sd.py 43.5 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
import torch
2
import contextlib
3
import copy
4
import inspect
comfyanonymous's avatar
comfyanonymous committed
5

6
from comfy import model_management
7
8
from .ldm.util import instantiate_from_config
from .ldm.models.autoencoder import AutoencoderKL
9
import yaml
comfyanonymous's avatar
comfyanonymous committed
10
from .cldm import cldm
11
from .t2i_adapter import adapter
comfyanonymous's avatar
comfyanonymous committed
12
13

from . import utils
14
from . import clip_vision
15
from . import gligen
16
from . import diffusers_convert
comfyanonymous's avatar
comfyanonymous committed
17
from . import model_base
18
from . import model_detection
19

20
21
from . import sd1_clip
from . import sd2_clip
comfyanonymous's avatar
comfyanonymous committed
22

23
def load_model_weights(model, sd):
comfyanonymous's avatar
comfyanonymous committed
24
    m, u = model.load_state_dict(sd, strict=False)
25
26
    m = set(m)
    unexpected_keys = set(u)
comfyanonymous's avatar
comfyanonymous committed
27
28
29

    k = list(sd.keys())
    for x in k:
30
31
32
33
34
35
36
37
38
39
        if x not in unexpected_keys:
            w = sd.pop(x)
            del w
    if len(m) > 0:
        print("missing", m)
    return model

def load_clip_weights(model, sd):
    k = list(sd.keys())
    for x in k:
comfyanonymous's avatar
comfyanonymous committed
40
41
42
43
        if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
            y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
            sd[y] = sd.pop(x)

comfyanonymous's avatar
comfyanonymous committed
44
45
46
47
    if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in sd:
        ids = sd['cond_stage_model.transformer.text_model.embeddings.position_ids']
        if ids.dtype == torch.float32:
            sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
48

49
50
    sd = utils.transformers_convert(sd, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24)
    return load_model_weights(model, sd)
comfyanonymous's avatar
comfyanonymous committed
51

52
53
54
55
56
57
58
59
60
LORA_CLIP_MAP = {
    "mlp.fc1": "mlp_fc1",
    "mlp.fc2": "mlp_fc2",
    "self_attn.k_proj": "self_attn_k_proj",
    "self_attn.q_proj": "self_attn_q_proj",
    "self_attn.v_proj": "self_attn_v_proj",
    "self_attn.out_proj": "self_attn_out_proj",
}

comfyanonymous's avatar
comfyanonymous committed
61
LORA_UNET_MAP_ATTENTIONS = {
62
63
64
65
    "proj_in": "proj_in",
    "proj_out": "proj_out",
}

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
transformer_lora_blocks = {
    "transformer_blocks.{}.attn1.to_q": "transformer_blocks_{}_attn1_to_q",
    "transformer_blocks.{}.attn1.to_k": "transformer_blocks_{}_attn1_to_k",
    "transformer_blocks.{}.attn1.to_v": "transformer_blocks_{}_attn1_to_v",
    "transformer_blocks.{}.attn1.to_out.0": "transformer_blocks_{}_attn1_to_out_0",
    "transformer_blocks.{}.attn2.to_q": "transformer_blocks_{}_attn2_to_q",
    "transformer_blocks.{}.attn2.to_k": "transformer_blocks_{}_attn2_to_k",
    "transformer_blocks.{}.attn2.to_v": "transformer_blocks_{}_attn2_to_v",
    "transformer_blocks.{}.attn2.to_out.0": "transformer_blocks_{}_attn2_to_out_0",
    "transformer_blocks.{}.ff.net.0.proj": "transformer_blocks_{}_ff_net_0_proj",
    "transformer_blocks.{}.ff.net.2": "transformer_blocks_{}_ff_net_2",
}

for i in range(10):
    for k in transformer_lora_blocks:
        LORA_UNET_MAP_ATTENTIONS[k.format(i)] = transformer_lora_blocks[k].format(i)


comfyanonymous's avatar
comfyanonymous committed
84
85
86
87
88
89
LORA_UNET_MAP_RESNET = {
    "in_layers.2": "resnets_{}_conv1",
    "emb_layers.1": "resnets_{}_time_emb_proj",
    "out_layers.3": "resnets_{}_conv2",
    "skip_connection": "resnets_{}_conv_shortcut"
}
90
91

def load_lora(path, to_load):
92
    lora = utils.load_torch_file(path, safe_load=True)
93
94
95
    patch_dict = {}
    loaded_keys = set()
    for x in to_load:
comfyanonymous's avatar
comfyanonymous committed
96
97
98
99
100
101
        alpha_name = "{}.alpha".format(x)
        alpha = None
        if alpha_name in lora.keys():
            alpha = lora[alpha_name].item()
            loaded_keys.add(alpha_name)

102
103
        A_name = "{}.lora_up.weight".format(x)
        B_name = "{}.lora_down.weight".format(x)
104
        mid_name = "{}.lora_mid.weight".format(x)
comfyanonymous's avatar
comfyanonymous committed
105

106
        if A_name in lora.keys():
107
108
109
110
111
            mid = None
            if mid_name in lora.keys():
                mid = lora[mid_name]
                loaded_keys.add(mid_name)
            patch_dict[to_load[x]] = (lora[A_name], lora[B_name], alpha, mid)
112
113
            loaded_keys.add(A_name)
            loaded_keys.add(B_name)
comfyanonymous's avatar
comfyanonymous committed
114

comfyanonymous's avatar
comfyanonymous committed
115
116

        ######## loha
comfyanonymous's avatar
comfyanonymous committed
117
118
119
120
        hada_w1_a_name = "{}.hada_w1_a".format(x)
        hada_w1_b_name = "{}.hada_w1_b".format(x)
        hada_w2_a_name = "{}.hada_w2_a".format(x)
        hada_w2_b_name = "{}.hada_w2_b".format(x)
121
122
        hada_t1_name = "{}.hada_t1".format(x)
        hada_t2_name = "{}.hada_t2".format(x)
comfyanonymous's avatar
comfyanonymous committed
123
        if hada_w1_a_name in lora.keys():
124
125
126
127
128
129
130
131
132
            hada_t1 = None
            hada_t2 = None
            if hada_t1_name in lora.keys():
                hada_t1 = lora[hada_t1_name]
                hada_t2 = lora[hada_t2_name]
                loaded_keys.add(hada_t1_name)
                loaded_keys.add(hada_t2_name)

            patch_dict[to_load[x]] = (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2)
comfyanonymous's avatar
comfyanonymous committed
133
134
135
136
137
            loaded_keys.add(hada_w1_a_name)
            loaded_keys.add(hada_w1_b_name)
            loaded_keys.add(hada_w2_a_name)
            loaded_keys.add(hada_w2_b_name)

comfyanonymous's avatar
comfyanonymous committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

        ######## lokr
        lokr_w1_name = "{}.lokr_w1".format(x)
        lokr_w2_name = "{}.lokr_w2".format(x)
        lokr_w1_a_name = "{}.lokr_w1_a".format(x)
        lokr_w1_b_name = "{}.lokr_w1_b".format(x)
        lokr_t2_name = "{}.lokr_t2".format(x)
        lokr_w2_a_name = "{}.lokr_w2_a".format(x)
        lokr_w2_b_name = "{}.lokr_w2_b".format(x)

        lokr_w1 = None
        if lokr_w1_name in lora.keys():
            lokr_w1 = lora[lokr_w1_name]
            loaded_keys.add(lokr_w1_name)

        lokr_w2 = None
        if lokr_w2_name in lora.keys():
            lokr_w2 = lora[lokr_w2_name]
            loaded_keys.add(lokr_w2_name)

        lokr_w1_a = None
        if lokr_w1_a_name in lora.keys():
            lokr_w1_a = lora[lokr_w1_a_name]
            loaded_keys.add(lokr_w1_a_name)

        lokr_w1_b = None
        if lokr_w1_b_name in lora.keys():
            lokr_w1_b = lora[lokr_w1_b_name]
            loaded_keys.add(lokr_w1_b_name)

        lokr_w2_a = None
        if lokr_w2_a_name in lora.keys():
            lokr_w2_a = lora[lokr_w2_a_name]
            loaded_keys.add(lokr_w2_a_name)

        lokr_w2_b = None
        if lokr_w2_b_name in lora.keys():
            lokr_w2_b = lora[lokr_w2_b_name]
            loaded_keys.add(lokr_w2_b_name)

        lokr_t2 = None
        if lokr_t2_name in lora.keys():
            lokr_t2 = lora[lokr_t2_name]
            loaded_keys.add(lokr_t2_name)

        if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
            patch_dict[to_load[x]] = (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2)

186
187
188
189
190
191
192
193
194
195
    for x in lora.keys():
        if x not in loaded_keys:
            print("lora key not loaded", x)
    return patch_dict

def model_lora_keys(model, key_map={}):
    sdk = model.state_dict().keys()

    counter = 0
    for b in range(12):
comfyanonymous's avatar
comfyanonymous committed
196
        tk = "diffusion_model.input_blocks.{}.1".format(b)
197
        up_counter = 0
comfyanonymous's avatar
comfyanonymous committed
198
        for c in LORA_UNET_MAP_ATTENTIONS:
199
200
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
201
                lora_key = "lora_unet_down_blocks_{}_attentions_{}_{}".format(counter // 2, counter % 2, LORA_UNET_MAP_ATTENTIONS[c])
202
                key_map[lora_key] = k
203
204
205
                up_counter += 1
        if up_counter >= 4:
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
206
    for c in LORA_UNET_MAP_ATTENTIONS:
comfyanonymous's avatar
comfyanonymous committed
207
        k = "diffusion_model.middle_block.1.{}.weight".format(c)
208
        if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
209
            lora_key = "lora_unet_mid_block_attentions_0_{}".format(LORA_UNET_MAP_ATTENTIONS[c])
210
            key_map[lora_key] = k
211
212
    counter = 3
    for b in range(12):
comfyanonymous's avatar
comfyanonymous committed
213
        tk = "diffusion_model.output_blocks.{}.1".format(b)
214
        up_counter = 0
comfyanonymous's avatar
comfyanonymous committed
215
        for c in LORA_UNET_MAP_ATTENTIONS:
216
217
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
218
                lora_key = "lora_unet_up_blocks_{}_attentions_{}_{}".format(counter // 3, counter % 3, LORA_UNET_MAP_ATTENTIONS[c])
219
                key_map[lora_key] = k
220
221
222
223
                up_counter += 1
        if up_counter >= 4:
            counter += 1
    counter = 0
comfyanonymous's avatar
comfyanonymous committed
224
    text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
225
    for b in range(24):
226
227
228
        for c in LORA_CLIP_MAP:
            k = "transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
229
                lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
230
                key_map[lora_key] = k
comfyanonymous's avatar
comfyanonymous committed
231

comfyanonymous's avatar
comfyanonymous committed
232
233
234
235
236

    #Locon stuff
    ds_counter = 0
    counter = 0
    for b in range(12):
comfyanonymous's avatar
comfyanonymous committed
237
        tk = "diffusion_model.input_blocks.{}.0".format(b)
comfyanonymous's avatar
comfyanonymous committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
        key_in = False
        for c in LORA_UNET_MAP_RESNET:
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
                lora_key = "lora_unet_down_blocks_{}_{}".format(counter // 2, LORA_UNET_MAP_RESNET[c].format(counter % 2))
                key_map[lora_key] = k
                key_in = True
        for bb in range(3):
            k = "{}.{}.op.weight".format(tk[:-2], bb)
            if k in sdk:
                lora_key = "lora_unet_down_blocks_{}_downsamplers_0_conv".format(ds_counter)
                key_map[lora_key] = k
                ds_counter += 1
        if key_in:
            counter += 1

    counter = 0
    for b in range(3):
comfyanonymous's avatar
comfyanonymous committed
256
        tk = "diffusion_model.middle_block.{}".format(b)
comfyanonymous's avatar
comfyanonymous committed
257
258
259
260
261
262
263
264
265
266
267
268
269
        key_in = False
        for c in LORA_UNET_MAP_RESNET:
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
                lora_key = "lora_unet_mid_block_{}".format(LORA_UNET_MAP_RESNET[c].format(counter))
                key_map[lora_key] = k
                key_in = True
        if key_in:
            counter += 1

    counter = 0
    us_counter = 0
    for b in range(12):
comfyanonymous's avatar
comfyanonymous committed
270
        tk = "diffusion_model.output_blocks.{}.0".format(b)
comfyanonymous's avatar
comfyanonymous committed
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
        key_in = False
        for c in LORA_UNET_MAP_RESNET:
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
                lora_key = "lora_unet_up_blocks_{}_{}".format(counter // 3, LORA_UNET_MAP_RESNET[c].format(counter % 3))
                key_map[lora_key] = k
                key_in = True
        for bb in range(3):
            k = "{}.{}.conv.weight".format(tk[:-2], bb)
            if k in sdk:
                lora_key = "lora_unet_up_blocks_{}_upsamplers_0_conv".format(us_counter)
                key_map[lora_key] = k
                us_counter += 1
        if key_in:
            counter += 1

287
288
    return key_map

289

290
class ModelPatcher:
291
292
    def __init__(self, model, size=0):
        self.size = size
293
294
295
        self.model = model
        self.patches = []
        self.backup = {}
296
        self.model_options = {"transformer_options":{}}
297
298
299
300
301
302
303
304
305
306
307
        self.model_size()

    def model_size(self):
        if self.size > 0:
            return self.size
        model_sd = self.model.state_dict()
        size = 0
        for k in model_sd:
            t = model_sd[k]
            size += t.nelement() * t.element_size()
        self.size = size
308
        self.model_keys = set(model_sd.keys())
309
        return size
310
311

    def clone(self):
312
        n = ModelPatcher(self.model, self.size)
313
        n.patches = self.patches[:]
314
        n.model_options = copy.deepcopy(self.model_options)
315
        n.model_keys = self.model_keys
316
317
        return n

318
    def set_model_sampler_cfg_function(self, sampler_cfg_function):
319
320
321
322
        if len(inspect.signature(sampler_cfg_function).parameters) == 3:
            self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way
        else:
            self.model_options["sampler_cfg_function"] = sampler_cfg_function
323
324
325
326
327
328
329

    def set_model_patch(self, patch, name):
        to = self.model_options["transformer_options"]
        if "patches" not in to:
            to["patches"] = {}
        to["patches"][name] = to["patches"].get(name, []) + [patch]

330
331
332
333
334
335
336
337
    def set_model_patch_replace(self, patch, name, block_name, number):
        to = self.model_options["transformer_options"]
        if "patches_replace" not in to:
            to["patches_replace"] = {}
        if name not in to["patches_replace"]:
            to["patches_replace"][name] = {}
        to["patches_replace"][name][(block_name, number)] = patch

338
339
340
341
342
343
    def set_model_attn1_patch(self, patch):
        self.set_model_patch(patch, "attn1_patch")

    def set_model_attn2_patch(self, patch):
        self.set_model_patch(patch, "attn2_patch")

344
345
346
347
348
349
350
351
352
    def set_model_attn1_replace(self, patch, block_name, number):
        self.set_model_patch_replace(patch, "attn1", block_name, number)

    def set_model_attn2_replace(self, patch, block_name, number):
        self.set_model_patch_replace(patch, "attn2", block_name, number)

    def set_model_attn1_output_patch(self, patch):
        self.set_model_patch(patch, "attn1_output_patch")

353
354
355
    def set_model_attn2_output_patch(self, patch):
        self.set_model_patch(patch, "attn2_output_patch")

356
357
358
359
360
361
362
363
364
    def model_patches_to(self, device):
        to = self.model_options["transformer_options"]
        if "patches" in to:
            patches = to["patches"]
            for name in patches:
                patch_list = patches[name]
                for i in range(len(patch_list)):
                    if hasattr(patch_list[i], "to"):
                        patch_list[i] = patch_list[i].to(device)
365
366
367
368
369
370
371
        if "patches_replace" in to:
            patches = to["patches_replace"]
            for name in patches:
                patch_list = patches[name]
                for k in patch_list:
                    if hasattr(patch_list[k], "to"):
                        patch_list[k] = patch_list[k].to(device)
372

373
    def model_dtype(self):
comfyanonymous's avatar
comfyanonymous committed
374
        return self.model.get_dtype()
375

376
    def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
377
378
        p = {}
        for k in patches:
379
            if k in self.model_keys:
380
                p[k] = patches[k]
381
        self.patches += [(strength_patch, p, strength_model)]
382
383
        return p.keys()

384
    def model_state_dict(self, filter_prefix=None):
385
386
        sd = self.model.state_dict()
        keys = list(sd.keys())
387
388
389
390
        if filter_prefix is not None:
            for k in keys:
                if not k.startswith(filter_prefix):
                    sd.pop(k)
391
392
        return sd

393
    def patch_model(self):
394
        model_sd = self.model_state_dict()
395
396
397
        for p in self.patches:
            for k in p[1]:
                v = p[1][k]
398
                key = k
comfyanonymous's avatar
comfyanonymous committed
399
                if key not in model_sd:
400
401
402
                    print("could not patch. key doesn't exist in model:", k)
                    continue

comfyanonymous's avatar
comfyanonymous committed
403
404
405
                weight = model_sd[key]
                if key not in self.backup:
                    self.backup[key] = weight.clone()
406
407

                alpha = p[0]
408
409
410
411
                strength_model = p[2]

                if strength_model != 1.0:
                    weight *= strength_model
comfyanonymous's avatar
comfyanonymous committed
412

413
                if len(v) == 1:
414
415
416
417
418
                    w1 = v[0]
                    if w1.shape != weight.shape:
                        print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
                    else:
                        weight += alpha * w1.type(weight.dtype).to(weight.device)
419
                elif len(v) == 4: #lora/locon
comfyanonymous's avatar
comfyanonymous committed
420
421
422
423
424
425
426
427
428
                    mat1 = v[0]
                    mat2 = v[1]
                    if v[2] is not None:
                        alpha *= v[2] / mat2.shape[0]
                    if v[3] is not None:
                        #locon mid weights, hopefully the math is fine because I didn't properly test it
                        final_shape = [mat2.shape[1], mat2.shape[0], v[3].shape[2], v[3].shape[3]]
                        mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1).float(), v[3].transpose(0, 1).flatten(start_dim=1).float()).reshape(final_shape).transpose(0, 1)
                    weight += (alpha * torch.mm(mat1.flatten(start_dim=1).float(), mat2.flatten(start_dim=1).float())).reshape(weight.shape).type(weight.dtype).to(weight.device)
comfyanonymous's avatar
comfyanonymous committed
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
                elif len(v) == 8: #lokr
                    w1 = v[0]
                    w2 = v[1]
                    w1_a = v[3]
                    w1_b = v[4]
                    w2_a = v[5]
                    w2_b = v[6]
                    t2 = v[7]
                    dim = None

                    if w1 is None:
                        dim = w1_b.shape[0]
                        w1 = torch.mm(w1_a.float(), w1_b.float())

                    if w2 is None:
                        dim = w2_b.shape[0]
                        if t2 is None:
                            w2 = torch.mm(w2_a.float(), w2_b.float())
                        else:
                            w2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float(), w2_b.float(), w2_a.float())

                    if len(w2.shape) == 4:
                        w1 = w1.unsqueeze(2).unsqueeze(2)
                    if v[2] is not None and dim is not None:
                        alpha *= v[2] / dim

                    weight += alpha * torch.kron(w1.float(), w2.float()).reshape(weight.shape).type(weight.dtype).to(weight.device)
comfyanonymous's avatar
comfyanonymous committed
456
457
458
459
460
461
462
                else: #loha
                    w1a = v[0]
                    w1b = v[1]
                    if v[2] is not None:
                        alpha *= v[2] / w1b.shape[0]
                    w2a = v[3]
                    w2b = v[4]
463
464
465
466
467
468
469
470
471
472
                    if v[5] is not None: #cp decomposition
                        t1 = v[5]
                        t2 = v[6]
                        m1 = torch.einsum('i j k l, j r, i p -> p r k l', t1.float(), w1b.float(), w1a.float())
                        m2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float(), w2b.float(), w2a.float())
                    else:
                        m1 = torch.mm(w1a.float(), w1b.float())
                        m2 = torch.mm(w2a.float(), w2b.float())

                    weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype).to(weight.device)
473
474
        return self.model
    def unpatch_model(self):
475
        model_sd = self.model_state_dict()
476
477
        keys = list(self.backup.keys())
        for k in keys:
478
            model_sd[k][:] = self.backup[k]
479
480
            del self.backup[k]

481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
        self.backup = {}

def load_lora_for_models(model, clip, lora_path, strength_model, strength_clip):
    key_map = model_lora_keys(model.model)
    key_map = model_lora_keys(clip.cond_stage_model, key_map)
    loaded = load_lora(lora_path, key_map)
    new_modelpatcher = model.clone()
    k = new_modelpatcher.add_patches(loaded, strength_model)
    new_clip = clip.clone()
    k1 = new_clip.add_patches(loaded, strength_clip)
    k = set(k)
    k1 = set(k1)
    for x in loaded:
        if (x not in k) and (x not in k1):
            print("NOT LOADED", x)

    return (new_modelpatcher, new_clip)
comfyanonymous's avatar
comfyanonymous committed
498
499
500


class CLIP:
501
    def __init__(self, target=None, embedding_directory=None, no_init=False):
502
503
        if no_init:
            return
504
505
506
        params = target.params
        clip = target.clip
        tokenizer = target.tokenizer
507

508
509
        self.device = model_management.text_encoder_device()
        params["device"] = self.device
510
        self.cond_stage_model = clip(**(params))
511
512
        self.cond_stage_model = self.cond_stage_model.to(self.device)

513
        self.tokenizer = tokenizer(embedding_directory=embedding_directory)
514
        self.patcher = ModelPatcher(self.cond_stage_model)
515
        self.layer_idx = None
516
517
518
519
520
521

    def clone(self):
        n = CLIP(no_init=True)
        n.patcher = self.patcher.clone()
        n.cond_stage_model = self.cond_stage_model
        n.tokenizer = self.tokenizer
comfyanonymous's avatar
comfyanonymous committed
522
        n.layer_idx = self.layer_idx
523
        n.device = self.device
524
525
        return n

526
527
528
    def load_from_state_dict(self, sd):
        self.cond_stage_model.transformer.load_state_dict(sd, strict=False)

529
530
    def add_patches(self, patches, strength=1.0):
        return self.patcher.add_patches(patches, strength)
comfyanonymous's avatar
comfyanonymous committed
531

532
    def clip_layer(self, layer_idx):
comfyanonymous's avatar
comfyanonymous committed
533
        self.layer_idx = layer_idx
534

535
536
    def tokenize(self, text, return_word_ids=False):
        return self.tokenizer.tokenize_with_weights(text, return_word_ids)
BlenderNeko's avatar
BlenderNeko committed
537

538
    def encode_from_tokens(self, tokens, return_pooled=False):
539
540
        if self.layer_idx is not None:
            self.cond_stage_model.clip_layer(self.layer_idx)
541
542
        try:
            self.patcher.patch_model()
543
            cond, pooled = self.cond_stage_model.encode_token_weights(tokens)
544
545
546
547
            self.patcher.unpatch_model()
        except Exception as e:
            self.patcher.unpatch_model()
            raise e
548
549

        cond_out = cond
550
        if return_pooled:
551
552
            return cond_out, pooled
        return cond_out
comfyanonymous's avatar
comfyanonymous committed
553

554
    def encode(self, text):
555
        tokens = self.tokenize(text)
556
557
        return self.encode_from_tokens(tokens)

558

comfyanonymous's avatar
comfyanonymous committed
559
class VAE:
560
    def __init__(self, ckpt_path=None, device=None, config=None):
comfyanonymous's avatar
comfyanonymous committed
561
562
563
        if config is None:
            #default SD1.x/SD2.x VAE parameters
            ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
564
            self.first_stage_model = AutoencoderKL(ddconfig, {'target': 'torch.nn.Identity'}, 4, monitor="val/rec_loss")
comfyanonymous's avatar
comfyanonymous committed
565
        else:
566
            self.first_stage_model = AutoencoderKL(**(config['params']))
comfyanonymous's avatar
comfyanonymous committed
567
        self.first_stage_model = self.first_stage_model.eval()
568
569
570
571
572
573
        if ckpt_path is not None:
            sd = utils.load_torch_file(ckpt_path)
            if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format
                sd = diffusers_convert.convert_vae_state_dict(sd)
            self.first_stage_model.load_state_dict(sd, strict=False)

574
575
        if device is None:
            device = model_management.get_torch_device()
comfyanonymous's avatar
comfyanonymous committed
576
577
        self.device = device

578
    def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
pythongosssss's avatar
pythongosssss committed
579
        steps = samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
comfyanonymous's avatar
comfyanonymous committed
580
581
        steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
        steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
pythongosssss's avatar
pythongosssss committed
582
        pbar = utils.ProgressBar(steps)
583

584
        decode_fn = lambda a: (self.first_stage_model.decode(a.to(self.device)) + 1.0)
585
        output = torch.clamp((
586
587
588
            (utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8, pbar = pbar) +
            utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8, pbar = pbar) +
             utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8, pbar = pbar))
589
590
591
            / 3.0) / 2.0, min=0.0, max=1.0)
        return output

592
593
594
595
596
597
    def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
        steps = pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
        steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
        steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
        pbar = utils.ProgressBar(steps)

598
        encode_fn = lambda a: self.first_stage_model.encode(2. * a.to(self.device) - 1.).sample()
599
600
601
602
603
604
        samples = utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
        samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
        samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
        samples /= 3.0
        return samples

605
    def decode(self, samples_in):
606
        model_management.unload_model()
comfyanonymous's avatar
comfyanonymous committed
607
        self.first_stage_model = self.first_stage_model.to(self.device)
608
        try:
609
610
611
612
613
614
615
            free_memory = model_management.get_free_memory(self.device)
            batch_number = int((free_memory * 0.7) / (2562 * samples_in.shape[2] * samples_in.shape[3] * 64))
            batch_number = max(1, batch_number)

            pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * 8), round(samples_in.shape[3] * 8)), device="cpu")
            for x in range(0, samples_in.shape[0], batch_number):
                samples = samples_in[x:x+batch_number].to(self.device)
616
                pixel_samples[x:x+batch_number] = torch.clamp((self.first_stage_model.decode(samples) + 1.0) / 2.0, min=0.0, max=1.0).cpu()
617
618
619
620
        except model_management.OOM_EXCEPTION as e:
            print("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
            pixel_samples = self.decode_tiled_(samples_in)

comfyanonymous's avatar
comfyanonymous committed
621
622
623
624
        self.first_stage_model = self.first_stage_model.cpu()
        pixel_samples = pixel_samples.cpu().movedim(1,-1)
        return pixel_samples

625
    def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16):
626
627
        model_management.unload_model()
        self.first_stage_model = self.first_stage_model.to(self.device)
628
        output = self.decode_tiled_(samples, tile_x, tile_y, overlap)
629
630
631
        self.first_stage_model = self.first_stage_model.cpu()
        return output.movedim(1,-1)

comfyanonymous's avatar
comfyanonymous committed
632
    def encode(self, pixel_samples):
633
        model_management.unload_model()
comfyanonymous's avatar
comfyanonymous committed
634
        self.first_stage_model = self.first_stage_model.to(self.device)
635
636
        pixel_samples = pixel_samples.movedim(-1,1)
        try:
637
638
639
            free_memory = model_management.get_free_memory(self.device)
            batch_number = int((free_memory * 0.7) / (2078 * pixel_samples.shape[2] * pixel_samples.shape[3])) #NOTE: this constant along with the one in the decode above are estimated from the mem usage for the VAE and could change.
            batch_number = max(1, batch_number)
640
641
642
            samples = torch.empty((pixel_samples.shape[0], 4, round(pixel_samples.shape[2] // 8), round(pixel_samples.shape[3] // 8)), device="cpu")
            for x in range(0, pixel_samples.shape[0], batch_number):
                pixels_in = (2. * pixel_samples[x:x+batch_number] - 1.).to(self.device)
643
                samples[x:x+batch_number] = self.first_stage_model.encode(pixels_in).sample().cpu()
644

645
646
647
648
        except model_management.OOM_EXCEPTION as e:
            print("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.")
            samples = self.encode_tiled_(pixel_samples)

comfyanonymous's avatar
comfyanonymous committed
649
650
651
        self.first_stage_model = self.first_stage_model.cpu()
        return samples

comfyanonymous's avatar
comfyanonymous committed
652
653
654
    def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
        model_management.unload_model()
        self.first_stage_model = self.first_stage_model.to(self.device)
655
656
        pixel_samples = pixel_samples.movedim(-1,1)
        samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap)
comfyanonymous's avatar
comfyanonymous committed
657
658
        self.first_stage_model = self.first_stage_model.cpu()
        return samples
659

BlenderNeko's avatar
BlenderNeko committed
660
def broadcast_image_to(tensor, target_batch_size, batched_number):
661
    current_batch_size = tensor.shape[0]
662
    #print(current_batch_size, target_batch_size)
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
    if current_batch_size == 1:
        return tensor

    per_batch = target_batch_size // batched_number
    tensor = tensor[:per_batch]

    if per_batch > tensor.shape[0]:
        tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)

    current_batch_size = tensor.shape[0]
    if current_batch_size == target_batch_size:
        return tensor
    else:
        return torch.cat([tensor] * batched_number, dim=0)

comfyanonymous's avatar
comfyanonymous committed
678
class ControlNet:
679
    def __init__(self, control_model, global_average_pooling=False, device=None):
comfyanonymous's avatar
comfyanonymous committed
680
681
682
        self.control_model = control_model
        self.cond_hint_original = None
        self.cond_hint = None
683
        self.strength = 1.0
684
685
        if device is None:
            device = model_management.get_torch_device()
686
        self.device = device
comfyanonymous's avatar
comfyanonymous committed
687
        self.previous_controlnet = None
688
        self.global_average_pooling = global_average_pooling
comfyanonymous's avatar
comfyanonymous committed
689

690
    def get_control(self, x_noisy, t, cond, batched_number):
comfyanonymous's avatar
comfyanonymous committed
691
692
        control_prev = None
        if self.previous_controlnet is not None:
693
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
comfyanonymous's avatar
comfyanonymous committed
694

695
        output_dtype = x_noisy.dtype
comfyanonymous's avatar
comfyanonymous committed
696
697
698
699
        if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
            self.cond_hint = None
BlenderNeko's avatar
BlenderNeko committed
700
701
702
            self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(self.control_model.dtype).to(self.device)
        if x_noisy.shape[0] != self.cond_hint.shape[0]:
            self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
703
704
705
706
707
708

        if self.control_model.dtype == torch.float16:
            precision_scope = torch.autocast
        else:
            precision_scope = contextlib.nullcontext

709
        with precision_scope(model_management.get_autocast_device(self.device)):
710
            self.control_model = model_management.load_if_low_vram(self.control_model)
711
712
713
            context = torch.cat(cond['c_crossattn'], 1)
            y = cond.get('c_adm', None)
            control = self.control_model(x=x_noisy, hint=self.cond_hint, timesteps=t, context=context, y=y)
714
            self.control_model = model_management.unload_if_low_vram(self.control_model)
715
        out = {'middle':[], 'output': []}
716
        autocast_enabled = torch.is_autocast_enabled()
comfyanonymous's avatar
comfyanonymous committed
717
718

        for i in range(len(control)):
comfyanonymous's avatar
comfyanonymous committed
719
720
721
722
723
724
            if i == (len(control) - 1):
                key = 'middle'
                index = 0
            else:
                key = 'output'
                index = i
comfyanonymous's avatar
comfyanonymous committed
725
            x = control[i]
726
727
728
            if self.global_average_pooling:
                x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])

729
            x *= self.strength
730
731
            if x.dtype != output_dtype and not autocast_enabled:
                x = x.to(output_dtype)
comfyanonymous's avatar
comfyanonymous committed
732

comfyanonymous's avatar
comfyanonymous committed
733
734
735
736
737
738
739
            if control_prev is not None and key in control_prev:
                prev = control_prev[key][index]
                if prev is not None:
                    x += prev
            out[key].append(x)
        if control_prev is not None and 'input' in control_prev:
            out['input'] = control_prev['input']
740
        return out
comfyanonymous's avatar
comfyanonymous committed
741

742
    def set_cond_hint(self, cond_hint, strength=1.0):
comfyanonymous's avatar
comfyanonymous committed
743
        self.cond_hint_original = cond_hint
744
        self.strength = strength
comfyanonymous's avatar
comfyanonymous committed
745
746
        return self

comfyanonymous's avatar
comfyanonymous committed
747
748
749
750
    def set_previous_controlnet(self, controlnet):
        self.previous_controlnet = controlnet
        return self

comfyanonymous's avatar
comfyanonymous committed
751
    def cleanup(self):
comfyanonymous's avatar
comfyanonymous committed
752
753
        if self.previous_controlnet is not None:
            self.previous_controlnet.cleanup()
comfyanonymous's avatar
comfyanonymous committed
754
755
756
757
758
        if self.cond_hint is not None:
            del self.cond_hint
            self.cond_hint = None

    def copy(self):
759
        c = ControlNet(self.control_model, global_average_pooling=self.global_average_pooling)
comfyanonymous's avatar
comfyanonymous committed
760
        c.cond_hint_original = self.cond_hint_original
761
        c.strength = self.strength
comfyanonymous's avatar
comfyanonymous committed
762
763
        return c

764
    def get_models(self):
comfyanonymous's avatar
comfyanonymous committed
765
766
        out = []
        if self.previous_controlnet is not None:
767
            out += self.previous_controlnet.get_models()
comfyanonymous's avatar
comfyanonymous committed
768
769
770
        out.append(self.control_model)
        return out

771
def load_controlnet(ckpt_path, model=None):
772
    controlnet_data = utils.load_torch_file(ckpt_path, safe_load=True)
773
    pth_key = 'control_model.zero_convs.0.0.weight'
comfyanonymous's avatar
comfyanonymous committed
774
    pth = False
775
    key = 'zero_convs.0.0.weight'
comfyanonymous's avatar
comfyanonymous committed
776
777
778
    if pth_key in controlnet_data:
        pth = True
        key = pth_key
779
        prefix = "control_model."
comfyanonymous's avatar
comfyanonymous committed
780
    elif key in controlnet_data:
781
        prefix = ""
comfyanonymous's avatar
comfyanonymous committed
782
    else:
783
784
785
786
        net = load_t2i_adapter(controlnet_data)
        if net is None:
            print("error checkpoint does not contain controlnet or t2i adapter data", ckpt_path)
        return net
comfyanonymous's avatar
comfyanonymous committed
787

788
789
790
791
792
793
794
    use_fp16 = model_management.should_use_fp16()

    controlnet_config = model_detection.model_config_from_unet(controlnet_data, prefix, use_fp16).unet_config
    controlnet_config.pop("out_channels")
    controlnet_config["hint_channels"] = 3
    control_model = cldm.ControlNet(**controlnet_config)

comfyanonymous's avatar
comfyanonymous committed
795
    if pth:
796
797
798
799
800
801
802
        if 'difference' in controlnet_data:
            if model is not None:
                m = model.patch_model()
                model_sd = m.state_dict()
                for x in controlnet_data:
                    c_m = "control_model."
                    if x.startswith(c_m):
comfyanonymous's avatar
comfyanonymous committed
803
                        sd_key = "diffusion_model.{}".format(x[len(c_m):])
804
805
806
807
808
809
810
                        if sd_key in model_sd:
                            cd = controlnet_data[x]
                            cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
                model.unpatch_model()
            else:
                print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")

comfyanonymous's avatar
comfyanonymous committed
811
812
813
814
        class WeightsLoader(torch.nn.Module):
            pass
        w = WeightsLoader()
        w.control_model = control_model
815
        missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
comfyanonymous's avatar
comfyanonymous committed
816
    else:
817
818
        missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
    print(missing, unexpected)
comfyanonymous's avatar
comfyanonymous committed
819

820
821
822
    if use_fp16:
        control_model = control_model.half()

823
824
825
826
827
    global_average_pooling = False
    if ckpt_path.endswith("_shuffle.pth") or ckpt_path.endswith("_shuffle.safetensors") or ckpt_path.endswith("_shuffle_fp16.safetensors"): #TODO: smarter way of enabling global_average_pooling
        global_average_pooling = True

    control = ControlNet(control_model, global_average_pooling=global_average_pooling)
comfyanonymous's avatar
comfyanonymous committed
828
829
    return control

830
class T2IAdapter:
831
    def __init__(self, t2i_model, channels_in, device=None):
832
833
834
        self.t2i_model = t2i_model
        self.channels_in = channels_in
        self.strength = 1.0
835
836
        if device is None:
            device = model_management.get_torch_device()
837
838
839
840
841
842
        self.device = device
        self.previous_controlnet = None
        self.control_input = None
        self.cond_hint_original = None
        self.cond_hint = None

843
    def get_control(self, x_noisy, t, cond, batched_number):
844
845
        control_prev = None
        if self.previous_controlnet is not None:
846
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
847
848
849
850

        if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
BlenderNeko's avatar
BlenderNeko committed
851
            self.control_input = None
852
            self.cond_hint = None
BlenderNeko's avatar
BlenderNeko committed
853
            self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").float().to(self.device)
854
855
            if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
                self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
BlenderNeko's avatar
BlenderNeko committed
856
857
858
        if x_noisy.shape[0] != self.cond_hint.shape[0]:
            self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
        if self.control_input is None:
859
860
861
862
863
864
865
            self.t2i_model.to(self.device)
            self.control_input = self.t2i_model(self.cond_hint)
            self.t2i_model.cpu()

        output_dtype = x_noisy.dtype
        out = {'input':[]}

comfyanonymous's avatar
comfyanonymous committed
866
        autocast_enabled = torch.is_autocast_enabled()
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
        for i in range(len(self.control_input)):
            key = 'input'
            x = self.control_input[i] * self.strength
            if x.dtype != output_dtype and not autocast_enabled:
                x = x.to(output_dtype)

            if control_prev is not None and key in control_prev:
                index = len(control_prev[key]) - i * 3 - 3
                prev = control_prev[key][index]
                if prev is not None:
                    x += prev
            out[key].insert(0, None)
            out[key].insert(0, None)
            out[key].insert(0, x)

        if control_prev is not None and 'input' in control_prev:
            for i in range(len(out['input'])):
                if out['input'][i] is None:
                    out['input'][i] = control_prev['input'][i]
        if control_prev is not None and 'middle' in control_prev:
            out['middle'] = control_prev['middle']
        if control_prev is not None and 'output' in control_prev:
            out['output'] = control_prev['output']
        return out

    def set_cond_hint(self, cond_hint, strength=1.0):
        self.cond_hint_original = cond_hint
        self.strength = strength
        return self

    def set_previous_controlnet(self, controlnet):
        self.previous_controlnet = controlnet
        return self

    def copy(self):
        c = T2IAdapter(self.t2i_model, self.channels_in)
        c.cond_hint_original = self.cond_hint_original
        c.strength = self.strength
        return c

    def cleanup(self):
        if self.previous_controlnet is not None:
            self.previous_controlnet.cleanup()
        if self.cond_hint is not None:
            del self.cond_hint
            self.cond_hint = None

914
    def get_models(self):
915
916
        out = []
        if self.previous_controlnet is not None:
917
            out += self.previous_controlnet.get_models()
918
919
        return out

920
def load_t2i_adapter(t2i_data):
921
    keys = t2i_data.keys()
922
923
924
    if 'adapter' in keys:
        t2i_data = t2i_data['adapter']
        keys = t2i_data.keys()
925
    if "body.0.in_conv.weight" in keys:
926
927
        cin = t2i_data['body.0.in_conv.weight'].shape[1]
        model_ad = adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
928
    elif 'conv_in.weight' in keys:
929
        cin = t2i_data['conv_in.weight'].shape[1]
930
931
932
933
934
935
936
        channel = t2i_data['conv_in.weight'].shape[0]
        ksize = t2i_data['body.0.block2.weight'].shape[2]
        use_conv = False
        down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys))
        if len(down_opts) > 0:
            use_conv = True
        model_ad = adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv)
937
938
    else:
        return None
939
940
    model_ad.load_state_dict(t2i_data)
    return T2IAdapter(model_ad, cin // 64)
comfyanonymous's avatar
comfyanonymous committed
941

942
943
944
945
946
947
948
949
950
951

class StyleModel:
    def __init__(self, model, device="cpu"):
        self.model = model

    def get_cond(self, input):
        return self.model(input.last_hidden_state)


def load_style_model(ckpt_path):
952
    model_data = utils.load_torch_file(ckpt_path, safe_load=True)
953
954
955
956
957
958
959
960
961
    keys = model_data.keys()
    if "style_embedding" in keys:
        model = adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
    else:
        raise Exception("invalid style model {}".format(ckpt_path))
    model.load_state_dict(model_data)
    return StyleModel(model)


962
def load_clip(ckpt_path, embedding_directory=None):
963
    clip_data = utils.load_torch_file(ckpt_path, safe_load=True)
comfyanonymous's avatar
comfyanonymous committed
964
965
966
967
968
    class EmptyClass:
        pass

    clip_target = EmptyClass()
    clip_target.params = {}
969
    if "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data:
comfyanonymous's avatar
comfyanonymous committed
970
971
        clip_target.clip = sd2_clip.SD2ClipModel
        clip_target.tokenizer = sd2_clip.SD2Tokenizer
972
    else:
comfyanonymous's avatar
comfyanonymous committed
973
974
975
976
        clip_target.clip = sd1_clip.SD1ClipModel
        clip_target.tokenizer = sd1_clip.SD1Tokenizer

    clip = CLIP(clip_target, embedding_directory=embedding_directory)
977
978
    clip.load_from_state_dict(clip_data)
    return clip
comfyanonymous's avatar
comfyanonymous committed
979

980
def load_gligen(ckpt_path):
981
    data = utils.load_torch_file(ckpt_path, safe_load=True)
982
983
984
985
986
    model = gligen.load_gligen(data)
    if model_management.should_use_fp16():
        model = model.half()
    return model

comfyanonymous's avatar
comfyanonymous committed
987
def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None):
988
    #TODO: this function is a mess and should be removed eventually
comfyanonymous's avatar
comfyanonymous committed
989
990
991
    if config is None:
        with open(config_path, 'r') as stream:
            config = yaml.safe_load(stream)
comfyanonymous's avatar
comfyanonymous committed
992
993
994
995
996
    model_config_params = config['model']['params']
    clip_config = model_config_params['cond_stage_config']
    scale_factor = model_config_params['scale_factor']
    vae_config = model_config_params['first_stage_config']

997
998
999
    fp16 = False
    if "unet_config" in model_config_params:
        if "params" in model_config_params["unet_config"]:
comfyanonymous's avatar
comfyanonymous committed
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
            unet_config = model_config_params["unet_config"]["params"]
            if "use_fp16" in unet_config:
                fp16 = unet_config["use_fp16"]

    noise_aug_config = None
    if "noise_aug_config" in model_config_params:
        noise_aug_config = model_config_params["noise_aug_config"]

    v_prediction = False

    if "parameterization" in model_config_params:
        if model_config_params["parameterization"] == "v":
            v_prediction = True
1013

comfyanonymous's avatar
comfyanonymous committed
1014
1015
1016
1017
1018
1019
    clip = None
    vae = None

    class WeightsLoader(torch.nn.Module):
        pass

1020
1021
    if state_dict is None:
        state_dict = utils.load_torch_file(ckpt_path)
comfyanonymous's avatar
comfyanonymous committed
1022

1023
1024
1025
1026
1027
1028
1029
1030
    class EmptyClass:
        pass

    model_config = EmptyClass()
    model_config.unet_config = unet_config
    from . import latent_formats
    model_config.latent_format = latent_formats.SD15(scale_factor=scale_factor)

comfyanonymous's avatar
comfyanonymous committed
1031
    if config['model']["target"].endswith("LatentInpaintDiffusion"):
1032
        model = model_base.SDInpaint(model_config, v_prediction=v_prediction)
comfyanonymous's avatar
comfyanonymous committed
1033
    elif config['model']["target"].endswith("ImageEmbeddingConditionedLatentDiffusion"):
1034
        model = model_base.SD21UNCLIP(model_config, noise_aug_config["params"], v_prediction=v_prediction)
comfyanonymous's avatar
comfyanonymous committed
1035
    else:
1036
        model = model_base.BaseModel(model_config, v_prediction=v_prediction)
comfyanonymous's avatar
comfyanonymous committed
1037

1038
1039
1040
    if fp16:
        model = model.half()

1041
1042
1043
1044
    model.load_model_weights(state_dict, "model.diffusion_model.")

    if output_vae:
        w = WeightsLoader()
1045
        vae = VAE(config=vae_config)
1046
1047
1048
1049
1050
1051
        w.first_stage_model = vae.first_stage_model
        load_model_weights(w, state_dict)

    if output_clip:
        w = WeightsLoader()
        clip_target = EmptyClass()
1052
        clip_target.params = clip_config.get("params", {})
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
        if clip_config["target"].endswith("FrozenOpenCLIPEmbedder"):
            clip_target.clip = sd2_clip.SD2ClipModel
            clip_target.tokenizer = sd2_clip.SD2Tokenizer
        elif clip_config["target"].endswith("FrozenCLIPEmbedder"):
            clip_target.clip = sd1_clip.SD1ClipModel
            clip_target.tokenizer = sd1_clip.SD1Tokenizer
        clip = CLIP(clip_target, embedding_directory=embedding_directory)
        w.cond_stage_model = clip.cond_stage_model
        load_clip_weights(w, state_dict)

1063
    return (ModelPatcher(model), clip, vae)
1064
1065


1066
1067
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None):
    sd = utils.load_torch_file(ckpt_path)
1068
1069
    sd_keys = sd.keys()
    clip = None
1070
    clipvision = None
1071
    vae = None
1072
1073
    model = None
    clip_target = None
1074

1075
1076
    fp16 = model_management.should_use_fp16()

1077
1078
1079
    class WeightsLoader(torch.nn.Module):
        pass

1080
1081
1082
    model_config = model_detection.model_config_from_unet(sd, "model.diffusion_model.", fp16)
    if model_config is None:
        raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path))
1083

1084
    if model_config.clip_vision_prefix is not None:
1085
        if output_clipvision:
1086
            clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True)
1087

1088
1089
    model = model_config.get_model(sd)
    model.load_model_weights(sd, "model.diffusion_model.")
1090

1091
    if output_vae:
1092
        vae = VAE()
1093
1094
1095
        w = WeightsLoader()
        w.first_stage_model = vae.first_stage_model
        load_model_weights(w, sd)
1096

1097
1098
1099
1100
1101
1102
1103
    if output_clip:
        w = WeightsLoader()
        clip_target = model_config.clip_target()
        clip = CLIP(clip_target, embedding_directory=embedding_directory)
        w.cond_stage_model = clip.cond_stage_model
        sd = model_config.process_clip_state_dict(sd)
        load_model_weights(w, sd)
comfyanonymous's avatar
comfyanonymous committed
1104

1105
1106
1107
    left_over = sd.keys()
    if len(left_over) > 0:
        print("left over keys:", left_over)
1108

1109
    return (ModelPatcher(model), clip, vae, clipvision)