sd.py 45.2 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
import torch
2
import contextlib
3
import copy
4
import inspect
comfyanonymous's avatar
comfyanonymous committed
5

6
from comfy import model_management
7
8
from .ldm.util import instantiate_from_config
from .ldm.models.autoencoder import AutoencoderKL
9
import yaml
comfyanonymous's avatar
comfyanonymous committed
10
from .cldm import cldm
11
from .t2i_adapter import adapter
comfyanonymous's avatar
comfyanonymous committed
12
13

from . import utils
14
from . import clip_vision
15
from . import gligen
16
from . import diffusers_convert
comfyanonymous's avatar
comfyanonymous committed
17
from . import model_base
18
from . import model_detection
19

20
21
from . import sd1_clip
from . import sd2_clip
22
from . import sdxl_clip
comfyanonymous's avatar
comfyanonymous committed
23

24
def load_model_weights(model, sd):
comfyanonymous's avatar
comfyanonymous committed
25
    m, u = model.load_state_dict(sd, strict=False)
26
27
    m = set(m)
    unexpected_keys = set(u)
comfyanonymous's avatar
comfyanonymous committed
28
29
30

    k = list(sd.keys())
    for x in k:
31
32
33
34
35
36
37
38
39
40
        if x not in unexpected_keys:
            w = sd.pop(x)
            del w
    if len(m) > 0:
        print("missing", m)
    return model

def load_clip_weights(model, sd):
    k = list(sd.keys())
    for x in k:
comfyanonymous's avatar
comfyanonymous committed
41
42
43
44
        if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
            y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
            sd[y] = sd.pop(x)

comfyanonymous's avatar
comfyanonymous committed
45
46
47
48
    if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in sd:
        ids = sd['cond_stage_model.transformer.text_model.embeddings.position_ids']
        if ids.dtype == torch.float32:
            sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
49

50
51
    sd = utils.transformers_convert(sd, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24)
    return load_model_weights(model, sd)
comfyanonymous's avatar
comfyanonymous committed
52

53
54
55
56
57
58
59
60
61
LORA_CLIP_MAP = {
    "mlp.fc1": "mlp_fc1",
    "mlp.fc2": "mlp_fc2",
    "self_attn.k_proj": "self_attn_k_proj",
    "self_attn.q_proj": "self_attn_q_proj",
    "self_attn.v_proj": "self_attn_v_proj",
    "self_attn.out_proj": "self_attn_out_proj",
}

comfyanonymous's avatar
comfyanonymous committed
62
LORA_UNET_MAP_ATTENTIONS = {
63
64
65
66
    "proj_in": "proj_in",
    "proj_out": "proj_out",
}

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
transformer_lora_blocks = {
    "transformer_blocks.{}.attn1.to_q": "transformer_blocks_{}_attn1_to_q",
    "transformer_blocks.{}.attn1.to_k": "transformer_blocks_{}_attn1_to_k",
    "transformer_blocks.{}.attn1.to_v": "transformer_blocks_{}_attn1_to_v",
    "transformer_blocks.{}.attn1.to_out.0": "transformer_blocks_{}_attn1_to_out_0",
    "transformer_blocks.{}.attn2.to_q": "transformer_blocks_{}_attn2_to_q",
    "transformer_blocks.{}.attn2.to_k": "transformer_blocks_{}_attn2_to_k",
    "transformer_blocks.{}.attn2.to_v": "transformer_blocks_{}_attn2_to_v",
    "transformer_blocks.{}.attn2.to_out.0": "transformer_blocks_{}_attn2_to_out_0",
    "transformer_blocks.{}.ff.net.0.proj": "transformer_blocks_{}_ff_net_0_proj",
    "transformer_blocks.{}.ff.net.2": "transformer_blocks_{}_ff_net_2",
}

for i in range(10):
    for k in transformer_lora_blocks:
        LORA_UNET_MAP_ATTENTIONS[k.format(i)] = transformer_lora_blocks[k].format(i)


comfyanonymous's avatar
comfyanonymous committed
85
86
87
88
89
90
LORA_UNET_MAP_RESNET = {
    "in_layers.2": "resnets_{}_conv1",
    "emb_layers.1": "resnets_{}_time_emb_proj",
    "out_layers.3": "resnets_{}_conv2",
    "skip_connection": "resnets_{}_conv_shortcut"
}
91
92

def load_lora(path, to_load):
93
    lora = utils.load_torch_file(path, safe_load=True)
94
95
96
    patch_dict = {}
    loaded_keys = set()
    for x in to_load:
comfyanonymous's avatar
comfyanonymous committed
97
98
99
100
101
102
        alpha_name = "{}.alpha".format(x)
        alpha = None
        if alpha_name in lora.keys():
            alpha = lora[alpha_name].item()
            loaded_keys.add(alpha_name)

103
104
        A_name = "{}.lora_up.weight".format(x)
        B_name = "{}.lora_down.weight".format(x)
105
        mid_name = "{}.lora_mid.weight".format(x)
comfyanonymous's avatar
comfyanonymous committed
106

107
        if A_name in lora.keys():
108
109
110
111
112
            mid = None
            if mid_name in lora.keys():
                mid = lora[mid_name]
                loaded_keys.add(mid_name)
            patch_dict[to_load[x]] = (lora[A_name], lora[B_name], alpha, mid)
113
114
            loaded_keys.add(A_name)
            loaded_keys.add(B_name)
comfyanonymous's avatar
comfyanonymous committed
115

comfyanonymous's avatar
comfyanonymous committed
116
117

        ######## loha
comfyanonymous's avatar
comfyanonymous committed
118
119
120
121
        hada_w1_a_name = "{}.hada_w1_a".format(x)
        hada_w1_b_name = "{}.hada_w1_b".format(x)
        hada_w2_a_name = "{}.hada_w2_a".format(x)
        hada_w2_b_name = "{}.hada_w2_b".format(x)
122
123
        hada_t1_name = "{}.hada_t1".format(x)
        hada_t2_name = "{}.hada_t2".format(x)
comfyanonymous's avatar
comfyanonymous committed
124
        if hada_w1_a_name in lora.keys():
125
126
127
128
129
130
131
132
133
            hada_t1 = None
            hada_t2 = None
            if hada_t1_name in lora.keys():
                hada_t1 = lora[hada_t1_name]
                hada_t2 = lora[hada_t2_name]
                loaded_keys.add(hada_t1_name)
                loaded_keys.add(hada_t2_name)

            patch_dict[to_load[x]] = (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2)
comfyanonymous's avatar
comfyanonymous committed
134
135
136
137
138
            loaded_keys.add(hada_w1_a_name)
            loaded_keys.add(hada_w1_b_name)
            loaded_keys.add(hada_w2_a_name)
            loaded_keys.add(hada_w2_b_name)

comfyanonymous's avatar
comfyanonymous committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

        ######## lokr
        lokr_w1_name = "{}.lokr_w1".format(x)
        lokr_w2_name = "{}.lokr_w2".format(x)
        lokr_w1_a_name = "{}.lokr_w1_a".format(x)
        lokr_w1_b_name = "{}.lokr_w1_b".format(x)
        lokr_t2_name = "{}.lokr_t2".format(x)
        lokr_w2_a_name = "{}.lokr_w2_a".format(x)
        lokr_w2_b_name = "{}.lokr_w2_b".format(x)

        lokr_w1 = None
        if lokr_w1_name in lora.keys():
            lokr_w1 = lora[lokr_w1_name]
            loaded_keys.add(lokr_w1_name)

        lokr_w2 = None
        if lokr_w2_name in lora.keys():
            lokr_w2 = lora[lokr_w2_name]
            loaded_keys.add(lokr_w2_name)

        lokr_w1_a = None
        if lokr_w1_a_name in lora.keys():
            lokr_w1_a = lora[lokr_w1_a_name]
            loaded_keys.add(lokr_w1_a_name)

        lokr_w1_b = None
        if lokr_w1_b_name in lora.keys():
            lokr_w1_b = lora[lokr_w1_b_name]
            loaded_keys.add(lokr_w1_b_name)

        lokr_w2_a = None
        if lokr_w2_a_name in lora.keys():
            lokr_w2_a = lora[lokr_w2_a_name]
            loaded_keys.add(lokr_w2_a_name)

        lokr_w2_b = None
        if lokr_w2_b_name in lora.keys():
            lokr_w2_b = lora[lokr_w2_b_name]
            loaded_keys.add(lokr_w2_b_name)

        lokr_t2 = None
        if lokr_t2_name in lora.keys():
            lokr_t2 = lora[lokr_t2_name]
            loaded_keys.add(lokr_t2_name)

        if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
            patch_dict[to_load[x]] = (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2)

187
188
189
190
191
192
193
194
195
196
    for x in lora.keys():
        if x not in loaded_keys:
            print("lora key not loaded", x)
    return patch_dict

def model_lora_keys(model, key_map={}):
    sdk = model.state_dict().keys()

    counter = 0
    for b in range(12):
comfyanonymous's avatar
comfyanonymous committed
197
        tk = "diffusion_model.input_blocks.{}.1".format(b)
198
        up_counter = 0
comfyanonymous's avatar
comfyanonymous committed
199
        for c in LORA_UNET_MAP_ATTENTIONS:
200
201
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
202
                lora_key = "lora_unet_down_blocks_{}_attentions_{}_{}".format(counter // 2, counter % 2, LORA_UNET_MAP_ATTENTIONS[c])
203
                key_map[lora_key] = k
204
205
206
                up_counter += 1
        if up_counter >= 4:
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
207
    for c in LORA_UNET_MAP_ATTENTIONS:
comfyanonymous's avatar
comfyanonymous committed
208
        k = "diffusion_model.middle_block.1.{}.weight".format(c)
209
        if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
210
            lora_key = "lora_unet_mid_block_attentions_0_{}".format(LORA_UNET_MAP_ATTENTIONS[c])
211
            key_map[lora_key] = k
212
213
    counter = 3
    for b in range(12):
comfyanonymous's avatar
comfyanonymous committed
214
        tk = "diffusion_model.output_blocks.{}.1".format(b)
215
        up_counter = 0
comfyanonymous's avatar
comfyanonymous committed
216
        for c in LORA_UNET_MAP_ATTENTIONS:
217
218
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
219
                lora_key = "lora_unet_up_blocks_{}_attentions_{}_{}".format(counter // 3, counter % 3, LORA_UNET_MAP_ATTENTIONS[c])
220
                key_map[lora_key] = k
221
222
223
224
                up_counter += 1
        if up_counter >= 4:
            counter += 1
    counter = 0
comfyanonymous's avatar
comfyanonymous committed
225
    text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
226
    for b in range(24):
227
228
229
        for c in LORA_CLIP_MAP:
            k = "transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
230
                lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
231
                key_map[lora_key] = k
comfyanonymous's avatar
comfyanonymous committed
232

comfyanonymous's avatar
comfyanonymous committed
233
234
235
236
237

    #Locon stuff
    ds_counter = 0
    counter = 0
    for b in range(12):
comfyanonymous's avatar
comfyanonymous committed
238
        tk = "diffusion_model.input_blocks.{}.0".format(b)
comfyanonymous's avatar
comfyanonymous committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
        key_in = False
        for c in LORA_UNET_MAP_RESNET:
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
                lora_key = "lora_unet_down_blocks_{}_{}".format(counter // 2, LORA_UNET_MAP_RESNET[c].format(counter % 2))
                key_map[lora_key] = k
                key_in = True
        for bb in range(3):
            k = "{}.{}.op.weight".format(tk[:-2], bb)
            if k in sdk:
                lora_key = "lora_unet_down_blocks_{}_downsamplers_0_conv".format(ds_counter)
                key_map[lora_key] = k
                ds_counter += 1
        if key_in:
            counter += 1

    counter = 0
    for b in range(3):
comfyanonymous's avatar
comfyanonymous committed
257
        tk = "diffusion_model.middle_block.{}".format(b)
comfyanonymous's avatar
comfyanonymous committed
258
259
260
261
262
263
264
265
266
267
268
269
270
        key_in = False
        for c in LORA_UNET_MAP_RESNET:
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
                lora_key = "lora_unet_mid_block_{}".format(LORA_UNET_MAP_RESNET[c].format(counter))
                key_map[lora_key] = k
                key_in = True
        if key_in:
            counter += 1

    counter = 0
    us_counter = 0
    for b in range(12):
comfyanonymous's avatar
comfyanonymous committed
271
        tk = "diffusion_model.output_blocks.{}.0".format(b)
comfyanonymous's avatar
comfyanonymous committed
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
        key_in = False
        for c in LORA_UNET_MAP_RESNET:
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
                lora_key = "lora_unet_up_blocks_{}_{}".format(counter // 3, LORA_UNET_MAP_RESNET[c].format(counter % 3))
                key_map[lora_key] = k
                key_in = True
        for bb in range(3):
            k = "{}.{}.conv.weight".format(tk[:-2], bb)
            if k in sdk:
                lora_key = "lora_unet_up_blocks_{}_upsamplers_0_conv".format(us_counter)
                key_map[lora_key] = k
                us_counter += 1
        if key_in:
            counter += 1

288
289
290
291
292
    for k in sdk:
        if k.startswith("diffusion_model.") and k.endswith(".weight"):
            key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
            key_map["lora_unet_{}".format(key_lora)] = k

293
294
    return key_map

295

296
class ModelPatcher:
297
298
    def __init__(self, model, size=0):
        self.size = size
299
300
301
        self.model = model
        self.patches = []
        self.backup = {}
302
        self.model_options = {"transformer_options":{}}
303
304
305
306
307
308
309
310
311
312
313
        self.model_size()

    def model_size(self):
        if self.size > 0:
            return self.size
        model_sd = self.model.state_dict()
        size = 0
        for k in model_sd:
            t = model_sd[k]
            size += t.nelement() * t.element_size()
        self.size = size
314
        self.model_keys = set(model_sd.keys())
315
        return size
316
317

    def clone(self):
318
        n = ModelPatcher(self.model, self.size)
319
        n.patches = self.patches[:]
320
        n.model_options = copy.deepcopy(self.model_options)
321
        n.model_keys = self.model_keys
322
323
        return n

324
    def set_model_sampler_cfg_function(self, sampler_cfg_function):
325
326
327
328
        if len(inspect.signature(sampler_cfg_function).parameters) == 3:
            self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way
        else:
            self.model_options["sampler_cfg_function"] = sampler_cfg_function
329
330
331
332
333
334
335

    def set_model_patch(self, patch, name):
        to = self.model_options["transformer_options"]
        if "patches" not in to:
            to["patches"] = {}
        to["patches"][name] = to["patches"].get(name, []) + [patch]

336
337
338
339
340
341
342
343
    def set_model_patch_replace(self, patch, name, block_name, number):
        to = self.model_options["transformer_options"]
        if "patches_replace" not in to:
            to["patches_replace"] = {}
        if name not in to["patches_replace"]:
            to["patches_replace"][name] = {}
        to["patches_replace"][name][(block_name, number)] = patch

344
345
346
347
348
349
    def set_model_attn1_patch(self, patch):
        self.set_model_patch(patch, "attn1_patch")

    def set_model_attn2_patch(self, patch):
        self.set_model_patch(patch, "attn2_patch")

350
351
352
353
354
355
356
357
358
    def set_model_attn1_replace(self, patch, block_name, number):
        self.set_model_patch_replace(patch, "attn1", block_name, number)

    def set_model_attn2_replace(self, patch, block_name, number):
        self.set_model_patch_replace(patch, "attn2", block_name, number)

    def set_model_attn1_output_patch(self, patch):
        self.set_model_patch(patch, "attn1_output_patch")

359
360
361
    def set_model_attn2_output_patch(self, patch):
        self.set_model_patch(patch, "attn2_output_patch")

362
363
364
365
366
367
368
369
370
    def model_patches_to(self, device):
        to = self.model_options["transformer_options"]
        if "patches" in to:
            patches = to["patches"]
            for name in patches:
                patch_list = patches[name]
                for i in range(len(patch_list)):
                    if hasattr(patch_list[i], "to"):
                        patch_list[i] = patch_list[i].to(device)
371
372
373
374
375
376
377
        if "patches_replace" in to:
            patches = to["patches_replace"]
            for name in patches:
                patch_list = patches[name]
                for k in patch_list:
                    if hasattr(patch_list[k], "to"):
                        patch_list[k] = patch_list[k].to(device)
378

379
    def model_dtype(self):
comfyanonymous's avatar
comfyanonymous committed
380
        return self.model.get_dtype()
381

382
    def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
383
384
        p = {}
        for k in patches:
385
            if k in self.model_keys:
386
                p[k] = patches[k]
387
        self.patches += [(strength_patch, p, strength_model)]
388
389
        return p.keys()

390
    def model_state_dict(self, filter_prefix=None):
391
392
        sd = self.model.state_dict()
        keys = list(sd.keys())
393
394
395
396
        if filter_prefix is not None:
            for k in keys:
                if not k.startswith(filter_prefix):
                    sd.pop(k)
397
398
        return sd

399
    def patch_model(self):
400
        model_sd = self.model_state_dict()
401
402
403
        for p in self.patches:
            for k in p[1]:
                v = p[1][k]
404
                key = k
comfyanonymous's avatar
comfyanonymous committed
405
                if key not in model_sd:
406
407
408
                    print("could not patch. key doesn't exist in model:", k)
                    continue

comfyanonymous's avatar
comfyanonymous committed
409
410
411
                weight = model_sd[key]
                if key not in self.backup:
                    self.backup[key] = weight.clone()
412
413

                alpha = p[0]
414
415
416
417
                strength_model = p[2]

                if strength_model != 1.0:
                    weight *= strength_model
comfyanonymous's avatar
comfyanonymous committed
418

419
                if len(v) == 1:
420
421
422
423
424
                    w1 = v[0]
                    if w1.shape != weight.shape:
                        print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
                    else:
                        weight += alpha * w1.type(weight.dtype).to(weight.device)
425
                elif len(v) == 4: #lora/locon
comfyanonymous's avatar
comfyanonymous committed
426
427
428
429
430
431
432
433
434
                    mat1 = v[0]
                    mat2 = v[1]
                    if v[2] is not None:
                        alpha *= v[2] / mat2.shape[0]
                    if v[3] is not None:
                        #locon mid weights, hopefully the math is fine because I didn't properly test it
                        final_shape = [mat2.shape[1], mat2.shape[0], v[3].shape[2], v[3].shape[3]]
                        mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1).float(), v[3].transpose(0, 1).flatten(start_dim=1).float()).reshape(final_shape).transpose(0, 1)
                    weight += (alpha * torch.mm(mat1.flatten(start_dim=1).float(), mat2.flatten(start_dim=1).float())).reshape(weight.shape).type(weight.dtype).to(weight.device)
comfyanonymous's avatar
comfyanonymous committed
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
                elif len(v) == 8: #lokr
                    w1 = v[0]
                    w2 = v[1]
                    w1_a = v[3]
                    w1_b = v[4]
                    w2_a = v[5]
                    w2_b = v[6]
                    t2 = v[7]
                    dim = None

                    if w1 is None:
                        dim = w1_b.shape[0]
                        w1 = torch.mm(w1_a.float(), w1_b.float())

                    if w2 is None:
                        dim = w2_b.shape[0]
                        if t2 is None:
                            w2 = torch.mm(w2_a.float(), w2_b.float())
                        else:
                            w2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float(), w2_b.float(), w2_a.float())

                    if len(w2.shape) == 4:
                        w1 = w1.unsqueeze(2).unsqueeze(2)
                    if v[2] is not None and dim is not None:
                        alpha *= v[2] / dim

                    weight += alpha * torch.kron(w1.float(), w2.float()).reshape(weight.shape).type(weight.dtype).to(weight.device)
comfyanonymous's avatar
comfyanonymous committed
462
463
464
465
466
467
468
                else: #loha
                    w1a = v[0]
                    w1b = v[1]
                    if v[2] is not None:
                        alpha *= v[2] / w1b.shape[0]
                    w2a = v[3]
                    w2b = v[4]
469
470
471
472
473
474
475
476
477
478
                    if v[5] is not None: #cp decomposition
                        t1 = v[5]
                        t2 = v[6]
                        m1 = torch.einsum('i j k l, j r, i p -> p r k l', t1.float(), w1b.float(), w1a.float())
                        m2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float(), w2b.float(), w2a.float())
                    else:
                        m1 = torch.mm(w1a.float(), w1b.float())
                        m2 = torch.mm(w2a.float(), w2b.float())

                    weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype).to(weight.device)
479
480
        return self.model
    def unpatch_model(self):
481
        model_sd = self.model_state_dict()
482
483
        keys = list(self.backup.keys())
        for k in keys:
484
            model_sd[k][:] = self.backup[k]
485
486
            del self.backup[k]

487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
        self.backup = {}

def load_lora_for_models(model, clip, lora_path, strength_model, strength_clip):
    key_map = model_lora_keys(model.model)
    key_map = model_lora_keys(clip.cond_stage_model, key_map)
    loaded = load_lora(lora_path, key_map)
    new_modelpatcher = model.clone()
    k = new_modelpatcher.add_patches(loaded, strength_model)
    new_clip = clip.clone()
    k1 = new_clip.add_patches(loaded, strength_clip)
    k = set(k)
    k1 = set(k1)
    for x in loaded:
        if (x not in k) and (x not in k1):
            print("NOT LOADED", x)

    return (new_modelpatcher, new_clip)
comfyanonymous's avatar
comfyanonymous committed
504
505
506


class CLIP:
507
    def __init__(self, target=None, embedding_directory=None, no_init=False):
508
509
        if no_init:
            return
510
511
512
        params = target.params
        clip = target.clip
        tokenizer = target.tokenizer
513

514
515
        self.device = model_management.text_encoder_device()
        params["device"] = self.device
516
        self.cond_stage_model = clip(**(params))
517
518
        self.cond_stage_model = self.cond_stage_model.to(self.device)

519
        self.tokenizer = tokenizer(embedding_directory=embedding_directory)
520
        self.patcher = ModelPatcher(self.cond_stage_model)
521
        self.layer_idx = None
522
523
524
525
526
527

    def clone(self):
        n = CLIP(no_init=True)
        n.patcher = self.patcher.clone()
        n.cond_stage_model = self.cond_stage_model
        n.tokenizer = self.tokenizer
comfyanonymous's avatar
comfyanonymous committed
528
        n.layer_idx = self.layer_idx
529
        n.device = self.device
530
531
        return n

532
    def load_from_state_dict(self, sd):
533
        self.cond_stage_model.load_sd(sd)
534

535
536
    def add_patches(self, patches, strength=1.0):
        return self.patcher.add_patches(patches, strength)
comfyanonymous's avatar
comfyanonymous committed
537

538
    def clip_layer(self, layer_idx):
comfyanonymous's avatar
comfyanonymous committed
539
        self.layer_idx = layer_idx
540

541
542
    def tokenize(self, text, return_word_ids=False):
        return self.tokenizer.tokenize_with_weights(text, return_word_ids)
BlenderNeko's avatar
BlenderNeko committed
543

544
    def encode_from_tokens(self, tokens, return_pooled=False):
545
546
        if self.layer_idx is not None:
            self.cond_stage_model.clip_layer(self.layer_idx)
547
        try:
548
            self.patch_model()
549
            cond, pooled = self.cond_stage_model.encode_token_weights(tokens)
550
            self.unpatch_model()
551
        except Exception as e:
552
            self.unpatch_model()
553
            raise e
554
555

        cond_out = cond
556
        if return_pooled:
557
558
            return cond_out, pooled
        return cond_out
comfyanonymous's avatar
comfyanonymous committed
559

560
    def encode(self, text):
561
        tokens = self.tokenize(text)
562
563
        return self.encode_from_tokens(tokens)

564
565
    def load_sd(self, sd):
        return self.cond_stage_model.load_sd(sd)
566

567
568
569
570
571
572
573
574
575
    def get_sd(self):
        return self.cond_stage_model.state_dict()

    def patch_model(self):
        self.patcher.patch_model()

    def unpatch_model(self):
        self.patcher.unpatch_model()

comfyanonymous's avatar
comfyanonymous committed
576
class VAE:
577
    def __init__(self, ckpt_path=None, device=None, config=None):
comfyanonymous's avatar
comfyanonymous committed
578
579
580
        if config is None:
            #default SD1.x/SD2.x VAE parameters
            ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
581
            self.first_stage_model = AutoencoderKL(ddconfig, {'target': 'torch.nn.Identity'}, 4, monitor="val/rec_loss")
comfyanonymous's avatar
comfyanonymous committed
582
        else:
583
            self.first_stage_model = AutoencoderKL(**(config['params']))
comfyanonymous's avatar
comfyanonymous committed
584
        self.first_stage_model = self.first_stage_model.eval()
585
586
587
588
589
590
        if ckpt_path is not None:
            sd = utils.load_torch_file(ckpt_path)
            if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format
                sd = diffusers_convert.convert_vae_state_dict(sd)
            self.first_stage_model.load_state_dict(sd, strict=False)

591
592
        if device is None:
            device = model_management.get_torch_device()
comfyanonymous's avatar
comfyanonymous committed
593
594
        self.device = device

595
    def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
pythongosssss's avatar
pythongosssss committed
596
        steps = samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
comfyanonymous's avatar
comfyanonymous committed
597
598
        steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
        steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
pythongosssss's avatar
pythongosssss committed
599
        pbar = utils.ProgressBar(steps)
600

601
        decode_fn = lambda a: (self.first_stage_model.decode(a.to(self.device)) + 1.0)
602
        output = torch.clamp((
603
604
605
            (utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8, pbar = pbar) +
            utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8, pbar = pbar) +
             utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8, pbar = pbar))
606
607
608
            / 3.0) / 2.0, min=0.0, max=1.0)
        return output

609
610
611
612
613
614
    def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
        steps = pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
        steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
        steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
        pbar = utils.ProgressBar(steps)

615
        encode_fn = lambda a: self.first_stage_model.encode(2. * a.to(self.device) - 1.).sample()
616
617
618
619
620
621
        samples = utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
        samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
        samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
        samples /= 3.0
        return samples

622
    def decode(self, samples_in):
623
        model_management.unload_model()
comfyanonymous's avatar
comfyanonymous committed
624
        self.first_stage_model = self.first_stage_model.to(self.device)
625
        try:
626
627
628
629
630
631
632
            free_memory = model_management.get_free_memory(self.device)
            batch_number = int((free_memory * 0.7) / (2562 * samples_in.shape[2] * samples_in.shape[3] * 64))
            batch_number = max(1, batch_number)

            pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * 8), round(samples_in.shape[3] * 8)), device="cpu")
            for x in range(0, samples_in.shape[0], batch_number):
                samples = samples_in[x:x+batch_number].to(self.device)
633
                pixel_samples[x:x+batch_number] = torch.clamp((self.first_stage_model.decode(samples) + 1.0) / 2.0, min=0.0, max=1.0).cpu()
634
635
636
637
        except model_management.OOM_EXCEPTION as e:
            print("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
            pixel_samples = self.decode_tiled_(samples_in)

comfyanonymous's avatar
comfyanonymous committed
638
639
640
641
        self.first_stage_model = self.first_stage_model.cpu()
        pixel_samples = pixel_samples.cpu().movedim(1,-1)
        return pixel_samples

642
    def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16):
643
644
        model_management.unload_model()
        self.first_stage_model = self.first_stage_model.to(self.device)
645
        output = self.decode_tiled_(samples, tile_x, tile_y, overlap)
646
647
648
        self.first_stage_model = self.first_stage_model.cpu()
        return output.movedim(1,-1)

comfyanonymous's avatar
comfyanonymous committed
649
    def encode(self, pixel_samples):
650
        model_management.unload_model()
comfyanonymous's avatar
comfyanonymous committed
651
        self.first_stage_model = self.first_stage_model.to(self.device)
652
653
        pixel_samples = pixel_samples.movedim(-1,1)
        try:
654
655
656
            free_memory = model_management.get_free_memory(self.device)
            batch_number = int((free_memory * 0.7) / (2078 * pixel_samples.shape[2] * pixel_samples.shape[3])) #NOTE: this constant along with the one in the decode above are estimated from the mem usage for the VAE and could change.
            batch_number = max(1, batch_number)
657
658
659
            samples = torch.empty((pixel_samples.shape[0], 4, round(pixel_samples.shape[2] // 8), round(pixel_samples.shape[3] // 8)), device="cpu")
            for x in range(0, pixel_samples.shape[0], batch_number):
                pixels_in = (2. * pixel_samples[x:x+batch_number] - 1.).to(self.device)
660
                samples[x:x+batch_number] = self.first_stage_model.encode(pixels_in).sample().cpu()
661

662
663
664
665
        except model_management.OOM_EXCEPTION as e:
            print("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.")
            samples = self.encode_tiled_(pixel_samples)

comfyanonymous's avatar
comfyanonymous committed
666
667
668
        self.first_stage_model = self.first_stage_model.cpu()
        return samples

comfyanonymous's avatar
comfyanonymous committed
669
670
671
    def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
        model_management.unload_model()
        self.first_stage_model = self.first_stage_model.to(self.device)
672
673
        pixel_samples = pixel_samples.movedim(-1,1)
        samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap)
comfyanonymous's avatar
comfyanonymous committed
674
675
        self.first_stage_model = self.first_stage_model.cpu()
        return samples
676

677
678
679
680
    def get_sd(self):
        return self.first_stage_model.state_dict()


BlenderNeko's avatar
BlenderNeko committed
681
def broadcast_image_to(tensor, target_batch_size, batched_number):
682
    current_batch_size = tensor.shape[0]
683
    #print(current_batch_size, target_batch_size)
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
    if current_batch_size == 1:
        return tensor

    per_batch = target_batch_size // batched_number
    tensor = tensor[:per_batch]

    if per_batch > tensor.shape[0]:
        tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)

    current_batch_size = tensor.shape[0]
    if current_batch_size == target_batch_size:
        return tensor
    else:
        return torch.cat([tensor] * batched_number, dim=0)

comfyanonymous's avatar
comfyanonymous committed
699
class ControlNet:
700
    def __init__(self, control_model, global_average_pooling=False, device=None):
comfyanonymous's avatar
comfyanonymous committed
701
702
703
        self.control_model = control_model
        self.cond_hint_original = None
        self.cond_hint = None
704
        self.strength = 1.0
705
706
        if device is None:
            device = model_management.get_torch_device()
707
        self.device = device
comfyanonymous's avatar
comfyanonymous committed
708
        self.previous_controlnet = None
709
        self.global_average_pooling = global_average_pooling
comfyanonymous's avatar
comfyanonymous committed
710

711
    def get_control(self, x_noisy, t, cond, batched_number):
comfyanonymous's avatar
comfyanonymous committed
712
713
        control_prev = None
        if self.previous_controlnet is not None:
714
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
comfyanonymous's avatar
comfyanonymous committed
715

716
        output_dtype = x_noisy.dtype
comfyanonymous's avatar
comfyanonymous committed
717
718
719
720
        if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
            self.cond_hint = None
BlenderNeko's avatar
BlenderNeko committed
721
722
723
            self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(self.control_model.dtype).to(self.device)
        if x_noisy.shape[0] != self.cond_hint.shape[0]:
            self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
724
725
726
727
728
729

        if self.control_model.dtype == torch.float16:
            precision_scope = torch.autocast
        else:
            precision_scope = contextlib.nullcontext

730
        with precision_scope(model_management.get_autocast_device(self.device)):
731
            self.control_model = model_management.load_if_low_vram(self.control_model)
732
733
734
            context = torch.cat(cond['c_crossattn'], 1)
            y = cond.get('c_adm', None)
            control = self.control_model(x=x_noisy, hint=self.cond_hint, timesteps=t, context=context, y=y)
735
            self.control_model = model_management.unload_if_low_vram(self.control_model)
736
        out = {'middle':[], 'output': []}
737
        autocast_enabled = torch.is_autocast_enabled()
comfyanonymous's avatar
comfyanonymous committed
738
739

        for i in range(len(control)):
comfyanonymous's avatar
comfyanonymous committed
740
741
742
743
744
745
            if i == (len(control) - 1):
                key = 'middle'
                index = 0
            else:
                key = 'output'
                index = i
comfyanonymous's avatar
comfyanonymous committed
746
            x = control[i]
747
748
749
            if self.global_average_pooling:
                x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])

750
            x *= self.strength
751
752
            if x.dtype != output_dtype and not autocast_enabled:
                x = x.to(output_dtype)
comfyanonymous's avatar
comfyanonymous committed
753

comfyanonymous's avatar
comfyanonymous committed
754
755
756
757
758
759
760
            if control_prev is not None and key in control_prev:
                prev = control_prev[key][index]
                if prev is not None:
                    x += prev
            out[key].append(x)
        if control_prev is not None and 'input' in control_prev:
            out['input'] = control_prev['input']
761
        return out
comfyanonymous's avatar
comfyanonymous committed
762

763
    def set_cond_hint(self, cond_hint, strength=1.0):
comfyanonymous's avatar
comfyanonymous committed
764
        self.cond_hint_original = cond_hint
765
        self.strength = strength
comfyanonymous's avatar
comfyanonymous committed
766
767
        return self

comfyanonymous's avatar
comfyanonymous committed
768
769
770
771
    def set_previous_controlnet(self, controlnet):
        self.previous_controlnet = controlnet
        return self

comfyanonymous's avatar
comfyanonymous committed
772
    def cleanup(self):
comfyanonymous's avatar
comfyanonymous committed
773
774
        if self.previous_controlnet is not None:
            self.previous_controlnet.cleanup()
comfyanonymous's avatar
comfyanonymous committed
775
776
777
778
779
        if self.cond_hint is not None:
            del self.cond_hint
            self.cond_hint = None

    def copy(self):
780
        c = ControlNet(self.control_model, global_average_pooling=self.global_average_pooling)
comfyanonymous's avatar
comfyanonymous committed
781
        c.cond_hint_original = self.cond_hint_original
782
        c.strength = self.strength
comfyanonymous's avatar
comfyanonymous committed
783
784
        return c

785
    def get_models(self):
comfyanonymous's avatar
comfyanonymous committed
786
787
        out = []
        if self.previous_controlnet is not None:
788
            out += self.previous_controlnet.get_models()
comfyanonymous's avatar
comfyanonymous committed
789
790
791
        out.append(self.control_model)
        return out

792
def load_controlnet(ckpt_path, model=None):
793
    controlnet_data = utils.load_torch_file(ckpt_path, safe_load=True)
794
    pth_key = 'control_model.zero_convs.0.0.weight'
comfyanonymous's avatar
comfyanonymous committed
795
    pth = False
796
    key = 'zero_convs.0.0.weight'
comfyanonymous's avatar
comfyanonymous committed
797
798
799
    if pth_key in controlnet_data:
        pth = True
        key = pth_key
800
        prefix = "control_model."
comfyanonymous's avatar
comfyanonymous committed
801
    elif key in controlnet_data:
802
        prefix = ""
comfyanonymous's avatar
comfyanonymous committed
803
    else:
804
805
806
807
        net = load_t2i_adapter(controlnet_data)
        if net is None:
            print("error checkpoint does not contain controlnet or t2i adapter data", ckpt_path)
        return net
comfyanonymous's avatar
comfyanonymous committed
808

809
810
811
812
813
814
815
    use_fp16 = model_management.should_use_fp16()

    controlnet_config = model_detection.model_config_from_unet(controlnet_data, prefix, use_fp16).unet_config
    controlnet_config.pop("out_channels")
    controlnet_config["hint_channels"] = 3
    control_model = cldm.ControlNet(**controlnet_config)

comfyanonymous's avatar
comfyanonymous committed
816
    if pth:
817
818
819
820
821
822
823
        if 'difference' in controlnet_data:
            if model is not None:
                m = model.patch_model()
                model_sd = m.state_dict()
                for x in controlnet_data:
                    c_m = "control_model."
                    if x.startswith(c_m):
comfyanonymous's avatar
comfyanonymous committed
824
                        sd_key = "diffusion_model.{}".format(x[len(c_m):])
825
826
827
828
829
830
831
                        if sd_key in model_sd:
                            cd = controlnet_data[x]
                            cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
                model.unpatch_model()
            else:
                print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")

comfyanonymous's avatar
comfyanonymous committed
832
833
834
835
        class WeightsLoader(torch.nn.Module):
            pass
        w = WeightsLoader()
        w.control_model = control_model
836
        missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
comfyanonymous's avatar
comfyanonymous committed
837
    else:
838
839
        missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
    print(missing, unexpected)
comfyanonymous's avatar
comfyanonymous committed
840

841
842
843
    if use_fp16:
        control_model = control_model.half()

844
845
846
847
848
    global_average_pooling = False
    if ckpt_path.endswith("_shuffle.pth") or ckpt_path.endswith("_shuffle.safetensors") or ckpt_path.endswith("_shuffle_fp16.safetensors"): #TODO: smarter way of enabling global_average_pooling
        global_average_pooling = True

    control = ControlNet(control_model, global_average_pooling=global_average_pooling)
comfyanonymous's avatar
comfyanonymous committed
849
850
    return control

851
class T2IAdapter:
852
    def __init__(self, t2i_model, channels_in, device=None):
853
854
855
        self.t2i_model = t2i_model
        self.channels_in = channels_in
        self.strength = 1.0
856
857
        if device is None:
            device = model_management.get_torch_device()
858
859
860
861
862
863
        self.device = device
        self.previous_controlnet = None
        self.control_input = None
        self.cond_hint_original = None
        self.cond_hint = None

864
    def get_control(self, x_noisy, t, cond, batched_number):
865
866
        control_prev = None
        if self.previous_controlnet is not None:
867
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
868
869
870
871

        if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
BlenderNeko's avatar
BlenderNeko committed
872
            self.control_input = None
873
            self.cond_hint = None
BlenderNeko's avatar
BlenderNeko committed
874
            self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").float().to(self.device)
875
876
            if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
                self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
BlenderNeko's avatar
BlenderNeko committed
877
878
879
        if x_noisy.shape[0] != self.cond_hint.shape[0]:
            self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
        if self.control_input is None:
880
881
882
883
884
885
886
            self.t2i_model.to(self.device)
            self.control_input = self.t2i_model(self.cond_hint)
            self.t2i_model.cpu()

        output_dtype = x_noisy.dtype
        out = {'input':[]}

comfyanonymous's avatar
comfyanonymous committed
887
        autocast_enabled = torch.is_autocast_enabled()
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
        for i in range(len(self.control_input)):
            key = 'input'
            x = self.control_input[i] * self.strength
            if x.dtype != output_dtype and not autocast_enabled:
                x = x.to(output_dtype)

            if control_prev is not None and key in control_prev:
                index = len(control_prev[key]) - i * 3 - 3
                prev = control_prev[key][index]
                if prev is not None:
                    x += prev
            out[key].insert(0, None)
            out[key].insert(0, None)
            out[key].insert(0, x)

        if control_prev is not None and 'input' in control_prev:
            for i in range(len(out['input'])):
                if out['input'][i] is None:
                    out['input'][i] = control_prev['input'][i]
        if control_prev is not None and 'middle' in control_prev:
            out['middle'] = control_prev['middle']
        if control_prev is not None and 'output' in control_prev:
            out['output'] = control_prev['output']
        return out

    def set_cond_hint(self, cond_hint, strength=1.0):
        self.cond_hint_original = cond_hint
        self.strength = strength
        return self

    def set_previous_controlnet(self, controlnet):
        self.previous_controlnet = controlnet
        return self

    def copy(self):
        c = T2IAdapter(self.t2i_model, self.channels_in)
        c.cond_hint_original = self.cond_hint_original
        c.strength = self.strength
        return c

    def cleanup(self):
        if self.previous_controlnet is not None:
            self.previous_controlnet.cleanup()
        if self.cond_hint is not None:
            del self.cond_hint
            self.cond_hint = None

935
    def get_models(self):
936
937
        out = []
        if self.previous_controlnet is not None:
938
            out += self.previous_controlnet.get_models()
939
940
        return out

941
def load_t2i_adapter(t2i_data):
942
    keys = t2i_data.keys()
943
944
945
    if 'adapter' in keys:
        t2i_data = t2i_data['adapter']
        keys = t2i_data.keys()
946
    if "body.0.in_conv.weight" in keys:
947
948
        cin = t2i_data['body.0.in_conv.weight'].shape[1]
        model_ad = adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
949
    elif 'conv_in.weight' in keys:
950
        cin = t2i_data['conv_in.weight'].shape[1]
951
952
953
954
955
956
957
        channel = t2i_data['conv_in.weight'].shape[0]
        ksize = t2i_data['body.0.block2.weight'].shape[2]
        use_conv = False
        down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys))
        if len(down_opts) > 0:
            use_conv = True
        model_ad = adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv)
958
959
    else:
        return None
960
961
    model_ad.load_state_dict(t2i_data)
    return T2IAdapter(model_ad, cin // 64)
comfyanonymous's avatar
comfyanonymous committed
962

963
964
965
966
967
968
969
970
971
972

class StyleModel:
    def __init__(self, model, device="cpu"):
        self.model = model

    def get_cond(self, input):
        return self.model(input.last_hidden_state)


def load_style_model(ckpt_path):
973
    model_data = utils.load_torch_file(ckpt_path, safe_load=True)
974
975
976
977
978
979
980
981
982
    keys = model_data.keys()
    if "style_embedding" in keys:
        model = adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
    else:
        raise Exception("invalid style model {}".format(ckpt_path))
    model.load_state_dict(model_data)
    return StyleModel(model)


983
984
985
986
987
def load_clip(ckpt_paths, embedding_directory=None):
    clip_data = []
    for p in ckpt_paths:
        clip_data.append(utils.load_torch_file(p, safe_load=True))

comfyanonymous's avatar
comfyanonymous committed
988
989
990
    class EmptyClass:
        pass

991
992
993
994
    for i in range(len(clip_data)):
        if "transformer.resblocks.0.ln_1.weight" in clip_data[i]:
            clip_data[i] = utils.transformers_convert(clip_data[i], "", "text_model.", 32)

comfyanonymous's avatar
comfyanonymous committed
995
996
    clip_target = EmptyClass()
    clip_target.params = {}
997
998
999
1000
1001
1002
1003
1004
1005
1006
    if len(clip_data) == 1:
        if "text_model.encoder.layers.30.mlp.fc1.weight" in clip_data[0]:
            clip_target.clip = sdxl_clip.SDXLRefinerClipModel
            clip_target.tokenizer = sdxl_clip.SDXLTokenizer
        elif "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data[0]:
            clip_target.clip = sd2_clip.SD2ClipModel
            clip_target.tokenizer = sd2_clip.SD2Tokenizer
        else:
            clip_target.clip = sd1_clip.SD1ClipModel
            clip_target.tokenizer = sd1_clip.SD1Tokenizer
1007
    else:
1008
1009
        clip_target.clip = sdxl_clip.SDXLClipModel
        clip_target.tokenizer = sdxl_clip.SDXLTokenizer
comfyanonymous's avatar
comfyanonymous committed
1010
1011

    clip = CLIP(clip_target, embedding_directory=embedding_directory)
1012
1013
1014
1015
1016
1017
1018
    for c in clip_data:
        m, u = clip.load_sd(c)
        if len(m) > 0:
            print("clip missing:", m)

        if len(u) > 0:
            print("clip unexpected:", u)
1019
    return clip
comfyanonymous's avatar
comfyanonymous committed
1020

1021
def load_gligen(ckpt_path):
1022
    data = utils.load_torch_file(ckpt_path, safe_load=True)
1023
1024
1025
1026
1027
    model = gligen.load_gligen(data)
    if model_management.should_use_fp16():
        model = model.half()
    return model

comfyanonymous's avatar
comfyanonymous committed
1028
def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None):
1029
    #TODO: this function is a mess and should be removed eventually
comfyanonymous's avatar
comfyanonymous committed
1030
1031
1032
    if config is None:
        with open(config_path, 'r') as stream:
            config = yaml.safe_load(stream)
comfyanonymous's avatar
comfyanonymous committed
1033
1034
1035
1036
1037
    model_config_params = config['model']['params']
    clip_config = model_config_params['cond_stage_config']
    scale_factor = model_config_params['scale_factor']
    vae_config = model_config_params['first_stage_config']

1038
1039
1040
    fp16 = False
    if "unet_config" in model_config_params:
        if "params" in model_config_params["unet_config"]:
comfyanonymous's avatar
comfyanonymous committed
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
            unet_config = model_config_params["unet_config"]["params"]
            if "use_fp16" in unet_config:
                fp16 = unet_config["use_fp16"]

    noise_aug_config = None
    if "noise_aug_config" in model_config_params:
        noise_aug_config = model_config_params["noise_aug_config"]

    v_prediction = False

    if "parameterization" in model_config_params:
        if model_config_params["parameterization"] == "v":
            v_prediction = True
1054

comfyanonymous's avatar
comfyanonymous committed
1055
1056
1057
1058
1059
1060
    clip = None
    vae = None

    class WeightsLoader(torch.nn.Module):
        pass

1061
1062
    if state_dict is None:
        state_dict = utils.load_torch_file(ckpt_path)
comfyanonymous's avatar
comfyanonymous committed
1063

1064
1065
1066
1067
1068
1069
1070
1071
    class EmptyClass:
        pass

    model_config = EmptyClass()
    model_config.unet_config = unet_config
    from . import latent_formats
    model_config.latent_format = latent_formats.SD15(scale_factor=scale_factor)

comfyanonymous's avatar
comfyanonymous committed
1072
    if config['model']["target"].endswith("LatentInpaintDiffusion"):
1073
        model = model_base.SDInpaint(model_config, v_prediction=v_prediction)
comfyanonymous's avatar
comfyanonymous committed
1074
    elif config['model']["target"].endswith("ImageEmbeddingConditionedLatentDiffusion"):
1075
        model = model_base.SD21UNCLIP(model_config, noise_aug_config["params"], v_prediction=v_prediction)
comfyanonymous's avatar
comfyanonymous committed
1076
    else:
1077
        model = model_base.BaseModel(model_config, v_prediction=v_prediction)
comfyanonymous's avatar
comfyanonymous committed
1078

1079
1080
1081
    if fp16:
        model = model.half()

1082
1083
1084
1085
    model.load_model_weights(state_dict, "model.diffusion_model.")

    if output_vae:
        w = WeightsLoader()
1086
        vae = VAE(config=vae_config)
1087
1088
1089
1090
1091
1092
        w.first_stage_model = vae.first_stage_model
        load_model_weights(w, state_dict)

    if output_clip:
        w = WeightsLoader()
        clip_target = EmptyClass()
1093
        clip_target.params = clip_config.get("params", {})
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
        if clip_config["target"].endswith("FrozenOpenCLIPEmbedder"):
            clip_target.clip = sd2_clip.SD2ClipModel
            clip_target.tokenizer = sd2_clip.SD2Tokenizer
        elif clip_config["target"].endswith("FrozenCLIPEmbedder"):
            clip_target.clip = sd1_clip.SD1ClipModel
            clip_target.tokenizer = sd1_clip.SD1Tokenizer
        clip = CLIP(clip_target, embedding_directory=embedding_directory)
        w.cond_stage_model = clip.cond_stage_model
        load_clip_weights(w, state_dict)

1104
    return (ModelPatcher(model), clip, vae)
1105
1106


1107
1108
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None):
    sd = utils.load_torch_file(ckpt_path)
1109
1110
    sd_keys = sd.keys()
    clip = None
1111
    clipvision = None
1112
    vae = None
1113
1114
    model = None
    clip_target = None
1115

1116
1117
    fp16 = model_management.should_use_fp16()

1118
1119
1120
    class WeightsLoader(torch.nn.Module):
        pass

1121
1122
1123
    model_config = model_detection.model_config_from_unet(sd, "model.diffusion_model.", fp16)
    if model_config is None:
        raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path))
1124

1125
    if model_config.clip_vision_prefix is not None:
1126
        if output_clipvision:
1127
            clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True)
1128

1129
1130
    model = model_config.get_model(sd)
    model.load_model_weights(sd, "model.diffusion_model.")
1131

1132
    if output_vae:
1133
        vae = VAE()
1134
1135
1136
        w = WeightsLoader()
        w.first_stage_model = vae.first_stage_model
        load_model_weights(w, sd)
1137

1138
1139
1140
1141
1142
1143
1144
    if output_clip:
        w = WeightsLoader()
        clip_target = model_config.clip_target()
        clip = CLIP(clip_target, embedding_directory=embedding_directory)
        w.cond_stage_model = clip.cond_stage_model
        sd = model_config.process_clip_state_dict(sd)
        load_model_weights(w, sd)
comfyanonymous's avatar
comfyanonymous committed
1145

1146
1147
1148
    left_over = sd.keys()
    if len(left_over) > 0:
        print("left over keys:", left_over)
1149

1150
    return (ModelPatcher(model), clip, vae, clipvision)
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163

def save_checkpoint(output_path, model, clip, vae, metadata=None):
    try:
        model.patch_model()
        clip.patch_model()
        sd = model.model.state_dict_for_saving(clip.get_sd(), vae.get_sd())
        utils.save_torch_file(sd, output_path, metadata=metadata)
        model.unpatch_model()
        clip.unpatch_model()
    except Exception as e:
        model.unpatch_model()
        clip.unpatch_model()
        raise e