sd.py 48.7 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
import torch
2
import contextlib
3
import copy
4
import inspect
comfyanonymous's avatar
comfyanonymous committed
5

6
from comfy import model_management
7
8
from .ldm.util import instantiate_from_config
from .ldm.models.autoencoder import AutoencoderKL
9
import yaml
comfyanonymous's avatar
comfyanonymous committed
10
from .cldm import cldm
11
from .t2i_adapter import adapter
comfyanonymous's avatar
comfyanonymous committed
12
13

from . import utils
14
from . import clip_vision
15
from . import gligen
16
from . import diffusers_convert
comfyanonymous's avatar
comfyanonymous committed
17
from . import model_base
18
from . import model_detection
19

20
21
from . import sd1_clip
from . import sd2_clip
22
from . import sdxl_clip
comfyanonymous's avatar
comfyanonymous committed
23

24
def load_model_weights(model, sd):
comfyanonymous's avatar
comfyanonymous committed
25
    m, u = model.load_state_dict(sd, strict=False)
26
27
    m = set(m)
    unexpected_keys = set(u)
comfyanonymous's avatar
comfyanonymous committed
28
29
30

    k = list(sd.keys())
    for x in k:
31
32
33
34
35
36
37
38
39
40
        if x not in unexpected_keys:
            w = sd.pop(x)
            del w
    if len(m) > 0:
        print("missing", m)
    return model

def load_clip_weights(model, sd):
    k = list(sd.keys())
    for x in k:
comfyanonymous's avatar
comfyanonymous committed
41
42
43
44
        if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
            y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
            sd[y] = sd.pop(x)

comfyanonymous's avatar
comfyanonymous committed
45
46
47
48
    if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in sd:
        ids = sd['cond_stage_model.transformer.text_model.embeddings.position_ids']
        if ids.dtype == torch.float32:
            sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
49

50
51
    sd = utils.transformers_convert(sd, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24)
    return load_model_weights(model, sd)
comfyanonymous's avatar
comfyanonymous committed
52

53
54
55
56
57
58
59
60
61
62
LORA_CLIP_MAP = {
    "mlp.fc1": "mlp_fc1",
    "mlp.fc2": "mlp_fc2",
    "self_attn.k_proj": "self_attn_k_proj",
    "self_attn.q_proj": "self_attn_q_proj",
    "self_attn.v_proj": "self_attn_v_proj",
    "self_attn.out_proj": "self_attn_out_proj",
}


63
def load_lora(lora, to_load):
64
65
66
    patch_dict = {}
    loaded_keys = set()
    for x in to_load:
comfyanonymous's avatar
comfyanonymous committed
67
68
69
70
71
72
        alpha_name = "{}.alpha".format(x)
        alpha = None
        if alpha_name in lora.keys():
            alpha = lora[alpha_name].item()
            loaded_keys.add(alpha_name)

73
74
        A_name = "{}.lora_up.weight".format(x)
        B_name = "{}.lora_down.weight".format(x)
75
        mid_name = "{}.lora_mid.weight".format(x)
comfyanonymous's avatar
comfyanonymous committed
76

77
        if A_name in lora.keys():
78
79
80
81
82
            mid = None
            if mid_name in lora.keys():
                mid = lora[mid_name]
                loaded_keys.add(mid_name)
            patch_dict[to_load[x]] = (lora[A_name], lora[B_name], alpha, mid)
83
84
            loaded_keys.add(A_name)
            loaded_keys.add(B_name)
comfyanonymous's avatar
comfyanonymous committed
85

comfyanonymous's avatar
comfyanonymous committed
86
87

        ######## loha
comfyanonymous's avatar
comfyanonymous committed
88
89
90
91
        hada_w1_a_name = "{}.hada_w1_a".format(x)
        hada_w1_b_name = "{}.hada_w1_b".format(x)
        hada_w2_a_name = "{}.hada_w2_a".format(x)
        hada_w2_b_name = "{}.hada_w2_b".format(x)
92
93
        hada_t1_name = "{}.hada_t1".format(x)
        hada_t2_name = "{}.hada_t2".format(x)
comfyanonymous's avatar
comfyanonymous committed
94
        if hada_w1_a_name in lora.keys():
95
96
97
98
99
100
101
102
103
            hada_t1 = None
            hada_t2 = None
            if hada_t1_name in lora.keys():
                hada_t1 = lora[hada_t1_name]
                hada_t2 = lora[hada_t2_name]
                loaded_keys.add(hada_t1_name)
                loaded_keys.add(hada_t2_name)

            patch_dict[to_load[x]] = (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2)
comfyanonymous's avatar
comfyanonymous committed
104
105
106
107
108
            loaded_keys.add(hada_w1_a_name)
            loaded_keys.add(hada_w1_b_name)
            loaded_keys.add(hada_w2_a_name)
            loaded_keys.add(hada_w2_b_name)

comfyanonymous's avatar
comfyanonymous committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

        ######## lokr
        lokr_w1_name = "{}.lokr_w1".format(x)
        lokr_w2_name = "{}.lokr_w2".format(x)
        lokr_w1_a_name = "{}.lokr_w1_a".format(x)
        lokr_w1_b_name = "{}.lokr_w1_b".format(x)
        lokr_t2_name = "{}.lokr_t2".format(x)
        lokr_w2_a_name = "{}.lokr_w2_a".format(x)
        lokr_w2_b_name = "{}.lokr_w2_b".format(x)

        lokr_w1 = None
        if lokr_w1_name in lora.keys():
            lokr_w1 = lora[lokr_w1_name]
            loaded_keys.add(lokr_w1_name)

        lokr_w2 = None
        if lokr_w2_name in lora.keys():
            lokr_w2 = lora[lokr_w2_name]
            loaded_keys.add(lokr_w2_name)

        lokr_w1_a = None
        if lokr_w1_a_name in lora.keys():
            lokr_w1_a = lora[lokr_w1_a_name]
            loaded_keys.add(lokr_w1_a_name)

        lokr_w1_b = None
        if lokr_w1_b_name in lora.keys():
            lokr_w1_b = lora[lokr_w1_b_name]
            loaded_keys.add(lokr_w1_b_name)

        lokr_w2_a = None
        if lokr_w2_a_name in lora.keys():
            lokr_w2_a = lora[lokr_w2_a_name]
            loaded_keys.add(lokr_w2_a_name)

        lokr_w2_b = None
        if lokr_w2_b_name in lora.keys():
            lokr_w2_b = lora[lokr_w2_b_name]
            loaded_keys.add(lokr_w2_b_name)

        lokr_t2 = None
        if lokr_t2_name in lora.keys():
            lokr_t2 = lora[lokr_t2_name]
            loaded_keys.add(lokr_t2_name)

        if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
            patch_dict[to_load[x]] = (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2)

157
158
159
160
161
    for x in lora.keys():
        if x not in loaded_keys:
            print("lora key not loaded", x)
    return patch_dict

162
def model_lora_keys_clip(model, key_map={}):
163
164
    sdk = model.state_dict().keys()

comfyanonymous's avatar
comfyanonymous committed
165
    text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
166
167
    clip_l_present = False
    for b in range(32):
168
169
170
        for c in LORA_CLIP_MAP:
            k = "transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
171
                lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
172
                key_map[lora_key] = k
comfyanonymous's avatar
comfyanonymous committed
173

174
175
176
177
178
179
180
181
182
183
184
185
186
187
            k = "clip_l.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
                lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
                key_map[lora_key] = k
                clip_l_present = True

            k = "clip_g.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
                if clip_l_present:
                    lora_key = "lora_te2_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
                else:
                    lora_key = "lora_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #TODO: test if this is correct for SDXL-Refiner
                key_map[lora_key] = k

188
    return key_map
comfyanonymous's avatar
comfyanonymous committed
189

190
191
def model_lora_keys_unet(model, key_map={}):
    sdk = model.state_dict().keys()
comfyanonymous's avatar
comfyanonymous committed
192

193
194
195
196
197
    for k in sdk:
        if k.startswith("diffusion_model.") and k.endswith(".weight"):
            key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
            key_map["lora_unet_{}".format(key_lora)] = k

198
199
200
201
202
    diffusers_keys = utils.unet_to_diffusers(model.model_config.unet_config)
    for k in diffusers_keys:
        if k.endswith(".weight"):
            key_lora = k[:-len(".weight")].replace(".", "_")
            key_map["lora_unet_{}".format(key_lora)] = "diffusion_model.{}".format(diffusers_keys[k])
203
204
205
    return key_map

class ModelPatcher:
206
    def __init__(self, model, load_device, offload_device, size=0):
207
        self.size = size
208
        self.model = model
209
        self.patches = {}
210
        self.backup = {}
211
        self.model_options = {"transformer_options":{}}
212
        self.model_size()
213
214
        self.load_device = load_device
        self.offload_device = offload_device
215
216
217
218
219
220
221
222
223
224

    def model_size(self):
        if self.size > 0:
            return self.size
        model_sd = self.model.state_dict()
        size = 0
        for k in model_sd:
            t = model_sd[k]
            size += t.nelement() * t.element_size()
        self.size = size
225
        self.model_keys = set(model_sd.keys())
226
        return size
227
228

    def clone(self):
229
        n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size)
230
231
232
233
        n.patches = {}
        for k in self.patches:
            n.patches[k] = self.patches[k][:]

234
        n.model_options = copy.deepcopy(self.model_options)
235
        n.model_keys = self.model_keys
236
237
        return n

238
    def set_model_sampler_cfg_function(self, sampler_cfg_function):
239
240
241
242
        if len(inspect.signature(sampler_cfg_function).parameters) == 3:
            self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way
        else:
            self.model_options["sampler_cfg_function"] = sampler_cfg_function
243

244
245
246
    def set_model_unet_function_wrapper(self, unet_wrapper_function):
        self.model_options["model_function_wrapper"] = unet_wrapper_function

247
248
249
250
251
252
    def set_model_patch(self, patch, name):
        to = self.model_options["transformer_options"]
        if "patches" not in to:
            to["patches"] = {}
        to["patches"][name] = to["patches"].get(name, []) + [patch]

253
254
255
256
257
258
259
260
    def set_model_patch_replace(self, patch, name, block_name, number):
        to = self.model_options["transformer_options"]
        if "patches_replace" not in to:
            to["patches_replace"] = {}
        if name not in to["patches_replace"]:
            to["patches_replace"][name] = {}
        to["patches_replace"][name][(block_name, number)] = patch

261
262
263
264
265
266
    def set_model_attn1_patch(self, patch):
        self.set_model_patch(patch, "attn1_patch")

    def set_model_attn2_patch(self, patch):
        self.set_model_patch(patch, "attn2_patch")

267
268
269
270
271
272
273
274
275
    def set_model_attn1_replace(self, patch, block_name, number):
        self.set_model_patch_replace(patch, "attn1", block_name, number)

    def set_model_attn2_replace(self, patch, block_name, number):
        self.set_model_patch_replace(patch, "attn2", block_name, number)

    def set_model_attn1_output_patch(self, patch):
        self.set_model_patch(patch, "attn1_output_patch")

276
277
278
    def set_model_attn2_output_patch(self, patch):
        self.set_model_patch(patch, "attn2_output_patch")

279
280
281
282
283
284
285
286
287
    def model_patches_to(self, device):
        to = self.model_options["transformer_options"]
        if "patches" in to:
            patches = to["patches"]
            for name in patches:
                patch_list = patches[name]
                for i in range(len(patch_list)):
                    if hasattr(patch_list[i], "to"):
                        patch_list[i] = patch_list[i].to(device)
288
289
290
291
292
293
294
        if "patches_replace" in to:
            patches = to["patches_replace"]
            for name in patches:
                patch_list = patches[name]
                for k in patch_list:
                    if hasattr(patch_list[k], "to"):
                        patch_list[k] = patch_list[k].to(device)
295

296
    def model_dtype(self):
297
298
        if hasattr(self.model, "get_dtype"):
            return self.model.get_dtype()
299

300
    def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
301
        p = set()
302
        for k in patches:
303
            if k in self.model_keys:
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
                p.add(k)
                current_patches = self.patches.get(k, [])
                current_patches.append((strength_patch, patches[k], strength_model))
                self.patches[k] = current_patches

        return list(p)

    def get_key_patches(self, filter_prefix=None):
        model_sd = self.model_state_dict()
        p = {}
        for k in model_sd:
            if filter_prefix is not None:
                if not k.startswith(filter_prefix):
                    continue
            if k in self.patches:
                p[k] = [model_sd[k]] + self.patches[k]
            else:
                p[k] = (model_sd[k],)
        return p
323

324
    def model_state_dict(self, filter_prefix=None):
325
326
        sd = self.model.state_dict()
        keys = list(sd.keys())
327
328
329
330
        if filter_prefix is not None:
            for k in keys:
                if not k.startswith(filter_prefix):
                    sd.pop(k)
331
332
        return sd

333
    def patch_model(self):
334
        model_sd = self.model_state_dict()
335
336
337
338
        for key in self.patches:
            if key not in model_sd:
                print("could not patch. key doesn't exist in model:", k)
                continue
339

340
            weight = model_sd[key]
341

342
343
            if key not in self.backup:
                self.backup[key] = weight.clone()
344

345
346
347
            temp_weight = weight.to(torch.float32, copy=True)
            weight[:] = self.calculate_weight(self.patches[key], temp_weight, key).to(weight.dtype)
            del temp_weight
348
        return self.model
comfyanonymous's avatar
comfyanonymous committed
349

350
351
352
353
354
355
356
357
358
359
360
361
362
363
    def calculate_weight(self, patches, weight, key):
        for p in patches:
            alpha = p[0]
            v = p[1]
            strength_model = p[2]

            if strength_model != 1.0:
                weight *= strength_model

            if isinstance(v, list):
                v = (self.calculate_weight(v[1:], v[0].clone(), key), )

            if len(v) == 1:
                w1 = v[0]
364
365
366
367
368
                if alpha != 0.0:
                    if w1.shape != weight.shape:
                        print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
                    else:
                        weight += alpha * w1.type(weight.dtype).to(weight.device)
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
            elif len(v) == 4: #lora/locon
                mat1 = v[0]
                mat2 = v[1]
                if v[2] is not None:
                    alpha *= v[2] / mat2.shape[0]
                if v[3] is not None:
                    #locon mid weights, hopefully the math is fine because I didn't properly test it
                    final_shape = [mat2.shape[1], mat2.shape[0], v[3].shape[2], v[3].shape[3]]
                    mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1).float(), v[3].transpose(0, 1).flatten(start_dim=1).float()).reshape(final_shape).transpose(0, 1)
                weight += (alpha * torch.mm(mat1.flatten(start_dim=1).float(), mat2.flatten(start_dim=1).float())).reshape(weight.shape).type(weight.dtype).to(weight.device)
            elif len(v) == 8: #lokr
                w1 = v[0]
                w2 = v[1]
                w1_a = v[3]
                w1_b = v[4]
                w2_a = v[5]
                w2_b = v[6]
                t2 = v[7]
                dim = None

                if w1 is None:
                    dim = w1_b.shape[0]
                    w1 = torch.mm(w1_a.float(), w1_b.float())

                if w2 is None:
                    dim = w2_b.shape[0]
                    if t2 is None:
                        w2 = torch.mm(w2_a.float(), w2_b.float())
397
                    else:
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
                        w2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float(), w2_b.float(), w2_a.float())

                if len(w2.shape) == 4:
                    w1 = w1.unsqueeze(2).unsqueeze(2)
                if v[2] is not None and dim is not None:
                    alpha *= v[2] / dim

                weight += alpha * torch.kron(w1.float(), w2.float()).reshape(weight.shape).type(weight.dtype).to(weight.device)
            else: #loha
                w1a = v[0]
                w1b = v[1]
                if v[2] is not None:
                    alpha *= v[2] / w1b.shape[0]
                w2a = v[3]
                w2b = v[4]
                if v[5] is not None: #cp decomposition
                    t1 = v[5]
                    t2 = v[6]
                    m1 = torch.einsum('i j k l, j r, i p -> p r k l', t1.float(), w1b.float(), w1a.float())
                    m2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float(), w2b.float(), w2a.float())
                else:
                    m1 = torch.mm(w1a.float(), w1b.float())
                    m2 = torch.mm(w2a.float(), w2b.float())

                weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype).to(weight.device)
        return weight
424

425
    def unpatch_model(self):
426
        model_sd = self.model_state_dict()
427
428
        keys = list(self.backup.keys())
        for k in keys:
429
            model_sd[k][:] = self.backup[k]
430
431
            del self.backup[k]

432
433
        self.backup = {}

434
def load_lora_for_models(model, clip, lora, strength_model, strength_clip):
435
436
    key_map = model_lora_keys_unet(model.model)
    key_map = model_lora_keys_clip(clip.cond_stage_model, key_map)
437
    loaded = load_lora(lora, key_map)
438
439
440
441
442
443
444
445
446
447
448
    new_modelpatcher = model.clone()
    k = new_modelpatcher.add_patches(loaded, strength_model)
    new_clip = clip.clone()
    k1 = new_clip.add_patches(loaded, strength_clip)
    k = set(k)
    k1 = set(k1)
    for x in loaded:
        if (x not in k) and (x not in k1):
            print("NOT LOADED", x)

    return (new_modelpatcher, new_clip)
comfyanonymous's avatar
comfyanonymous committed
449
450
451


class CLIP:
452
    def __init__(self, target=None, embedding_directory=None, no_init=False):
453
454
        if no_init:
            return
comfyanonymous's avatar
comfyanonymous committed
455
        params = target.params.copy()
456
457
        clip = target.clip
        tokenizer = target.tokenizer
458

459
460
        load_device = model_management.text_encoder_device()
        offload_device = model_management.text_encoder_offload_device()
comfyanonymous's avatar
comfyanonymous committed
461
        params['device'] = load_device
462
        self.cond_stage_model = clip(**(params))
463
464
465
        #TODO: make sure this doesn't have a quality loss before enabling.
        # if model_management.should_use_fp16(load_device):
        #     self.cond_stage_model.half()
466
467

        self.cond_stage_model = self.cond_stage_model.to()
468

469
        self.tokenizer = tokenizer(embedding_directory=embedding_directory)
470
        self.patcher = ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device)
471
        self.layer_idx = None
472
473
474
475
476
477

    def clone(self):
        n = CLIP(no_init=True)
        n.patcher = self.patcher.clone()
        n.cond_stage_model = self.cond_stage_model
        n.tokenizer = self.tokenizer
comfyanonymous's avatar
comfyanonymous committed
478
        n.layer_idx = self.layer_idx
479
480
        return n

481
    def load_from_state_dict(self, sd):
482
        self.cond_stage_model.load_sd(sd)
483

484
485
    def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
        return self.patcher.add_patches(patches, strength_patch, strength_model)
comfyanonymous's avatar
comfyanonymous committed
486

487
    def clip_layer(self, layer_idx):
comfyanonymous's avatar
comfyanonymous committed
488
        self.layer_idx = layer_idx
489

490
491
    def tokenize(self, text, return_word_ids=False):
        return self.tokenizer.tokenize_with_weights(text, return_word_ids)
BlenderNeko's avatar
BlenderNeko committed
492

493
    def encode_from_tokens(self, tokens, return_pooled=False):
494
495
        if self.layer_idx is not None:
            self.cond_stage_model.clip_layer(self.layer_idx)
496
497
498

        model_management.load_model_gpu(self.patcher)
        cond, pooled = self.cond_stage_model.encode_token_weights(tokens)
499
        if return_pooled:
500
501
            return cond, pooled
        return cond
comfyanonymous's avatar
comfyanonymous committed
502

503
    def encode(self, text):
504
        tokens = self.tokenize(text)
505
506
        return self.encode_from_tokens(tokens)

507
508
    def load_sd(self, sd):
        return self.cond_stage_model.load_sd(sd)
509

510
511
512
513
514
515
516
517
518
    def get_sd(self):
        return self.cond_stage_model.state_dict()

    def patch_model(self):
        self.patcher.patch_model()

    def unpatch_model(self):
        self.patcher.unpatch_model()

519
520
521
    def get_key_patches(self):
        return self.patcher.get_key_patches()

comfyanonymous's avatar
comfyanonymous committed
522
class VAE:
523
    def __init__(self, ckpt_path=None, device=None, config=None):
comfyanonymous's avatar
comfyanonymous committed
524
525
526
        if config is None:
            #default SD1.x/SD2.x VAE parameters
            ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
527
            self.first_stage_model = AutoencoderKL(ddconfig, {'target': 'torch.nn.Identity'}, 4, monitor="val/rec_loss")
comfyanonymous's avatar
comfyanonymous committed
528
        else:
529
            self.first_stage_model = AutoencoderKL(**(config['params']))
comfyanonymous's avatar
comfyanonymous committed
530
        self.first_stage_model = self.first_stage_model.eval()
531
532
533
534
535
536
        if ckpt_path is not None:
            sd = utils.load_torch_file(ckpt_path)
            if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format
                sd = diffusers_convert.convert_vae_state_dict(sd)
            self.first_stage_model.load_state_dict(sd, strict=False)

537
        if device is None:
538
            device = model_management.vae_device()
comfyanonymous's avatar
comfyanonymous committed
539
        self.device = device
540
        self.offload_device = model_management.vae_offload_device()
541
542
        self.vae_dtype = model_management.vae_dtype()
        self.first_stage_model.to(self.vae_dtype)
comfyanonymous's avatar
comfyanonymous committed
543

544
    def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
pythongosssss's avatar
pythongosssss committed
545
        steps = samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
comfyanonymous's avatar
comfyanonymous committed
546
547
        steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
        steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
pythongosssss's avatar
pythongosssss committed
548
        pbar = utils.ProgressBar(steps)
549

550
        decode_fn = lambda a: (self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)) + 1.0).float()
551
        output = torch.clamp((
552
553
554
            (utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8, pbar = pbar) +
            utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8, pbar = pbar) +
             utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8, pbar = pbar))
555
556
557
            / 3.0) / 2.0, min=0.0, max=1.0)
        return output

558
559
560
561
562
563
    def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
        steps = pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
        steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
        steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
        pbar = utils.ProgressBar(steps)

564
        encode_fn = lambda a: self.first_stage_model.encode(2. * a.to(self.vae_dtype).to(self.device) - 1.).sample().float()
565
566
567
568
569
570
        samples = utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
        samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
        samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
        samples /= 3.0
        return samples

571
    def decode(self, samples_in):
572
        model_management.unload_model()
comfyanonymous's avatar
comfyanonymous committed
573
        self.first_stage_model = self.first_stage_model.to(self.device)
574
        try:
575
576
577
578
579
580
            free_memory = model_management.get_free_memory(self.device)
            batch_number = int((free_memory * 0.7) / (2562 * samples_in.shape[2] * samples_in.shape[3] * 64))
            batch_number = max(1, batch_number)

            pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * 8), round(samples_in.shape[3] * 8)), device="cpu")
            for x in range(0, samples_in.shape[0], batch_number):
581
582
                samples = samples_in[x:x+batch_number].to(self.vae_dtype).to(self.device)
                pixel_samples[x:x+batch_number] = torch.clamp((self.first_stage_model.decode(samples) + 1.0) / 2.0, min=0.0, max=1.0).cpu().float()
583
584
585
586
        except model_management.OOM_EXCEPTION as e:
            print("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
            pixel_samples = self.decode_tiled_(samples_in)

587
        self.first_stage_model = self.first_stage_model.to(self.offload_device)
comfyanonymous's avatar
comfyanonymous committed
588
589
590
        pixel_samples = pixel_samples.cpu().movedim(1,-1)
        return pixel_samples

591
    def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16):
592
593
        model_management.unload_model()
        self.first_stage_model = self.first_stage_model.to(self.device)
594
        output = self.decode_tiled_(samples, tile_x, tile_y, overlap)
595
        self.first_stage_model = self.first_stage_model.to(self.offload_device)
596
597
        return output.movedim(1,-1)

comfyanonymous's avatar
comfyanonymous committed
598
    def encode(self, pixel_samples):
599
        model_management.unload_model()
comfyanonymous's avatar
comfyanonymous committed
600
        self.first_stage_model = self.first_stage_model.to(self.device)
601
602
        pixel_samples = pixel_samples.movedim(-1,1)
        try:
603
604
605
            free_memory = model_management.get_free_memory(self.device)
            batch_number = int((free_memory * 0.7) / (2078 * pixel_samples.shape[2] * pixel_samples.shape[3])) #NOTE: this constant along with the one in the decode above are estimated from the mem usage for the VAE and could change.
            batch_number = max(1, batch_number)
606
607
            samples = torch.empty((pixel_samples.shape[0], 4, round(pixel_samples.shape[2] // 8), round(pixel_samples.shape[3] // 8)), device="cpu")
            for x in range(0, pixel_samples.shape[0], batch_number):
608
609
                pixels_in = (2. * pixel_samples[x:x+batch_number] - 1.).to(self.vae_dtype).to(self.device)
                samples[x:x+batch_number] = self.first_stage_model.encode(pixels_in).sample().cpu().float()
610

611
612
613
614
        except model_management.OOM_EXCEPTION as e:
            print("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.")
            samples = self.encode_tiled_(pixel_samples)

615
        self.first_stage_model = self.first_stage_model.to(self.offload_device)
comfyanonymous's avatar
comfyanonymous committed
616
617
        return samples

comfyanonymous's avatar
comfyanonymous committed
618
619
620
    def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
        model_management.unload_model()
        self.first_stage_model = self.first_stage_model.to(self.device)
621
622
        pixel_samples = pixel_samples.movedim(-1,1)
        samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap)
623
        self.first_stage_model = self.first_stage_model.to(self.offload_device)
comfyanonymous's avatar
comfyanonymous committed
624
        return samples
625

626
627
628
629
    def get_sd(self):
        return self.first_stage_model.state_dict()


BlenderNeko's avatar
BlenderNeko committed
630
def broadcast_image_to(tensor, target_batch_size, batched_number):
631
    current_batch_size = tensor.shape[0]
632
    #print(current_batch_size, target_batch_size)
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
    if current_batch_size == 1:
        return tensor

    per_batch = target_batch_size // batched_number
    tensor = tensor[:per_batch]

    if per_batch > tensor.shape[0]:
        tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)

    current_batch_size = tensor.shape[0]
    if current_batch_size == target_batch_size:
        return tensor
    else:
        return torch.cat([tensor] * batched_number, dim=0)

comfyanonymous's avatar
comfyanonymous committed
648
class ControlNet:
649
    def __init__(self, control_model, global_average_pooling=False, device=None):
comfyanonymous's avatar
comfyanonymous committed
650
651
652
        self.control_model = control_model
        self.cond_hint_original = None
        self.cond_hint = None
653
        self.strength = 1.0
654
655
        if device is None:
            device = model_management.get_torch_device()
656
        self.device = device
comfyanonymous's avatar
comfyanonymous committed
657
        self.previous_controlnet = None
658
        self.global_average_pooling = global_average_pooling
comfyanonymous's avatar
comfyanonymous committed
659

660
    def get_control(self, x_noisy, t, cond, batched_number):
comfyanonymous's avatar
comfyanonymous committed
661
662
        control_prev = None
        if self.previous_controlnet is not None:
663
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
comfyanonymous's avatar
comfyanonymous committed
664

665
        output_dtype = x_noisy.dtype
comfyanonymous's avatar
comfyanonymous committed
666
667
668
669
        if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
            self.cond_hint = None
BlenderNeko's avatar
BlenderNeko committed
670
671
672
            self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(self.control_model.dtype).to(self.device)
        if x_noisy.shape[0] != self.cond_hint.shape[0]:
            self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
673
674
675
676
677
678

        if self.control_model.dtype == torch.float16:
            precision_scope = torch.autocast
        else:
            precision_scope = contextlib.nullcontext

679
        with precision_scope(model_management.get_autocast_device(self.device)):
680
            self.control_model = model_management.load_if_low_vram(self.control_model)
681
682
683
            context = torch.cat(cond['c_crossattn'], 1)
            y = cond.get('c_adm', None)
            control = self.control_model(x=x_noisy, hint=self.cond_hint, timesteps=t, context=context, y=y)
684
            self.control_model = model_management.unload_if_low_vram(self.control_model)
685
        out = {'middle':[], 'output': []}
686
        autocast_enabled = torch.is_autocast_enabled()
comfyanonymous's avatar
comfyanonymous committed
687
688

        for i in range(len(control)):
comfyanonymous's avatar
comfyanonymous committed
689
690
691
692
693
694
            if i == (len(control) - 1):
                key = 'middle'
                index = 0
            else:
                key = 'output'
                index = i
comfyanonymous's avatar
comfyanonymous committed
695
            x = control[i]
696
697
698
            if self.global_average_pooling:
                x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])

699
            x *= self.strength
700
701
            if x.dtype != output_dtype and not autocast_enabled:
                x = x.to(output_dtype)
comfyanonymous's avatar
comfyanonymous committed
702

comfyanonymous's avatar
comfyanonymous committed
703
704
705
706
707
708
709
            if control_prev is not None and key in control_prev:
                prev = control_prev[key][index]
                if prev is not None:
                    x += prev
            out[key].append(x)
        if control_prev is not None and 'input' in control_prev:
            out['input'] = control_prev['input']
710
        return out
comfyanonymous's avatar
comfyanonymous committed
711

712
    def set_cond_hint(self, cond_hint, strength=1.0):
comfyanonymous's avatar
comfyanonymous committed
713
        self.cond_hint_original = cond_hint
714
        self.strength = strength
comfyanonymous's avatar
comfyanonymous committed
715
716
        return self

comfyanonymous's avatar
comfyanonymous committed
717
718
719
720
    def set_previous_controlnet(self, controlnet):
        self.previous_controlnet = controlnet
        return self

comfyanonymous's avatar
comfyanonymous committed
721
    def cleanup(self):
comfyanonymous's avatar
comfyanonymous committed
722
723
        if self.previous_controlnet is not None:
            self.previous_controlnet.cleanup()
comfyanonymous's avatar
comfyanonymous committed
724
725
726
727
728
        if self.cond_hint is not None:
            del self.cond_hint
            self.cond_hint = None

    def copy(self):
729
        c = ControlNet(self.control_model, global_average_pooling=self.global_average_pooling)
comfyanonymous's avatar
comfyanonymous committed
730
        c.cond_hint_original = self.cond_hint_original
731
        c.strength = self.strength
comfyanonymous's avatar
comfyanonymous committed
732
733
        return c

734
    def get_models(self):
comfyanonymous's avatar
comfyanonymous committed
735
736
        out = []
        if self.previous_controlnet is not None:
737
            out += self.previous_controlnet.get_models()
comfyanonymous's avatar
comfyanonymous committed
738
739
740
        out.append(self.control_model)
        return out

741
def load_controlnet(ckpt_path, model=None):
742
    controlnet_data = utils.load_torch_file(ckpt_path, safe_load=True)
743
    pth_key = 'control_model.zero_convs.0.0.weight'
comfyanonymous's avatar
comfyanonymous committed
744
    pth = False
745
    key = 'zero_convs.0.0.weight'
comfyanonymous's avatar
comfyanonymous committed
746
747
748
    if pth_key in controlnet_data:
        pth = True
        key = pth_key
749
        prefix = "control_model."
comfyanonymous's avatar
comfyanonymous committed
750
    elif key in controlnet_data:
751
        prefix = ""
comfyanonymous's avatar
comfyanonymous committed
752
    else:
753
754
755
756
        net = load_t2i_adapter(controlnet_data)
        if net is None:
            print("error checkpoint does not contain controlnet or t2i adapter data", ckpt_path)
        return net
comfyanonymous's avatar
comfyanonymous committed
757

758
759
760
761
762
763
764
    use_fp16 = model_management.should_use_fp16()

    controlnet_config = model_detection.model_config_from_unet(controlnet_data, prefix, use_fp16).unet_config
    controlnet_config.pop("out_channels")
    controlnet_config["hint_channels"] = 3
    control_model = cldm.ControlNet(**controlnet_config)

comfyanonymous's avatar
comfyanonymous committed
765
    if pth:
766
767
768
769
770
771
772
        if 'difference' in controlnet_data:
            if model is not None:
                m = model.patch_model()
                model_sd = m.state_dict()
                for x in controlnet_data:
                    c_m = "control_model."
                    if x.startswith(c_m):
comfyanonymous's avatar
comfyanonymous committed
773
                        sd_key = "diffusion_model.{}".format(x[len(c_m):])
774
775
776
777
778
779
780
                        if sd_key in model_sd:
                            cd = controlnet_data[x]
                            cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
                model.unpatch_model()
            else:
                print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")

comfyanonymous's avatar
comfyanonymous committed
781
782
783
784
        class WeightsLoader(torch.nn.Module):
            pass
        w = WeightsLoader()
        w.control_model = control_model
785
        missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
comfyanonymous's avatar
comfyanonymous committed
786
    else:
787
788
        missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
    print(missing, unexpected)
comfyanonymous's avatar
comfyanonymous committed
789

790
791
792
    if use_fp16:
        control_model = control_model.half()

793
794
795
796
797
    global_average_pooling = False
    if ckpt_path.endswith("_shuffle.pth") or ckpt_path.endswith("_shuffle.safetensors") or ckpt_path.endswith("_shuffle_fp16.safetensors"): #TODO: smarter way of enabling global_average_pooling
        global_average_pooling = True

    control = ControlNet(control_model, global_average_pooling=global_average_pooling)
comfyanonymous's avatar
comfyanonymous committed
798
799
    return control

800
class T2IAdapter:
801
    def __init__(self, t2i_model, channels_in, device=None):
802
803
804
        self.t2i_model = t2i_model
        self.channels_in = channels_in
        self.strength = 1.0
805
806
        if device is None:
            device = model_management.get_torch_device()
807
808
809
810
811
812
        self.device = device
        self.previous_controlnet = None
        self.control_input = None
        self.cond_hint_original = None
        self.cond_hint = None

813
    def get_control(self, x_noisy, t, cond, batched_number):
814
815
        control_prev = None
        if self.previous_controlnet is not None:
816
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
817
818
819
820

        if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
BlenderNeko's avatar
BlenderNeko committed
821
            self.control_input = None
822
            self.cond_hint = None
BlenderNeko's avatar
BlenderNeko committed
823
            self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").float().to(self.device)
824
825
            if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
                self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
BlenderNeko's avatar
BlenderNeko committed
826
827
828
        if x_noisy.shape[0] != self.cond_hint.shape[0]:
            self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
        if self.control_input is None:
829
830
831
832
833
834
835
            self.t2i_model.to(self.device)
            self.control_input = self.t2i_model(self.cond_hint)
            self.t2i_model.cpu()

        output_dtype = x_noisy.dtype
        out = {'input':[]}

comfyanonymous's avatar
comfyanonymous committed
836
        autocast_enabled = torch.is_autocast_enabled()
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
        for i in range(len(self.control_input)):
            key = 'input'
            x = self.control_input[i] * self.strength
            if x.dtype != output_dtype and not autocast_enabled:
                x = x.to(output_dtype)

            if control_prev is not None and key in control_prev:
                index = len(control_prev[key]) - i * 3 - 3
                prev = control_prev[key][index]
                if prev is not None:
                    x += prev
            out[key].insert(0, None)
            out[key].insert(0, None)
            out[key].insert(0, x)

        if control_prev is not None and 'input' in control_prev:
            for i in range(len(out['input'])):
                if out['input'][i] is None:
                    out['input'][i] = control_prev['input'][i]
        if control_prev is not None and 'middle' in control_prev:
            out['middle'] = control_prev['middle']
        if control_prev is not None and 'output' in control_prev:
            out['output'] = control_prev['output']
        return out

    def set_cond_hint(self, cond_hint, strength=1.0):
        self.cond_hint_original = cond_hint
        self.strength = strength
        return self

    def set_previous_controlnet(self, controlnet):
        self.previous_controlnet = controlnet
        return self

    def copy(self):
        c = T2IAdapter(self.t2i_model, self.channels_in)
        c.cond_hint_original = self.cond_hint_original
        c.strength = self.strength
        return c

    def cleanup(self):
        if self.previous_controlnet is not None:
            self.previous_controlnet.cleanup()
        if self.cond_hint is not None:
            del self.cond_hint
            self.cond_hint = None

884
    def get_models(self):
885
886
        out = []
        if self.previous_controlnet is not None:
887
            out += self.previous_controlnet.get_models()
888
889
        return out

890
def load_t2i_adapter(t2i_data):
891
    keys = t2i_data.keys()
892
893
894
    if 'adapter' in keys:
        t2i_data = t2i_data['adapter']
        keys = t2i_data.keys()
895
    if "body.0.in_conv.weight" in keys:
896
897
        cin = t2i_data['body.0.in_conv.weight'].shape[1]
        model_ad = adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
898
    elif 'conv_in.weight' in keys:
899
        cin = t2i_data['conv_in.weight'].shape[1]
900
901
902
903
904
905
906
        channel = t2i_data['conv_in.weight'].shape[0]
        ksize = t2i_data['body.0.block2.weight'].shape[2]
        use_conv = False
        down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys))
        if len(down_opts) > 0:
            use_conv = True
        model_ad = adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv)
907
908
    else:
        return None
909
910
    model_ad.load_state_dict(t2i_data)
    return T2IAdapter(model_ad, cin // 64)
comfyanonymous's avatar
comfyanonymous committed
911

912
913
914
915
916
917
918
919
920
921

class StyleModel:
    def __init__(self, model, device="cpu"):
        self.model = model

    def get_cond(self, input):
        return self.model(input.last_hidden_state)


def load_style_model(ckpt_path):
922
    model_data = utils.load_torch_file(ckpt_path, safe_load=True)
923
924
925
926
927
928
929
930
931
    keys = model_data.keys()
    if "style_embedding" in keys:
        model = adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
    else:
        raise Exception("invalid style model {}".format(ckpt_path))
    model.load_state_dict(model_data)
    return StyleModel(model)


932
933
934
935
936
def load_clip(ckpt_paths, embedding_directory=None):
    clip_data = []
    for p in ckpt_paths:
        clip_data.append(utils.load_torch_file(p, safe_load=True))

comfyanonymous's avatar
comfyanonymous committed
937
938
939
    class EmptyClass:
        pass

940
941
942
943
    for i in range(len(clip_data)):
        if "transformer.resblocks.0.ln_1.weight" in clip_data[i]:
            clip_data[i] = utils.transformers_convert(clip_data[i], "", "text_model.", 32)

comfyanonymous's avatar
comfyanonymous committed
944
945
    clip_target = EmptyClass()
    clip_target.params = {}
946
947
948
949
950
951
952
953
954
955
    if len(clip_data) == 1:
        if "text_model.encoder.layers.30.mlp.fc1.weight" in clip_data[0]:
            clip_target.clip = sdxl_clip.SDXLRefinerClipModel
            clip_target.tokenizer = sdxl_clip.SDXLTokenizer
        elif "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data[0]:
            clip_target.clip = sd2_clip.SD2ClipModel
            clip_target.tokenizer = sd2_clip.SD2Tokenizer
        else:
            clip_target.clip = sd1_clip.SD1ClipModel
            clip_target.tokenizer = sd1_clip.SD1Tokenizer
956
    else:
957
958
        clip_target.clip = sdxl_clip.SDXLClipModel
        clip_target.tokenizer = sdxl_clip.SDXLTokenizer
comfyanonymous's avatar
comfyanonymous committed
959
960

    clip = CLIP(clip_target, embedding_directory=embedding_directory)
961
962
963
964
965
966
967
    for c in clip_data:
        m, u = clip.load_sd(c)
        if len(m) > 0:
            print("clip missing:", m)

        if len(u) > 0:
            print("clip unexpected:", u)
968
    return clip
comfyanonymous's avatar
comfyanonymous committed
969

970
def load_gligen(ckpt_path):
971
    data = utils.load_torch_file(ckpt_path, safe_load=True)
972
973
974
975
976
    model = gligen.load_gligen(data)
    if model_management.should_use_fp16():
        model = model.half()
    return model

comfyanonymous's avatar
comfyanonymous committed
977
def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None):
978
    #TODO: this function is a mess and should be removed eventually
comfyanonymous's avatar
comfyanonymous committed
979
980
981
    if config is None:
        with open(config_path, 'r') as stream:
            config = yaml.safe_load(stream)
comfyanonymous's avatar
comfyanonymous committed
982
983
984
985
986
    model_config_params = config['model']['params']
    clip_config = model_config_params['cond_stage_config']
    scale_factor = model_config_params['scale_factor']
    vae_config = model_config_params['first_stage_config']

987
988
989
    fp16 = False
    if "unet_config" in model_config_params:
        if "params" in model_config_params["unet_config"]:
comfyanonymous's avatar
comfyanonymous committed
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
            unet_config = model_config_params["unet_config"]["params"]
            if "use_fp16" in unet_config:
                fp16 = unet_config["use_fp16"]

    noise_aug_config = None
    if "noise_aug_config" in model_config_params:
        noise_aug_config = model_config_params["noise_aug_config"]

    v_prediction = False

    if "parameterization" in model_config_params:
        if model_config_params["parameterization"] == "v":
            v_prediction = True
1003

comfyanonymous's avatar
comfyanonymous committed
1004
1005
1006
1007
1008
1009
    clip = None
    vae = None

    class WeightsLoader(torch.nn.Module):
        pass

1010
1011
    if state_dict is None:
        state_dict = utils.load_torch_file(ckpt_path)
comfyanonymous's avatar
comfyanonymous committed
1012

1013
1014
1015
1016
1017
1018
1019
1020
    class EmptyClass:
        pass

    model_config = EmptyClass()
    model_config.unet_config = unet_config
    from . import latent_formats
    model_config.latent_format = latent_formats.SD15(scale_factor=scale_factor)

comfyanonymous's avatar
comfyanonymous committed
1021
    if config['model']["target"].endswith("LatentInpaintDiffusion"):
1022
        model = model_base.SDInpaint(model_config, v_prediction=v_prediction)
comfyanonymous's avatar
comfyanonymous committed
1023
    elif config['model']["target"].endswith("ImageEmbeddingConditionedLatentDiffusion"):
1024
        model = model_base.SD21UNCLIP(model_config, noise_aug_config["params"], v_prediction=v_prediction)
comfyanonymous's avatar
comfyanonymous committed
1025
    else:
1026
        model = model_base.BaseModel(model_config, v_prediction=v_prediction)
comfyanonymous's avatar
comfyanonymous committed
1027

1028
1029
1030
    if fp16:
        model = model.half()

1031
1032
    offload_device = model_management.unet_offload_device()
    model = model.to(offload_device)
1033
1034
1035
1036
    model.load_model_weights(state_dict, "model.diffusion_model.")

    if output_vae:
        w = WeightsLoader()
1037
        vae = VAE(config=vae_config)
1038
1039
1040
1041
1042
1043
        w.first_stage_model = vae.first_stage_model
        load_model_weights(w, state_dict)

    if output_clip:
        w = WeightsLoader()
        clip_target = EmptyClass()
1044
        clip_target.params = clip_config.get("params", {})
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
        if clip_config["target"].endswith("FrozenOpenCLIPEmbedder"):
            clip_target.clip = sd2_clip.SD2ClipModel
            clip_target.tokenizer = sd2_clip.SD2Tokenizer
        elif clip_config["target"].endswith("FrozenCLIPEmbedder"):
            clip_target.clip = sd1_clip.SD1ClipModel
            clip_target.tokenizer = sd1_clip.SD1Tokenizer
        clip = CLIP(clip_target, embedding_directory=embedding_directory)
        w.cond_stage_model = clip.cond_stage_model
        load_clip_weights(w, state_dict)

1055
    return (ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device), clip, vae)
1056

1057
1058
1059
1060
1061
1062
def calculate_parameters(sd, prefix):
    params = 0
    for k in sd.keys():
        if k.startswith(prefix):
            params += sd[k].nelement()
    return params
1063

1064
1065
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None):
    sd = utils.load_torch_file(ckpt_path)
1066
1067
    sd_keys = sd.keys()
    clip = None
1068
    clipvision = None
1069
    vae = None
1070
1071
    model = None
    clip_target = None
1072

1073
1074
    parameters = calculate_parameters(sd, "model.diffusion_model.")
    fp16 = model_management.should_use_fp16(model_params=parameters)
1075

1076
1077
1078
    class WeightsLoader(torch.nn.Module):
        pass

1079
1080
1081
    model_config = model_detection.model_config_from_unet(sd, "model.diffusion_model.", fp16)
    if model_config is None:
        raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path))
1082

1083
    if model_config.clip_vision_prefix is not None:
1084
        if output_clipvision:
1085
            clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True)
1086

1087
    offload_device = model_management.unet_offload_device()
1088
    model = model_config.get_model(sd, "model.diffusion_model.")
1089
    model = model.to(offload_device)
1090
    model.load_model_weights(sd, "model.diffusion_model.")
1091

1092
    if output_vae:
1093
        vae = VAE()
1094
1095
1096
        w = WeightsLoader()
        w.first_stage_model = vae.first_stage_model
        load_model_weights(w, sd)
1097

1098
1099
1100
1101
1102
1103
1104
    if output_clip:
        w = WeightsLoader()
        clip_target = model_config.clip_target()
        clip = CLIP(clip_target, embedding_directory=embedding_directory)
        w.cond_stage_model = clip.cond_stage_model
        sd = model_config.process_clip_state_dict(sd)
        load_model_weights(w, sd)
comfyanonymous's avatar
comfyanonymous committed
1105

1106
1107
1108
    left_over = sd.keys()
    if len(left_over) > 0:
        print("left over keys:", left_over)
1109

1110
    return (ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device), clip, vae, clipvision)
1111

1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178

def load_unet(unet_path): #load unet in diffusers format
    sd = utils.load_torch_file(unet_path)
    parameters = calculate_parameters(sd, "")
    fp16 = model_management.should_use_fp16(model_params=parameters)

    match = {}
    match["context_dim"] = sd["down_blocks.0.attentions.1.transformer_blocks.0.attn2.to_k.weight"].shape[1]
    match["model_channels"] = sd["conv_in.weight"].shape[0]
    match["in_channels"] = sd["conv_in.weight"].shape[1]
    match["adm_in_channels"] = None
    if "class_embedding.linear_1.weight" in sd:
        match["adm_in_channels"] = sd["class_embedding.linear_1.weight"].shape[1]

    SDXL = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
            'num_classes': 'sequential', 'adm_in_channels': 2816, 'use_fp16': fp16, 'in_channels': 4, 'model_channels': 320,
            'num_res_blocks': 2, 'attention_resolutions': [2, 4], 'transformer_depth': [0, 2, 10], 'channel_mult': [1, 2, 4],
            'transformer_depth_middle': 10, 'use_linear_in_transformer': True, 'context_dim': 2048}

    SDXL_refiner = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
                    'num_classes': 'sequential', 'adm_in_channels': 2560, 'use_fp16': fp16, 'in_channels': 4, 'model_channels': 384,
                    'num_res_blocks': 2, 'attention_resolutions': [2, 4], 'transformer_depth': [0, 4, 4, 0], 'channel_mult': [1, 2, 4, 4],
                    'transformer_depth_middle': 4, 'use_linear_in_transformer': True, 'context_dim': 1280}

    SD21 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
            'adm_in_channels': None, 'use_fp16': fp16, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': 2,
            'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4],
            'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024}

    SD21_uncliph = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
                    'num_classes': 'sequential', 'adm_in_channels': 2048, 'use_fp16': True, 'in_channels': 4, 'model_channels': 320,
                    'num_res_blocks': 2, 'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4],
                    'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024}

    SD21_unclipl = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
                    'num_classes': 'sequential', 'adm_in_channels': 1536, 'use_fp16': True, 'in_channels': 4, 'model_channels': 320,
                    'num_res_blocks': 2, 'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4],
                    'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024}

    SD15 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
            'adm_in_channels': None, 'use_fp16': True, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': 2,
            'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4],
            'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768}

    supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl]
    print("match", match)
    for unet_config in supported_models:
        matches = True
        for k in match:
            if match[k] != unet_config[k]:
                matches = False
                break
        if matches:
            diffusers_keys = utils.unet_to_diffusers(unet_config)
            new_sd = {}
            for k in diffusers_keys:
                if k in sd:
                    new_sd[diffusers_keys[k]] = sd.pop(k)
                else:
                    print(diffusers_keys[k], k)
            offload_device = model_management.unet_offload_device()
            model_config = model_detection.model_config_from_unet_config(unet_config)
            model = model_config.get_model(new_sd, "")
            model = model.to(offload_device)
            model.load_model_weights(new_sd, "")
            return ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device)

1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
def save_checkpoint(output_path, model, clip, vae, metadata=None):
    try:
        model.patch_model()
        clip.patch_model()
        sd = model.model.state_dict_for_saving(clip.get_sd(), vae.get_sd())
        utils.save_torch_file(sd, output_path, metadata=metadata)
        model.unpatch_model()
        clip.unpatch_model()
    except Exception as e:
        model.unpatch_model()
        clip.unpatch_model()
        raise e