(self, device_to=None):
391
        model_sd = self.model_state_dict()
392
393
394
395
        for key in self.patches:
            if key not in model_sd:
                print("could not patch. key doesn't exist in model:", k)
                continue
396

397
            weight = model_sd[key]
398

399
            if key not in self.backup:
400
                self.backup[key] = weight.to(self.offload_device)
401

402
403
404
405
            if device_to is not None:
                temp_weight = weight.float().to(device_to, copy=True)
            else:
                temp_weight = weight.to(torch.float32, copy=True)
406
407
            out_weight = self.calculate_weight(self.patches[key], temp_weight, key).to(weight.dtype)
            set_attr(self.model, key, out_weight)
408
            del temp_weight
comfyanonymous's avatar
comfyanonymous committed
409
410
411
412
413

        if device_to is not None:
            self.model.to(device_to)
            self.current_device = device_to

414
        return self.model
comfyanonymous's avatar
comfyanonymous committed
415

416
417
418
419
420
421
422
423
424
425
426
427
428
429
    def calculate_weight(self, patches, weight, key):
        for p in patches:
            alpha = p[0]
            v = p[1]
            strength_model = p[2]

            if strength_model != 1.0:
                weight *= strength_model

            if isinstance(v, list):
                v = (self.calculate_weight(v[1:], v[0].clone(), key), )

            if len(v) == 1:
                w1 = v[0]
430
431
432
433
434
                if alpha != 0.0:
                    if w1.shape != weight.shape:
                        print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
                    else:
                        weight += alpha * w1.type(weight.dtype).to(weight.device)
435
            elif len(v) == 4: #lora/locon
comfyanonymous's avatar
comfyanonymous committed
436
437
                mat1 = v[0].float().to(weight.device)
                mat2 = v[1].float().to(weight.device)
438
439
440
441
                if v[2] is not None:
                    alpha *= v[2] / mat2.shape[0]
                if v[3] is not None:
                    #locon mid weights, hopefully the math is fine because I didn't properly test it
comfyanonymous's avatar
comfyanonymous committed
442
443
444
                    mat3 = v[3].float().to(weight.device)
                    final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
                    mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
445
446
447
448
                try:
                    weight += (alpha * torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1))).reshape(weight.shape).type(weight.dtype)
                except Exception as e:
                    print("ERROR", key, e)
449
450
451
452
453
454
455
456
457
458
459
460
461
            elif len(v) == 8: #lokr
                w1 = v[0]
                w2 = v[1]
                w1_a = v[3]
                w1_b = v[4]
                w2_a = v[5]
                w2_b = v[6]
                t2 = v[7]
                dim = None

                if w1 is None:
                    dim = w1_b.shape[0]
                    w1 = torch.mm(w1_a.float(), w1_b.float())
comfyanonymous's avatar
comfyanonymous committed
462
463
                else:
                    w1 = w1.float().to(weight.device)
464
465
466
467

                if w2 is None:
                    dim = w2_b.shape[0]
                    if t2 is None:
comfyanonymous's avatar
comfyanonymous committed
468
                        w2 = torch.mm(w2_a.float().to(weight.device), w2_b.float().to(weight.device))
469
                    else:
comfyanonymous's avatar
comfyanonymous committed
470
471
472
                        w2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float().to(weight.device), w2_b.float().to(weight.device), w2_a.float().to(weight.device))
                else:
                    w2 = w2.float().to(weight.device)
473
474
475
476
477
478

                if len(w2.shape) == 4:
                    w1 = w1.unsqueeze(2).unsqueeze(2)
                if v[2] is not None and dim is not None:
                    alpha *= v[2] / dim

479
480
481
482
                try:
                    weight += alpha * torch.kron(w1, w2).reshape(weight.shape).type(weight.dtype)
                except Exception as e:
                    print("ERROR", key, e)
483
484
485
486
487
488
489
490
491
492
            else: #loha
                w1a = v[0]
                w1b = v[1]
                if v[2] is not None:
                    alpha *= v[2] / w1b.shape[0]
                w2a = v[3]
                w2b = v[4]
                if v[5] is not None: #cp decomposition
                    t1 = v[5]
                    t2 = v[6]
comfyanonymous's avatar
comfyanonymous committed
493
494
                    m1 = torch.einsum('i j k l, j r, i p -> p r k l', t1.float().to(weight.device), w1b.float().to(weight.device), w1a.float().to(weight.device))
                    m2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float().to(weight.device), w2b.float().to(weight.device), w2a.float().to(weight.device))
495
                else:
comfyanonymous's avatar
comfyanonymous committed
496
497
                    m1 = torch.mm(w1a.float().to(weight.device), w1b.float().to(weight.device))
                    m2 = torch.mm(w2a.float().to(weight.device), w2b.float().to(weight.device))
498

499
500
501
502
503
                try:
                    weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype)
                except Exception as e:
                    print("ERROR", key, e)

504
        return weight
505

comfyanonymous's avatar
comfyanonymous committed
506
    def unpatch_model(self, device_to=None):
507
        keys = list(self.backup.keys())
508

509
        for k in keys:
510
            set_attr(self.model, k, self.backup[k])
511

512
513
        self.backup = {}

comfyanonymous's avatar
comfyanonymous committed
514
515
516
517
518
        if device_to is not None:
            self.model.to(device_to)
            self.current_device = device_to


519
def load_lora_for_models(model, clip, lora, strength_model, strength_clip):
520
521
    key_map = model_lora_keys_unet(model.model)
    key_map = model_lora_keys_clip(clip.cond_stage_model, key_map)
522
    loaded = load_lora(lora, key_map)
523
524
525
526
527
528
529
530
531
532
533
    new_modelpatcher = model.clone()
    k = new_modelpatcher.add_patches(loaded, strength_model)
    new_clip = clip.clone()
    k1 = new_clip.add_patches(loaded, strength_clip)
    k = set(k)
    k1 = set(k1)
    for x in loaded:
        if (x not in k) and (x not in k1):
            print("NOT LOADED", x)

    return (new_modelpatcher, new_clip)
comfyanonymous's avatar
comfyanonymous committed
534
535
536


class CLIP:
537
    def __init__(self, target=None, embedding_directory=None, no_init=False):
538
539
        if no_init:
            return
comfyanonymous's avatar
comfyanonymous committed
540
        params = target.params.copy()
541
542
        clip = target.clip
        tokenizer = target.tokenizer
543

544
545
        load_device = model_management.text_encoder_device()
        offload_device = model_management.text_encoder_offload_device()
comfyanonymous's avatar
comfyanonymous committed
546
        params['device'] = load_device
547
        self.cond_stage_model = clip(**(params))
548
549
550
        #TODO: make sure this doesn't have a quality loss before enabling.
        # if model_management.should_use_fp16(load_device):
        #     self.cond_stage_model.half()
551
552

        self.cond_stage_model = self.cond_stage_model.to()
553

554
        self.tokenizer = tokenizer(embedding_directory=embedding_directory)
555
        self.patcher = ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device)
556
        self.layer_idx = None
557
558
559
560
561
562

    def clone(self):
        n = CLIP(no_init=True)
        n.patcher = self.patcher.clone()
        n.cond_stage_model = self.cond_stage_model
        n.tokenizer = self.tokenizer
comfyanonymous's avatar
comfyanonymous committed
563
        n.layer_idx = self.layer_idx
564
565
        return n

566
    def load_from_state_dict(self, sd):
567
        self.cond_stage_model.load_sd(sd)
568

569
570
    def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
        return self.patcher.add_patches(patches, strength_patch, strength_model)
comfyanonymous's avatar
comfyanonymous committed
571

572
    def clip_layer(self, layer_idx):
comfyanonymous's avatar
comfyanonymous committed
573
        self.layer_idx = layer_idx
574

575
576
    def tokenize(self, text, return_word_ids=False):
        return self.tokenizer.tokenize_with_weights(text, return_word_ids)
BlenderNeko's avatar
BlenderNeko committed
577

578
    def encode_from_tokens(self, tokens, return_pooled=False):
579
580
        if self.layer_idx is not None:
            self.cond_stage_model.clip_layer(self.layer_idx)
581
582
        else:
            self.cond_stage_model.reset_clip_layer()
583

584
        self.load_model()
585
        cond, pooled = self.cond_stage_model.encode_token_weights(tokens)
586
        if return_pooled:
587
588
            return cond, pooled
        return cond
comfyanonymous's avatar
comfyanonymous committed
589

590
    def encode(self, text):
591
        tokens = self.tokenize(text)
592
593
        return self.encode_from_tokens(tokens)

594
595
    def load_sd(self, sd):
        return self.cond_stage_model.load_sd(sd)
596

597
598
599
    def get_sd(self):
        return self.cond_stage_model.state_dict()

600
601
602
    def load_model(self):
        model_management.load_model_gpu(self.patcher)
        return self.patcher
603

604
605
606
    def get_key_patches(self):
        return self.patcher.get_key_patches()

comfyanonymous's avatar
comfyanonymous committed
607
class VAE:
608
    def __init__(self, ckpt_path=None, device=None, config=None):
comfyanonymous's avatar
comfyanonymous committed
609
610
611
        if config is None:
            #default SD1.x/SD2.x VAE parameters
            ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
612
            self.first_stage_model = AutoencoderKL(ddconfig, {'target': 'torch.nn.Identity'}, 4, monitor="val/rec_loss")
comfyanonymous's avatar
comfyanonymous committed
613
        else:
614
            self.first_stage_model = AutoencoderKL(**(config['params']))
comfyanonymous's avatar
comfyanonymous committed
615
        self.first_stage_model = self.first_stage_model.eval()
616
617
618
619
620
621
        if ckpt_path is not None:
            sd = utils.load_torch_file(ckpt_path)
            if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format
                sd = diffusers_convert.convert_vae_state_dict(sd)
            self.first_stage_model.load_state_dict(sd, strict=False)

622
        if device is None:
623
            device = model_management.vae_device()
comfyanonymous's avatar
comfyanonymous committed
624
        self.device = device
625
        self.offload_device = model_management.vae_offload_device()
626
627
        self.vae_dtype = model_management.vae_dtype()
        self.first_stage_model.to(self.vae_dtype)
comfyanonymous's avatar
comfyanonymous committed
628

629
    def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
pythongosssss's avatar
pythongosssss committed
630
        steps = samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
comfyanonymous's avatar
comfyanonymous committed
631
632
        steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
        steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
pythongosssss's avatar
pythongosssss committed
633
        pbar = utils.ProgressBar(steps)
634

635
        decode_fn = lambda a: (self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)) + 1.0).float()
636
        output = torch.clamp((
637
638
639
            (utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8, pbar = pbar) +
            utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8, pbar = pbar) +
             utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8, pbar = pbar))
640
641
642
            / 3.0) / 2.0, min=0.0, max=1.0)
        return output

643
644
645
646
647
648
    def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
        steps = pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
        steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
        steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
        pbar = utils.ProgressBar(steps)

649
        encode_fn = lambda a: self.first_stage_model.encode(2. * a.to(self.vae_dtype).to(self.device) - 1.).sample().float()
650
651
652
653
654
655
        samples = utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
        samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
        samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
        samples /= 3.0
        return samples

656
    def decode(self, samples_in):
comfyanonymous's avatar
comfyanonymous committed
657
        self.first_stage_model = self.first_stage_model.to(self.device)
658
        try:
659
            memory_used = (2562 * samples_in.shape[2] * samples_in.shape[3] * 64) * 1.7
comfyanonymous's avatar
comfyanonymous committed
660
            model_management.free_memory(memory_used, self.device)
661
            free_memory = model_management.get_free_memory(self.device)
comfyanonymous's avatar
comfyanonymous committed
662
            batch_number = int(free_memory / memory_used)
663
664
665
666
            batch_number = max(1, batch_number)

            pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * 8), round(samples_in.shape[3] * 8)), device="cpu")
            for x in range(0, samples_in.shape[0], batch_number):
667
668
                samples = samples_in[x:x+batch_number].to(self.vae_dtype).to(self.device)
                pixel_samples[x:x+batch_number] = torch.clamp((self.first_stage_model.decode(samples) + 1.0) / 2.0, min=0.0, max=1.0).cpu().float()
669
670
671
672
        except model_management.OOM_EXCEPTION as e:
            print("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
            pixel_samples = self.decode_tiled_(samples_in)

673
        self.first_stage_model = self.first_stage_model.to(self.offload_device)
comfyanonymous's avatar
comfyanonymous committed
674
675
676
        pixel_samples = pixel_samples.cpu().movedim(1,-1)
        return pixel_samples

677
    def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16):
678
        self.first_stage_model = self.first_stage_model.to(self.device)
679
        output = self.decode_tiled_(samples, tile_x, tile_y, overlap)
680
        self.first_stage_model = self.first_stage_model.to(self.offload_device)
681
682
        return output.movedim(1,-1)

comfyanonymous's avatar
comfyanonymous committed
683
684
    def encode(self, pixel_samples):
        self.first_stage_model = self.first_stage_model.to(self.device)
685
686
        pixel_samples = pixel_samples.movedim(-1,1)
        try:
687
            memory_used = (2078 * pixel_samples.shape[2] * pixel_samples.shape[3]) * 1.7 #NOTE: this constant along with the one in the decode above are estimated from the mem usage for the VAE and could change.
comfyanonymous's avatar
comfyanonymous committed
688
            model_management.free_memory(memory_used, self.device)
689
            free_memory = model_management.get_free_memory(self.device)
comfyanonymous's avatar
comfyanonymous committed
690
            batch_number = int(free_memory / memory_used)
691
            batch_number = max(1, batch_number)
692
693
            samples = torch.empty((pixel_samples.shape[0], 4, round(pixel_samples.shape[2] // 8), round(pixel_samples.shape[3] // 8)), device="cpu")
            for x in range(0, pixel_samples.shape[0], batch_number):
694
695
                pixels_in = (2. * pixel_samples[x:x+batch_number] - 1.).to(self.vae_dtype).to(self.device)
                samples[x:x+batch_number] = self.first_stage_model.encode(pixels_in).sample().cpu().float()
696

697
698
699
700
        except model_management.OOM_EXCEPTION as e:
            print("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.")
            samples = self.encode_tiled_(pixel_samples)

701
        self.first_stage_model = self.first_stage_model.to(self.offload_device)
comfyanonymous's avatar
comfyanonymous committed
702
703
        return samples

comfyanonymous's avatar
comfyanonymous committed
704
705
    def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
        self.first_stage_model = self.first_stage_model.to(self.device)
706
707
        pixel_samples = pixel_samples.movedim(-1,1)
        samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap)
708
        self.first_stage_model = self.first_stage_model.to(self.offload_device)
comfyanonymous's avatar
comfyanonymous committed
709
        return samples
710

711
712
713
714
    def get_sd(self):
        return self.first_stage_model.state_dict()


BlenderNeko's avatar
BlenderNeko committed
715
def broadcast_image_to(tensor, target_batch_size, batched_number):
716
    current_batch_size = tensor.shape[0]
717
    #print(current_batch_size, target_batch_size)
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
    if current_batch_size == 1:
        return tensor

    per_batch = target_batch_size // batched_number
    tensor = tensor[:per_batch]

    if per_batch > tensor.shape[0]:
        tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)

    current_batch_size = tensor.shape[0]
    if current_batch_size == target_batch_size:
        return tensor
    else:
        return torch.cat([tensor] * batched_number, dim=0)

733
734
class ControlBase:
    def __init__(self, device=None):
comfyanonymous's avatar
comfyanonymous committed
735
736
        self.cond_hint_original = None
        self.cond_hint = None
737
        self.strength = 1.0
738
739
740
        self.timestep_percent_range = (1.0, 0.0)
        self.timestep_range = None

741
742
        if device is None:
            device = model_management.get_torch_device()
743
        self.device = device
comfyanonymous's avatar
comfyanonymous committed
744
        self.previous_controlnet = None
745
        self.global_average_pooling = False
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780

    def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(1.0, 0.0)):
        self.cond_hint_original = cond_hint
        self.strength = strength
        self.timestep_percent_range = timestep_percent_range
        return self

    def pre_run(self, model, percent_to_timestep_function):
        self.timestep_range = (percent_to_timestep_function(self.timestep_percent_range[0]), percent_to_timestep_function(self.timestep_percent_range[1]))
        if self.previous_controlnet is not None:
            self.previous_controlnet.pre_run(model, percent_to_timestep_function)

    def set_previous_controlnet(self, controlnet):
        self.previous_controlnet = controlnet
        return self

    def cleanup(self):
        if self.previous_controlnet is not None:
            self.previous_controlnet.cleanup()
        if self.cond_hint is not None:
            del self.cond_hint
            self.cond_hint = None
        self.timestep_range = None

    def get_models(self):
        out = []
        if self.previous_controlnet is not None:
            out += self.previous_controlnet.get_models()
        return out

    def copy_to(self, c):
        c.cond_hint_original = self.cond_hint_original
        c.strength = self.strength
        c.timestep_percent_range = self.timestep_percent_range

781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
    def control_merge(self, control_input, control_output, control_prev, output_dtype):
        out = {'input':[], 'middle':[], 'output': []}

        if control_input is not None:
            for i in range(len(control_input)):
                key = 'input'
                x = control_input[i]
                if x is not None:
                    x *= self.strength
                    if x.dtype != output_dtype:
                        x = x.to(output_dtype)
                out[key].insert(0, x)

        if control_output is not None:
            for i in range(len(control_output)):
                if i == (len(control_output) - 1):
                    key = 'middle'
                    index = 0
                else:
                    key = 'output'
                    index = i
                x = control_output[i]
                if x is not None:
                    if self.global_average_pooling:
                        x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])

                    x *= self.strength
                    if x.dtype != output_dtype:
                        x = x.to(output_dtype)

                out[key].append(x)
        if control_prev is not None:
            for x in ['input', 'middle', 'output']:
                o = out[x]
                for i in range(len(control_prev[x])):
                    prev_val = control_prev[x][i]
                    if i >= len(o):
                        o.append(prev_val)
                    elif prev_val is not None:
                        if o[i] is None:
                            o[i] = prev_val
                        else:
                            o[i] += prev_val
        return out

826
827
828
829
class ControlNet(ControlBase):
    def __init__(self, control_model, global_average_pooling=False, device=None):
        super().__init__(device)
        self.control_model = control_model
comfyanonymous's avatar
comfyanonymous committed
830
        self.control_model_wrapped = ModelPatcher(self.control_model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device())
831
        self.global_average_pooling = global_average_pooling
comfyanonymous's avatar
comfyanonymous committed
832

833
    def get_control(self, x_noisy, t, cond, batched_number):
comfyanonymous's avatar
comfyanonymous committed
834
835
        control_prev = None
        if self.previous_controlnet is not None:
836
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
comfyanonymous's avatar
comfyanonymous committed
837

838
839
840
841
842
843
844
        if self.timestep_range is not None:
            if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
                if control_prev is not None:
                    return control_prev
                else:
                    return {}

845
        output_dtype = x_noisy.dtype
comfyanonymous's avatar
comfyanonymous committed
846
847
848
849
        if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
            self.cond_hint = None
BlenderNeko's avatar
BlenderNeko committed
850
851
852
            self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(self.control_model.dtype).to(self.device)
        if x_noisy.shape[0] != self.cond_hint.shape[0]:
            self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
853
854


855
856
857
858
859
        context = torch.cat(cond['c_crossattn'], 1)
        y = cond.get('c_adm', None)
        if y is not None:
            y = y.to(self.control_model.dtype)
        control = self.control_model(x=x_noisy.to(self.control_model.dtype), hint=self.cond_hint, timesteps=t, context=context.to(self.control_model.dtype), y=y)
860
        return self.control_merge(None, control, control_prev, output_dtype)
comfyanonymous's avatar
comfyanonymous committed
861
862

    def copy(self):
863
        c = ControlNet(self.control_model, global_average_pooling=self.global_average_pooling)
864
        self.copy_to(c)
comfyanonymous's avatar
comfyanonymous committed
865
866
        return c

867
868
    def get_models(self):
        out = super().get_models()
comfyanonymous's avatar
comfyanonymous committed
869
        out.append(self.control_model_wrapped)
870
871
        return out

comfyanonymous's avatar
comfyanonymous committed
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
class ControlLoraOps:
    class Linear(torch.nn.Module):
        def __init__(self, in_features: int, out_features: int, bias: bool = True,
                    device=None, dtype=None) -> None:
            factory_kwargs = {'device': device, 'dtype': dtype}
            super().__init__()
            self.in_features = in_features
            self.out_features = out_features
            self.weight = None
            self.up = None
            self.down = None
            self.bias = None

        def forward(self, input):
            if self.up is not None:
comfyanonymous's avatar
comfyanonymous committed
887
                return torch.nn.functional.linear(input, self.weight.to(input.device) + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), self.bias)
comfyanonymous's avatar
comfyanonymous committed
888
            else:
comfyanonymous's avatar
comfyanonymous committed
889
                return torch.nn.functional.linear(input, self.weight.to(input.device), self.bias)
comfyanonymous's avatar
comfyanonymous committed
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925

    class Conv2d(torch.nn.Module):
        def __init__(
            self,
            in_channels,
            out_channels,
            kernel_size,
            stride=1,
            padding=0,
            dilation=1,
            groups=1,
            bias=True,
            padding_mode='zeros',
            device=None,
            dtype=None
        ):
            super().__init__()
            self.in_channels = in_channels
            self.out_channels = out_channels
            self.kernel_size = kernel_size
            self.stride = stride
            self.padding = padding
            self.dilation = dilation
            self.transposed = False
            self.output_padding = 0
            self.groups = groups
            self.padding_mode = padding_mode

            self.weight = None
            self.bias = None
            self.up = None
            self.down = None


        def forward(self, input):
            if self.up is not None:
comfyanonymous's avatar
comfyanonymous committed
926
                return torch.nn.functional.conv2d(input, self.weight.to(input.device) + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), self.bias, self.stride, self.padding, self.dilation, self.groups)
comfyanonymous's avatar
comfyanonymous committed
927
            else:
comfyanonymous's avatar
comfyanonymous committed
928
                return torch.nn.functional.conv2d(input, self.weight.to(input.device), self.bias, self.stride, self.padding, self.dilation, self.groups)
comfyanonymous's avatar
comfyanonymous committed
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949

    def conv_nd(self, dims, *args, **kwargs):
        if dims == 2:
            return self.Conv2d(*args, **kwargs)
        else:
            raise ValueError(f"unsupported dimensions: {dims}")


class ControlLora(ControlNet):
    def __init__(self, control_weights, global_average_pooling=False, device=None):
        ControlBase.__init__(self, device)
        self.control_weights = control_weights
        self.global_average_pooling = global_average_pooling

    def pre_run(self, model, percent_to_timestep_function):
        super().pre_run(model, percent_to_timestep_function)
        controlnet_config = model.model_config.unet_config.copy()
        controlnet_config.pop("out_channels")
        controlnet_config["hint_channels"] = self.control_weights["input_hint_block.0.weight"].shape[1]
        controlnet_config["operations"] = ControlLoraOps()
        self.control_model = cldm.ControlNet(**controlnet_config)
950
951
        dtype = model.get_dtype()
        self.control_model.to(dtype)
comfyanonymous's avatar
comfyanonymous committed
952
953
954
955
956
957
        self.control_model.to(model_management.get_torch_device())
        diffusion_model = model.diffusion_model
        sd = diffusion_model.state_dict()
        cm = self.control_model.state_dict()

        for k in sd:
comfyanonymous's avatar
comfyanonymous committed
958
959
960
961
962
963
            weight = sd[k]
            if weight.device == torch.device("meta"): #lowvram NOTE: this depends on the inner working of the accelerate library so it might break.
                key_split = k.split('.')              # I have no idea why they don't just leave the weight there instead of using the meta device.
                op = get_attr(diffusion_model, '.'.join(key_split[:-1]))
                weight = op._hf_hook.weights_map[key_split[-1]]

comfyanonymous's avatar
comfyanonymous committed
964
            try:
comfyanonymous's avatar
comfyanonymous committed
965
                set_attr(self.control_model, k, weight)
comfyanonymous's avatar
comfyanonymous committed
966
967
968
969
970
            except:
                pass

        for k in self.control_weights:
            if k not in {"lora_controlnet"}:
971
                set_attr(self.control_model, k, self.control_weights[k].to(dtype).to(model_management.get_torch_device()))
comfyanonymous's avatar
comfyanonymous committed
972
973
974
975
976
977
978
979
980
981
982
983
984
985

    def copy(self):
        c = ControlLora(self.control_weights, global_average_pooling=self.global_average_pooling)
        self.copy_to(c)
        return c

    def cleanup(self):
        del self.control_model
        self.control_model = None
        super().cleanup()

    def get_models(self):
        out = ControlBase.get_models(self)
        return out
986

987
def load_controlnet(ckpt_path, model=None):
988
    controlnet_data = utils.load_torch_file(ckpt_path, safe_load=True)
comfyanonymous's avatar
comfyanonymous committed
989
990
    if "lora_controlnet" in controlnet_data:
        return ControlLora(controlnet_data)
991
992
993
994

    controlnet_config = None
    if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format
        use_fp16 = model_management.should_use_fp16()
995
        controlnet_config = model_detection.unet_config_from_diffusers_unet(controlnet_data, use_fp16)
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
        diffusers_keys = utils.unet_to_diffusers(controlnet_config)
        diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
        diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"

        count = 0
        loop = True
        while loop:
            suffix = [".weight", ".bias"]
            for s in suffix:
                k_in = "controlnet_down_blocks.{}{}".format(count, s)
                k_out = "zero_convs.{}.0{}".format(count, s)
                if k_in not in controlnet_data:
                    loop = False
                    break
                diffusers_keys[k_in] = k_out
            count += 1

        count = 0
        loop = True
        while loop:
            suffix = [".weight", ".bias"]
            for s in suffix:
                if count == 0:
                    k_in = "controlnet_cond_embedding.conv_in{}".format(s)
                else:
                    k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s)
                k_out = "input_hint_block.{}{}".format(count * 2, s)
                if k_in not in controlnet_data:
                    k_in = "controlnet_cond_embedding.conv_out{}".format(s)
                    loop = False
                diffusers_keys[k_in] = k_out
            count += 1

        new_sd = {}
        for k in diffusers_keys:
            if k in controlnet_data:
                new_sd[diffusers_keys[k]] = controlnet_data.pop(k)

1034
1035
1036
        leftover_keys = controlnet_data.keys()
        if len(leftover_keys) > 0:
            print("leftover keys:", leftover_keys)
1037
1038
        controlnet_data = new_sd

1039
    pth_key = 'control_model.zero_convs.0.0.weight'
comfyanonymous's avatar
comfyanonymous committed
1040
    pth = False
1041
    key = 'zero_convs.0.0.weight'
comfyanonymous's avatar
comfyanonymous committed
1042
1043
1044
    if pth_key in controlnet_data:
        pth = True
        key = pth_key
1045
        prefix = "control_model."
comfyanonymous's avatar
comfyanonymous committed
1046
    elif key in controlnet_data:
1047
        prefix = ""
comfyanonymous's avatar
comfyanonymous committed
1048
    else:
1049
1050
1051
1052
        net = load_t2i_adapter(controlnet_data)
        if net is None:
            print("error checkpoint does not contain controlnet or t2i adapter data", ckpt_path)
        return net
comfyanonymous's avatar
comfyanonymous committed
1053

1054
1055
1056
    if controlnet_config is None:
        use_fp16 = model_management.should_use_fp16()
        controlnet_config = model_detection.model_config_from_unet(controlnet_data, prefix, use_fp16).unet_config
1057
    controlnet_config.pop("out_channels")
1058
    controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
1059
1060
    control_model = cldm.ControlNet(**controlnet_config)

comfyanonymous's avatar
comfyanonymous committed
1061
    if pth:
1062
1063
        if 'difference' in controlnet_data:
            if model is not None:
1064
1065
                model_management.load_models_gpu([model])
                model_sd = model.model_state_dict()
1066
1067
1068
                for x in controlnet_data:
                    c_m = "control_model."
                    if x.startswith(c_m):
comfyanonymous's avatar
comfyanonymous committed
1069
                        sd_key = "diffusion_model.{}".format(x[len(c_m):])
1070
1071
1072
1073
1074
1075
                        if sd_key in model_sd:
                            cd = controlnet_data[x]
                            cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
            else:
                print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")

comfyanonymous's avatar
comfyanonymous committed
1076
1077
1078
1079
        class WeightsLoader(torch.nn.Module):
            pass
        w = WeightsLoader()
        w.control_model = control_model
1080
        missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
comfyanonymous's avatar
comfyanonymous committed
1081
    else:
1082
1083
        missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
    print(missing, unexpected)
comfyanonymous's avatar
comfyanonymous committed
1084

1085
1086
1087
    if use_fp16:
        control_model = control_model.half()

1088
1089
1090
1091
1092
    global_average_pooling = False
    if ckpt_path.endswith("_shuffle.pth") or ckpt_path.endswith("_shuffle.safetensors") or ckpt_path.endswith("_shuffle_fp16.safetensors"): #TODO: smarter way of enabling global_average_pooling
        global_average_pooling = True

    control = ControlNet(control_model, global_average_pooling=global_average_pooling)
comfyanonymous's avatar
comfyanonymous committed
1093
1094
    return control

1095
class T2IAdapter(ControlBase):
1096
    def __init__(self, t2i_model, channels_in, device=None):
1097
        super().__init__(device)
1098
1099
1100
1101
        self.t2i_model = t2i_model
        self.channels_in = channels_in
        self.control_input = None

1102
    def get_control(self, x_noisy, t, cond, batched_number):
1103
1104
        control_prev = None
        if self.previous_controlnet is not None:
1105
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
1106

1107
1108
1109
1110
1111
1112
1113
        if self.timestep_range is not None:
            if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
                if control_prev is not None:
                    return control_prev
                else:
                    return {}

1114
1115
1116
        if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
BlenderNeko's avatar
BlenderNeko committed
1117
            self.control_input = None
1118
            self.cond_hint = None
BlenderNeko's avatar
BlenderNeko committed
1119
            self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").float().to(self.device)
1120
1121
            if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
                self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
BlenderNeko's avatar
BlenderNeko committed
1122
1123
1124
        if x_noisy.shape[0] != self.cond_hint.shape[0]:
            self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
        if self.control_input is None:
1125
            self.t2i_model.to(x_noisy.dtype)
1126
            self.t2i_model.to(self.device)
1127
            self.control_input = self.t2i_model(self.cond_hint.to(x_noisy.dtype))
1128
1129
            self.t2i_model.cpu()

1130
        control_input = list(map(lambda a: None if a is None else a.clone(), self.control_input))
comfyanonymous's avatar
comfyanonymous committed
1131
1132
1133
1134
1135
        mid = None
        if self.t2i_model.xl == True:
            mid = control_input[-1:]
            control_input = control_input[:-1]
        return self.control_merge(control_input, mid, control_prev, x_noisy.dtype)
1136
1137
1138

    def copy(self):
        c = T2IAdapter(self.t2i_model, self.channels_in)
1139
        self.copy_to(c)
1140
1141
        return c

1142
def load_t2i_adapter(t2i_data):
1143
    keys = t2i_data.keys()
1144
1145
1146
    if 'adapter' in keys:
        t2i_data = t2i_data['adapter']
        keys = t2i_data.keys()
1147
    if "body.0.in_conv.weight" in keys:
1148
1149
        cin = t2i_data['body.0.in_conv.weight'].shape[1]
        model_ad = adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
1150
    elif 'conv_in.weight' in keys:
1151
        cin = t2i_data['conv_in.weight'].shape[1]
1152
1153
1154
1155
1156
1157
        channel = t2i_data['conv_in.weight'].shape[0]
        ksize = t2i_data['body.0.block2.weight'].shape[2]
        use_conv = False
        down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys))
        if len(down_opts) > 0:
            use_conv = True
comfyanonymous's avatar
comfyanonymous committed
1158
1159
1160
1161
        xl = False
        if cin == 256:
            xl = True
        model_ad = adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv, xl=xl)
1162
1163
    else:
        return None
comfyanonymous's avatar
comfyanonymous committed
1164
1165
1166
1167
1168
1169
1170
1171
    missing, unexpected = model_ad.load_state_dict(t2i_data)
    if len(missing) > 0:
        print("t2i missing", missing)

    if len(unexpected) > 0:
        print("t2i unexpected", unexpected)

    return T2IAdapter(model_ad, model_ad.input_channels)
comfyanonymous's avatar
comfyanonymous committed
1172

1173
1174
1175
1176
1177
1178
1179
1180
1181
1182

class StyleModel:
    def __init__(self, model, device="cpu"):
        self.model = model

    def get_cond(self, input):
        return self.model(input.last_hidden_state)


def load_style_model(ckpt_path):
1183
    model_data = utils.load_torch_file(ckpt_path, safe_load=True)
1184
1185
1186
1187
1188
1189
1190
1191
1192
    keys = model_data.keys()
    if "style_embedding" in keys:
        model = adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
    else:
        raise Exception("invalid style model {}".format(ckpt_path))
    model.load_state_dict(model_data)
    return StyleModel(model)


1193
1194
1195
1196
1197
def load_clip(ckpt_paths, embedding_directory=None):
    clip_data = []
    for p in ckpt_paths:
        clip_data.append(utils.load_torch_file(p, safe_load=True))

comfyanonymous's avatar
comfyanonymous committed
1198
1199
1200
    class EmptyClass:
        pass

1201
1202
1203
1204
    for i in range(len(clip_data)):
        if "transformer.resblocks.0.ln_1.weight" in clip_data[i]:
            clip_data[i] = utils.transformers_convert(clip_data[i], "", "text_model.", 32)

comfyanonymous's avatar
comfyanonymous committed
1205
1206
    clip_target = EmptyClass()
    clip_target.params = {}
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
    if len(clip_data) == 1:
        if "text_model.encoder.layers.30.mlp.fc1.weight" in clip_data[0]:
            clip_target.clip = sdxl_clip.SDXLRefinerClipModel
            clip_target.tokenizer = sdxl_clip.SDXLTokenizer
        elif "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data[0]:
            clip_target.clip = sd2_clip.SD2ClipModel
            clip_target.tokenizer = sd2_clip.SD2Tokenizer
        else:
            clip_target.clip = sd1_clip.SD1ClipModel
            clip_target.tokenizer = sd1_clip.SD1Tokenizer
1217
    else:
1218
1219
        clip_target.clip = sdxl_clip.SDXLClipModel
        clip_target.tokenizer = sdxl_clip.SDXLTokenizer
comfyanonymous's avatar
comfyanonymous committed
1220
1221

    clip = CLIP(clip_target, embedding_directory=embedding_directory)
1222
1223
1224
1225
1226
1227
1228
    for c in clip_data:
        m, u = clip.load_sd(c)
        if len(m) > 0:
            print("clip missing:", m)

        if len(u) > 0:
            print("clip unexpected:", u)
1229
    return clip
comfyanonymous's avatar
comfyanonymous committed
1230

1231
def load_gligen(ckpt_path):
1232
    data = utils.load_torch_file(ckpt_path, safe_load=True)
1233
1234
1235
    model = gligen.load_gligen(data)
    if model_management.should_use_fp16():
        model = model.half()
comfyanonymous's avatar
comfyanonymous committed
1236
    return ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device())
1237

comfyanonymous's avatar
comfyanonymous committed
1238
def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None):
1239
    #TODO: this function is a mess and should be removed eventually
comfyanonymous's avatar
comfyanonymous committed
1240
1241
1242
    if config is None:
        with open(config_path, 'r') as stream:
            config = yaml.safe_load(stream)
comfyanonymous's avatar
comfyanonymous committed
1243
1244
1245
1246
1247
    model_config_params = config['model']['params']
    clip_config = model_config_params['cond_stage_config']
    scale_factor = model_config_params['scale_factor']
    vae_config = model_config_params['first_stage_config']

1248
1249
1250
    fp16 = False
    if "unet_config" in model_config_params:
        if "params" in model_config_params["unet_config"]:
comfyanonymous's avatar
comfyanonymous committed
1251
1252
1253
1254
1255
1256
1257
1258
            unet_config = model_config_params["unet_config"]["params"]
            if "use_fp16" in unet_config:
                fp16 = unet_config["use_fp16"]

    noise_aug_config = None
    if "noise_aug_config" in model_config_params:
        noise_aug_config = model_config_params["noise_aug_config"]

1259
    model_type = model_base.ModelType.EPS
comfyanonymous's avatar
comfyanonymous committed
1260
1261
1262

    if "parameterization" in model_config_params:
        if model_config_params["parameterization"] == "v":
1263
            model_type = model_base.ModelType.V_PREDICTION
1264

comfyanonymous's avatar
comfyanonymous committed
1265
1266
1267
1268
1269
1270
    clip = None
    vae = None

    class WeightsLoader(torch.nn.Module):
        pass

1271
1272
    if state_dict is None:
        state_dict = utils.load_torch_file(ckpt_path)
comfyanonymous's avatar
comfyanonymous committed
1273

1274
1275
1276
1277
1278
1279
1280
1281
    class EmptyClass:
        pass

    model_config = EmptyClass()
    model_config.unet_config = unet_config
    from . import latent_formats
    model_config.latent_format = latent_formats.SD15(scale_factor=scale_factor)

comfyanonymous's avatar
comfyanonymous committed
1282
    if config['model']["target"].endswith("LatentInpaintDiffusion"):
1283
        model = model_base.SDInpaint(model_config, model_type=model_type)
comfyanonymous's avatar
comfyanonymous committed
1284
    elif config['model']["target"].endswith("ImageEmbeddingConditionedLatentDiffusion"):
1285
        model = model_base.SD21UNCLIP(model_config, noise_aug_config["params"], model_type=model_type)
comfyanonymous's avatar
comfyanonymous committed
1286
    else:
1287
        model = model_base.BaseModel(model_config, model_type=model_type)
comfyanonymous's avatar
comfyanonymous committed
1288

1289
1290
1291
    if fp16:
        model = model.half()

1292
1293
    offload_device = model_management.unet_offload_device()
    model = model.to(offload_device)
1294
1295
1296
1297
    model.load_model_weights(state_dict, "model.diffusion_model.")

    if output_vae:
        w = WeightsLoader()
1298
        vae = VAE(config=vae_config)
1299
1300
1301
1302
1303
1304
        w.first_stage_model = vae.first_stage_model
        load_model_weights(w, state_dict)

    if output_clip:
        w = WeightsLoader()
        clip_target = EmptyClass()
1305
        clip_target.params = clip_config.get("params", {})
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
        if clip_config["target"].endswith("FrozenOpenCLIPEmbedder"):
            clip_target.clip = sd2_clip.SD2ClipModel
            clip_target.tokenizer = sd2_clip.SD2Tokenizer
        elif clip_config["target"].endswith("FrozenCLIPEmbedder"):
            clip_target.clip = sd1_clip.SD1ClipModel
            clip_target.tokenizer = sd1_clip.SD1Tokenizer
        clip = CLIP(clip_target, embedding_directory=embedding_directory)
        w.cond_stage_model = clip.cond_stage_model
        load_clip_weights(w, state_dict)

1316
    return (ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device), clip, vae)
1317

1318
1319
1320
1321
1322
1323
def calculate_parameters(sd, prefix):
    params = 0
    for k in sd.keys():
        if k.startswith(prefix):
            params += sd[k].nelement()
    return params
1324

1325
1326
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None):
    sd = utils.load_torch_file(ckpt_path)
1327
1328
    sd_keys = sd.keys()
    clip = None
1329
    clipvision = None
1330
    vae = None
1331
1332
    model = None
    clip_target = None
1333

1334
1335
    parameters = calculate_parameters(sd, "model.diffusion_model.")
    fp16 = model_management.should_use_fp16(model_params=parameters)
1336

1337
1338
1339
    class WeightsLoader(torch.nn.Module):
        pass

1340
1341
1342
    model_config = model_detection.model_config_from_unet(sd, "model.diffusion_model.", fp16)
    if model_config is None:
        raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path))
1343

1344
    if model_config.clip_vision_prefix is not None:
1345
        if output_clipvision:
1346
            clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True)
1347

comfyanonymous's avatar
comfyanonymous committed
1348
1349
1350
1351
1352
    dtype = torch.float32
    if fp16:
        dtype = torch.float16

    inital_load_device = model_management.unet_inital_load_device(parameters, dtype)
1353
    offload_device = model_management.unet_offload_device()
comfyanonymous's avatar
comfyanonymous committed
1354
    model = model_config.get_model(sd, "model.diffusion_model.", device=inital_load_device)
1355
    model.load_model_weights(sd, "model.diffusion_model.")
1356

1357
    if output_vae:
1358
        vae = VAE()
1359
1360
1361
        w = WeightsLoader()
        w.first_stage_model = vae.first_stage_model
        load_model_weights(w, sd)
1362

1363
1364
1365
1366
1367
1368
1369
    if output_clip:
        w = WeightsLoader()
        clip_target = model_config.clip_target()
        clip = CLIP(clip_target, embedding_directory=embedding_directory)
        w.cond_stage_model = clip.cond_stage_model
        sd = model_config.process_clip_state_dict(sd)
        load_model_weights(w, sd)
comfyanonymous's avatar
comfyanonymous committed
1370

1371
1372
1373
    left_over = sd.keys()
    if len(left_over) > 0:
        print("left over keys:", left_over)
1374

comfyanonymous's avatar
comfyanonymous committed
1375
1376
1377
1378
1379
1380
    model_patcher = ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device(), current_device=inital_load_device)
    if inital_load_device != torch.device("cpu"):
        print("loaded straight to GPU")
        model_management.load_model_gpu(model_patcher)

    return (model_patcher, clip, vae, clipvision)
1381

1382
1383
1384
1385
1386
1387

def load_unet(unet_path): #load unet in diffusers format
    sd = utils.load_torch_file(unet_path)
    parameters = calculate_parameters(sd, "")
    fp16 = model_management.should_use_fp16(model_params=parameters)

1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
    model_config = model_detection.model_config_from_diffusers_unet(sd, fp16)
    if model_config is None:
        print("ERROR UNSUPPORTED UNET", unet_path)
        return None

    diffusers_keys = utils.unet_to_diffusers(model_config.unet_config)

    new_sd = {}
    for k in diffusers_keys:
        if k in sd:
            new_sd[diffusers_keys[k]] = sd.pop(k)
        else:
            print(diffusers_keys[k], k)
    offload_device = model_management.unet_offload_device()
    model = model_config.get_model(new_sd, "")
    model = model.to(offload_device)
    model.load_model_weights(new_sd, "")
    return ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device)
1406

1407
def save_checkpoint(output_path, model, clip, vae, metadata=None):
1408
1409
1410
    model_management.load_models_gpu([model, clip.load_model()])
    sd = model.model.state_dict_for_saving(clip.get_sd(), vae.get_sd())
    utils.save_torch_file(sd, output_path, metadata=metadata)