sd.py 30.1 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
import torch
2
import contextlib
comfyanonymous's avatar
comfyanonymous committed
3
4
5

import sd1_clip
import sd2_clip
6
import model_management
comfyanonymous's avatar
comfyanonymous committed
7
8
9
from ldm.util import instantiate_from_config
from ldm.models.autoencoder import AutoencoderKL
from omegaconf import OmegaConf
comfyanonymous's avatar
comfyanonymous committed
10
from .cldm import cldm
11
from .t2i_adapter import adapter
comfyanonymous's avatar
comfyanonymous committed
12
13

from . import utils
comfyanonymous's avatar
comfyanonymous committed
14

15
def load_torch_file(ckpt):
comfyanonymous's avatar
comfyanonymous committed
16
17
18
19
20
21
22
    if ckpt.lower().endswith(".safetensors"):
        import safetensors.torch
        sd = safetensors.torch.load_file(ckpt, device="cpu")
    else:
        pl_sd = torch.load(ckpt, map_location="cpu")
        if "global_step" in pl_sd:
            print(f"Global Step: {pl_sd['global_step']}")
23
24
25
26
        if "state_dict" in pl_sd:
            sd = pl_sd["state_dict"]
        else:
            sd = pl_sd
27
28
    return sd

29
def load_model_weights(model, sd, verbose=False, load_state_dict_to=[]):
comfyanonymous's avatar
comfyanonymous committed
30
31
32
33
34
35
36
37
38
    m, u = model.load_state_dict(sd, strict=False)

    k = list(sd.keys())
    for x in k:
        # print(x)
        if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
            y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
            sd[y] = sd.pop(x)

comfyanonymous's avatar
comfyanonymous committed
39
40
41
42
    if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in sd:
        ids = sd['cond_stage_model.transformer.text_model.embeddings.position_ids']
        if ids.dtype == torch.float32:
            sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
    keys_to_replace = {
        "cond_stage_model.model.positional_embedding": "cond_stage_model.transformer.text_model.embeddings.position_embedding.weight",
        "cond_stage_model.model.token_embedding.weight": "cond_stage_model.transformer.text_model.embeddings.token_embedding.weight",
        "cond_stage_model.model.ln_final.weight": "cond_stage_model.transformer.text_model.final_layer_norm.weight",
        "cond_stage_model.model.ln_final.bias": "cond_stage_model.transformer.text_model.final_layer_norm.bias",
    }

    for x in keys_to_replace:
        if x in sd:
            sd[keys_to_replace[x]] = sd.pop(x)

    resblock_to_replace = {
        "ln_1": "layer_norm1",
        "ln_2": "layer_norm2",
        "mlp.c_fc": "mlp.fc1",
        "mlp.c_proj": "mlp.fc2",
        "attn.out_proj": "self_attn.out_proj",
    }

    for resblock in range(24):
        for x in resblock_to_replace:
            for y in ["weight", "bias"]:
                k = "cond_stage_model.model.transformer.resblocks.{}.{}.{}".format(resblock, x, y)
                k_to = "cond_stage_model.transformer.text_model.encoder.layers.{}.{}.{}".format(resblock, resblock_to_replace[x], y)
                if k in sd:
                    sd[k_to] = sd.pop(k)

        for y in ["weight", "bias"]:
            k_from = "cond_stage_model.model.transformer.resblocks.{}.attn.in_proj_{}".format(resblock, y)
            if k_from in sd:
                weights = sd.pop(k_from)
                for x in range(3):
                    p = ["self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj"]
                    k_to = "cond_stage_model.transformer.text_model.encoder.layers.{}.{}.{}".format(resblock, p[x], y)
                    sd[k_to] = weights[1024*x:1024*(x + 1)]

comfyanonymous's avatar
comfyanonymous committed
80
81
82
83
84
85
86
87
88
89
90
91
92
    for x in load_state_dict_to:
        x.load_state_dict(sd, strict=False)

    if len(m) > 0 and verbose:
        print("missing keys:")
        print(m)
    if len(u) > 0 and verbose:
        print("unexpected keys:")
        print(u)

    model.eval()
    return model

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
LORA_CLIP_MAP = {
    "mlp.fc1": "mlp_fc1",
    "mlp.fc2": "mlp_fc2",
    "self_attn.k_proj": "self_attn_k_proj",
    "self_attn.q_proj": "self_attn_q_proj",
    "self_attn.v_proj": "self_attn_v_proj",
    "self_attn.out_proj": "self_attn_out_proj",
}

LORA_UNET_MAP = {
    "proj_in": "proj_in",
    "proj_out": "proj_out",
    "transformer_blocks.0.attn1.to_q": "transformer_blocks_0_attn1_to_q",
    "transformer_blocks.0.attn1.to_k": "transformer_blocks_0_attn1_to_k",
    "transformer_blocks.0.attn1.to_v": "transformer_blocks_0_attn1_to_v",
    "transformer_blocks.0.attn1.to_out.0": "transformer_blocks_0_attn1_to_out_0",
    "transformer_blocks.0.attn2.to_q": "transformer_blocks_0_attn2_to_q",
    "transformer_blocks.0.attn2.to_k": "transformer_blocks_0_attn2_to_k",
    "transformer_blocks.0.attn2.to_v": "transformer_blocks_0_attn2_to_v",
    "transformer_blocks.0.attn2.to_out.0": "transformer_blocks_0_attn2_to_out_0",
    "transformer_blocks.0.ff.net.0.proj": "transformer_blocks_0_ff_net_0_proj",
    "transformer_blocks.0.ff.net.2": "transformer_blocks_0_ff_net_2",
}


def load_lora(path, to_load):
    lora = load_torch_file(path)
    patch_dict = {}
    loaded_keys = set()
    for x in to_load:
        A_name = "{}.lora_up.weight".format(x)
        B_name = "{}.lora_down.weight".format(x)
        alpha_name = "{}.alpha".format(x)
        if A_name in lora.keys():
            alpha = None
            if alpha_name in lora.keys():
                alpha = lora[alpha_name].item()
                loaded_keys.add(alpha_name)
            patch_dict[to_load[x]] = (lora[A_name], lora[B_name], alpha)
            loaded_keys.add(A_name)
            loaded_keys.add(B_name)
    for x in lora.keys():
        if x not in loaded_keys:
            print("lora key not loaded", x)
    return patch_dict

def model_lora_keys(model, key_map={}):
    sdk = model.state_dict().keys()

    counter = 0
    for b in range(12):
        tk = "model.diffusion_model.input_blocks.{}.1".format(b)
        up_counter = 0
        for c in LORA_UNET_MAP:
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
                lora_key = "lora_unet_down_blocks_{}_attentions_{}_{}".format(counter // 2, counter % 2, LORA_UNET_MAP[c])
150
                key_map[lora_key] = k
151
152
153
154
155
156
157
                up_counter += 1
        if up_counter >= 4:
            counter += 1
    for c in LORA_UNET_MAP:
        k = "model.diffusion_model.middle_block.1.{}.weight".format(c)
        if k in sdk:
            lora_key = "lora_unet_mid_block_attentions_0_{}".format(LORA_UNET_MAP[c])
158
            key_map[lora_key] = k
159
160
161
162
163
164
165
166
    counter = 3
    for b in range(12):
        tk = "model.diffusion_model.output_blocks.{}.1".format(b)
        up_counter = 0
        for c in LORA_UNET_MAP:
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
                lora_key = "lora_unet_up_blocks_{}_attentions_{}_{}".format(counter // 3, counter % 3, LORA_UNET_MAP[c])
167
                key_map[lora_key] = k
168
169
170
171
                up_counter += 1
        if up_counter >= 4:
            counter += 1
    counter = 0
comfyanonymous's avatar
comfyanonymous committed
172
    text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
173
    for b in range(24):
174
175
176
        for c in LORA_CLIP_MAP:
            k = "transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
177
                lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
178
                key_map[lora_key] = k
comfyanonymous's avatar
comfyanonymous committed
179

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
    return key_map

class ModelPatcher:
    def __init__(self, model):
        self.model = model
        self.patches = []
        self.backup = {}

    def clone(self):
        n = ModelPatcher(self.model)
        n.patches = self.patches[:]
        return n

    def add_patches(self, patches, strength=1.0):
        p = {}
        model_sd = self.model.state_dict()
        for k in patches:
197
            if k in model_sd:
198
199
200
201
202
203
204
205
206
                p[k] = patches[k]
        self.patches += [(strength, p)]
        return p.keys()

    def patch_model(self):
        model_sd = self.model.state_dict()
        for p in self.patches:
            for k in p[1]:
                v = p[1][k]
207
                key = k
comfyanonymous's avatar
comfyanonymous committed
208
                if key not in model_sd:
209
210
211
                    print("could not patch. key doesn't exist in model:", k)
                    continue

comfyanonymous's avatar
comfyanonymous committed
212
213
214
                weight = model_sd[key]
                if key not in self.backup:
                    self.backup[key] = weight.clone()
215
216
217
218
219
220

                alpha = p[0]
                mat1 = v[0]
                mat2 = v[1]
                if v[2] is not None:
                    alpha *= v[2] / mat2.shape[0]
221
                weight += (alpha * torch.mm(mat1.flatten(start_dim=1).float(), mat2.flatten(start_dim=1).float())).reshape(weight.shape).type(weight.dtype).to(weight.device)
222
223
224
        return self.model
    def unpatch_model(self):
        model_sd = self.model.state_dict()
225
226
        keys = list(self.backup.keys())
        for k in keys:
227
            model_sd[k][:] = self.backup[k]
228
229
            del self.backup[k]

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        self.backup = {}

def load_lora_for_models(model, clip, lora_path, strength_model, strength_clip):
    key_map = model_lora_keys(model.model)
    key_map = model_lora_keys(clip.cond_stage_model, key_map)
    loaded = load_lora(lora_path, key_map)
    new_modelpatcher = model.clone()
    k = new_modelpatcher.add_patches(loaded, strength_model)
    new_clip = clip.clone()
    k1 = new_clip.add_patches(loaded, strength_clip)
    k = set(k)
    k1 = set(k1)
    for x in loaded:
        if (x not in k) and (x not in k1):
            print("NOT LOADED", x)

    return (new_modelpatcher, new_clip)
comfyanonymous's avatar
comfyanonymous committed
247
248
249


class CLIP:
250
251
252
    def __init__(self, config={}, embedding_directory=None, no_init=False):
        if no_init:
            return
comfyanonymous's avatar
comfyanonymous committed
253
        self.target_clip = config["target"]
254
255
256
257
258
        if "params" in config:
            params = config["params"]
        else:
            params = {}

comfyanonymous's avatar
comfyanonymous committed
259
260
261
262
263
264
        if self.target_clip == "ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder":
            clip = sd2_clip.SD2ClipModel
            tokenizer = sd2_clip.SD2Tokenizer
        elif self.target_clip == "ldm.modules.encoders.modules.FrozenCLIPEmbedder":
            clip = sd1_clip.SD1ClipModel
            tokenizer = sd1_clip.SD1Tokenizer
265
266

        self.cond_stage_model = clip(**(params))
267
        self.tokenizer = tokenizer(embedding_directory=embedding_directory)
268
        self.patcher = ModelPatcher(self.cond_stage_model)
comfyanonymous's avatar
comfyanonymous committed
269
        self.layer_idx = -1
270
271
272
273
274
275
276

    def clone(self):
        n = CLIP(no_init=True)
        n.target_clip = self.target_clip
        n.patcher = self.patcher.clone()
        n.cond_stage_model = self.cond_stage_model
        n.tokenizer = self.tokenizer
comfyanonymous's avatar
comfyanonymous committed
277
        n.layer_idx = self.layer_idx
278
279
        return n

280
281
282
    def load_from_state_dict(self, sd):
        self.cond_stage_model.transformer.load_state_dict(sd, strict=False)

283
284
    def add_patches(self, patches, strength=1.0):
        return self.patcher.add_patches(patches, strength)
comfyanonymous's avatar
comfyanonymous committed
285

286
    def clip_layer(self, layer_idx):
comfyanonymous's avatar
comfyanonymous committed
287
        self.layer_idx = layer_idx
288

comfyanonymous's avatar
comfyanonymous committed
289
    def encode(self, text):
comfyanonymous's avatar
comfyanonymous committed
290
        self.cond_stage_model.clip_layer(self.layer_idx)
comfyanonymous's avatar
comfyanonymous committed
291
        tokens = self.tokenizer.tokenize_with_weights(text)
292
293
294
295
296
297
298
        try:
            self.patcher.patch_model()
            cond = self.cond_stage_model.encode_token_weights(tokens)
            self.patcher.unpatch_model()
        except Exception as e:
            self.patcher.unpatch_model()
            raise e
comfyanonymous's avatar
comfyanonymous committed
299
300
301
        return cond

class VAE:
302
    def __init__(self, ckpt_path=None, scale_factor=0.18215, device=None, config=None):
comfyanonymous's avatar
comfyanonymous committed
303
304
305
306
307
308
309
310
        if config is None:
            #default SD1.x/SD2.x VAE parameters
            ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
            self.first_stage_model = AutoencoderKL(ddconfig, {'target': 'torch.nn.Identity'}, 4, monitor="val/rec_loss", ckpt_path=ckpt_path)
        else:
            self.first_stage_model = AutoencoderKL(**(config['params']), ckpt_path=ckpt_path)
        self.first_stage_model = self.first_stage_model.eval()
        self.scale_factor = scale_factor
311
312
        if device is None:
            device = model_management.get_torch_device()
comfyanonymous's avatar
comfyanonymous committed
313
314
315
        self.device = device

    def decode(self, samples):
316
        model_management.unload_model()
comfyanonymous's avatar
comfyanonymous committed
317
318
319
320
321
322
323
324
        self.first_stage_model = self.first_stage_model.to(self.device)
        samples = samples.to(self.device)
        pixel_samples = self.first_stage_model.decode(1. / self.scale_factor * samples)
        pixel_samples = torch.clamp((pixel_samples + 1.0) / 2.0, min=0.0, max=1.0)
        self.first_stage_model = self.first_stage_model.cpu()
        pixel_samples = pixel_samples.cpu().movedim(1,-1)
        return pixel_samples

325
    def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 8):
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
        model_management.unload_model()
        output = torch.empty((samples.shape[0], 3, samples.shape[2] * 8, samples.shape[3] * 8), device="cpu")
        self.first_stage_model = self.first_stage_model.to(self.device)
        for b in range(samples.shape[0]):
            s = samples[b:b+1]
            out = torch.zeros((s.shape[0], 3, s.shape[2] * 8, s.shape[3] * 8), device="cpu")
            out_div = torch.zeros((s.shape[0], 3, s.shape[2] * 8, s.shape[3] * 8), device="cpu")
            for y in range(0, s.shape[2], tile_y - overlap):
                for x in range(0, s.shape[3], tile_x - overlap):
                    s_in = s[:,:,y:y+tile_y,x:x+tile_x]

                    pixel_samples = self.first_stage_model.decode(1. / self.scale_factor * s_in.to(self.device))
                    pixel_samples = torch.clamp((pixel_samples + 1.0) / 2.0, min=0.0, max=1.0)
                    ps = pixel_samples.cpu()
                    mask = torch.ones_like(ps)
                    feather = overlap * 8
                    for t in range(feather):
                            mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))
                            mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                            mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                            mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
                    out[:,:,y*8:(y+tile_y)*8,x*8:(x+tile_x)*8] += ps * mask
                    out_div[:,:,y*8:(y+tile_y)*8,x*8:(x+tile_x)*8] += mask

            output[b:b+1] = out/out_div
        self.first_stage_model = self.first_stage_model.cpu()
        return output.movedim(1,-1)

comfyanonymous's avatar
comfyanonymous committed
354
    def encode(self, pixel_samples):
355
        model_management.unload_model()
comfyanonymous's avatar
comfyanonymous committed
356
357
358
359
360
361
362
        self.first_stage_model = self.first_stage_model.to(self.device)
        pixel_samples = pixel_samples.movedim(-1,1).to(self.device)
        samples = self.first_stage_model.encode(2. * pixel_samples - 1.).sample() * self.scale_factor
        self.first_stage_model = self.first_stage_model.cpu()
        samples = samples.cpu()
        return samples

363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

def resize_image_to(tensor, target_latent_tensor, batched_number):
    tensor = utils.common_upscale(tensor, target_latent_tensor.shape[3] * 8, target_latent_tensor.shape[2] * 8, 'nearest-exact', "center")
    target_batch_size = target_latent_tensor.shape[0]

    current_batch_size = tensor.shape[0]
    print(current_batch_size, target_batch_size)
    if current_batch_size == 1:
        return tensor

    per_batch = target_batch_size // batched_number
    tensor = tensor[:per_batch]

    if per_batch > tensor.shape[0]:
        tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)

    current_batch_size = tensor.shape[0]
    if current_batch_size == target_batch_size:
        return tensor
    else:
        return torch.cat([tensor] * batched_number, dim=0)

comfyanonymous's avatar
comfyanonymous committed
385
class ControlNet:
386
    def __init__(self, control_model, device=None):
comfyanonymous's avatar
comfyanonymous committed
387
388
389
        self.control_model = control_model
        self.cond_hint_original = None
        self.cond_hint = None
390
        self.strength = 1.0
391
392
        if device is None:
            device = model_management.get_torch_device()
393
        self.device = device
comfyanonymous's avatar
comfyanonymous committed
394
        self.previous_controlnet = None
comfyanonymous's avatar
comfyanonymous committed
395

396
    def get_control(self, x_noisy, t, cond_txt, batched_number):
comfyanonymous's avatar
comfyanonymous committed
397
398
        control_prev = None
        if self.previous_controlnet is not None:
399
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond_txt, batched_number)
comfyanonymous's avatar
comfyanonymous committed
400

401
        output_dtype = x_noisy.dtype
comfyanonymous's avatar
comfyanonymous committed
402
403
404
405
        if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
            self.cond_hint = None
406
            self.cond_hint = resize_image_to(self.cond_hint_original, x_noisy, batched_number).to(self.control_model.dtype).to(self.device)
407
408
409
410
411
412

        if self.control_model.dtype == torch.float16:
            precision_scope = torch.autocast
        else:
            precision_scope = contextlib.nullcontext

413
        with precision_scope(model_management.get_autocast_device(self.device)):
414
            self.control_model = model_management.load_if_low_vram(self.control_model)
415
            control = self.control_model(x=x_noisy, hint=self.cond_hint, timesteps=t, context=cond_txt)
416
            self.control_model = model_management.unload_if_low_vram(self.control_model)
417
        out = {'middle':[], 'output': []}
418
        autocast_enabled = torch.is_autocast_enabled()
comfyanonymous's avatar
comfyanonymous committed
419
420

        for i in range(len(control)):
comfyanonymous's avatar
comfyanonymous committed
421
422
423
424
425
426
            if i == (len(control) - 1):
                key = 'middle'
                index = 0
            else:
                key = 'output'
                index = i
comfyanonymous's avatar
comfyanonymous committed
427
            x = control[i]
428
            x *= self.strength
429
430
            if x.dtype != output_dtype and not autocast_enabled:
                x = x.to(output_dtype)
comfyanonymous's avatar
comfyanonymous committed
431

comfyanonymous's avatar
comfyanonymous committed
432
433
434
435
436
437
438
            if control_prev is not None and key in control_prev:
                prev = control_prev[key][index]
                if prev is not None:
                    x += prev
            out[key].append(x)
        if control_prev is not None and 'input' in control_prev:
            out['input'] = control_prev['input']
439
        return out
comfyanonymous's avatar
comfyanonymous committed
440

441
    def set_cond_hint(self, cond_hint, strength=1.0):
comfyanonymous's avatar
comfyanonymous committed
442
        self.cond_hint_original = cond_hint
443
        self.strength = strength
comfyanonymous's avatar
comfyanonymous committed
444
445
        return self

comfyanonymous's avatar
comfyanonymous committed
446
447
448
449
    def set_previous_controlnet(self, controlnet):
        self.previous_controlnet = controlnet
        return self

comfyanonymous's avatar
comfyanonymous committed
450
    def cleanup(self):
comfyanonymous's avatar
comfyanonymous committed
451
452
        if self.previous_controlnet is not None:
            self.previous_controlnet.cleanup()
comfyanonymous's avatar
comfyanonymous committed
453
454
455
456
457
458
459
        if self.cond_hint is not None:
            del self.cond_hint
            self.cond_hint = None

    def copy(self):
        c = ControlNet(self.control_model)
        c.cond_hint_original = self.cond_hint_original
460
        c.strength = self.strength
comfyanonymous's avatar
comfyanonymous committed
461
462
        return c

comfyanonymous's avatar
comfyanonymous committed
463
464
465
466
467
468
469
    def get_control_models(self):
        out = []
        if self.previous_controlnet is not None:
            out += self.previous_controlnet.get_control_models()
        out.append(self.control_model)
        return out

470
def load_controlnet(ckpt_path, model=None):
comfyanonymous's avatar
comfyanonymous committed
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
    controlnet_data = load_torch_file(ckpt_path)
    pth_key = 'control_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight'
    pth = False
    sd2 = False
    key = 'input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight'
    if pth_key in controlnet_data:
        pth = True
        key = pth_key
    elif key in controlnet_data:
        pass
    else:
        print("error checkpoint does not contain controlnet data", ckpt_path)
        return None

    context_dim = controlnet_data[key].shape[1]
486
487

    use_fp16 = False
488
    if model_management.should_use_fp16() and controlnet_data[key].dtype == torch.float16:
489
490
        use_fp16 = True

comfyanonymous's avatar
comfyanonymous committed
491
492
493
494
495
496
497
498
499
500
501
502
    control_model = cldm.ControlNet(image_size=32,
                                    in_channels=4,
                                    hint_channels=3,
                                    model_channels=320,
                                    attention_resolutions=[ 4, 2, 1 ],
                                    num_res_blocks=2,
                                    channel_mult=[ 1, 2, 4, 4 ],
                                    num_heads=8,
                                    use_spatial_transformer=True,
                                    transformer_depth=1,
                                    context_dim=context_dim,
                                    use_checkpoint=True,
503
504
                                    legacy=False,
                                    use_fp16=use_fp16)
comfyanonymous's avatar
comfyanonymous committed
505
506

    if pth:
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
        if 'difference' in controlnet_data:
            if model is not None:
                m = model.patch_model()
                model_sd = m.state_dict()
                for x in controlnet_data:
                    c_m = "control_model."
                    if x.startswith(c_m):
                        sd_key = "model.diffusion_model.{}".format(x[len(c_m):])
                        if sd_key in model_sd:
                            cd = controlnet_data[x]
                            cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
                model.unpatch_model()
            else:
                print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")

comfyanonymous's avatar
comfyanonymous committed
522
523
524
525
526
527
528
529
530
531
532
        class WeightsLoader(torch.nn.Module):
            pass
        w = WeightsLoader()
        w.control_model = control_model
        w.load_state_dict(controlnet_data, strict=False)
    else:
        control_model.load_state_dict(controlnet_data, strict=False)

    control = ControlNet(control_model)
    return control

533
class T2IAdapter:
534
    def __init__(self, t2i_model, channels_in, device=None):
535
536
537
        self.t2i_model = t2i_model
        self.channels_in = channels_in
        self.strength = 1.0
538
539
        if device is None:
            device = model_management.get_torch_device()
540
541
542
543
544
545
        self.device = device
        self.previous_controlnet = None
        self.control_input = None
        self.cond_hint_original = None
        self.cond_hint = None

546
    def get_control(self, x_noisy, t, cond_txt, batched_number):
547
548
        control_prev = None
        if self.previous_controlnet is not None:
549
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond_txt, batched_number)
550
551
552
553
554

        if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
            self.cond_hint = None
555
            self.cond_hint = resize_image_to(self.cond_hint_original, x_noisy, batched_number).float().to(self.device)
556
557
558
559
560
561
562
563
564
            if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
                self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
            self.t2i_model.to(self.device)
            self.control_input = self.t2i_model(self.cond_hint)
            self.t2i_model.cpu()

        output_dtype = x_noisy.dtype
        out = {'input':[]}

comfyanonymous's avatar
comfyanonymous committed
565
        autocast_enabled = torch.is_autocast_enabled()
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
        for i in range(len(self.control_input)):
            key = 'input'
            x = self.control_input[i] * self.strength
            if x.dtype != output_dtype and not autocast_enabled:
                x = x.to(output_dtype)

            if control_prev is not None and key in control_prev:
                index = len(control_prev[key]) - i * 3 - 3
                prev = control_prev[key][index]
                if prev is not None:
                    x += prev
            out[key].insert(0, None)
            out[key].insert(0, None)
            out[key].insert(0, x)

        if control_prev is not None and 'input' in control_prev:
            for i in range(len(out['input'])):
                if out['input'][i] is None:
                    out['input'][i] = control_prev['input'][i]
        if control_prev is not None and 'middle' in control_prev:
            out['middle'] = control_prev['middle']
        if control_prev is not None and 'output' in control_prev:
            out['output'] = control_prev['output']
        return out

    def set_cond_hint(self, cond_hint, strength=1.0):
        self.cond_hint_original = cond_hint
        self.strength = strength
        return self

    def set_previous_controlnet(self, controlnet):
        self.previous_controlnet = controlnet
        return self

    def copy(self):
        c = T2IAdapter(self.t2i_model, self.channels_in)
        c.cond_hint_original = self.cond_hint_original
        c.strength = self.strength
        return c

    def cleanup(self):
        if self.previous_controlnet is not None:
            self.previous_controlnet.cleanup()
        if self.cond_hint is not None:
            del self.cond_hint
            self.cond_hint = None

    def get_control_models(self):
        out = []
        if self.previous_controlnet is not None:
            out += self.previous_controlnet.get_control_models()
        return out

def load_t2i_adapter(ckpt_path, model=None):
    t2i_data = load_torch_file(ckpt_path)
621
    keys = t2i_data.keys()
622
    if "body.0.in_conv.weight" in keys:
623
624
625
626
627
        cin = t2i_data['body.0.in_conv.weight'].shape[1]
        model_ad = adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
    else:
        cin = t2i_data['conv_in.weight'].shape[1]
        model_ad = adapter.Adapter(cin=cin, channels=[320, 640, 1280, 1280][:4], nums_rb=2, ksize=1, sk=True, use_conv=False)
628
629
    model_ad.load_state_dict(t2i_data)
    return T2IAdapter(model_ad, cin // 64)
comfyanonymous's avatar
comfyanonymous committed
630

631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650

class StyleModel:
    def __init__(self, model, device="cpu"):
        self.model = model

    def get_cond(self, input):
        return self.model(input.last_hidden_state)


def load_style_model(ckpt_path):
    model_data = load_torch_file(ckpt_path)
    keys = model_data.keys()
    if "style_embedding" in keys:
        model = adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
    else:
        raise Exception("invalid style model {}".format(ckpt_path))
    model.load_state_dict(model_data)
    return StyleModel(model)


651
652
653
654
655
656
657
658
659
660
def load_clip(ckpt_path, embedding_directory=None):
    clip_data = load_torch_file(ckpt_path)
    config = {}
    if "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data:
        config['target'] = 'ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder'
    else:
        config['target'] = 'ldm.modules.encoders.modules.FrozenCLIPEmbedder'
    clip = CLIP(config=config, embedding_directory=embedding_directory)
    clip.load_from_state_dict(clip_data)
    return clip
comfyanonymous's avatar
comfyanonymous committed
661

662
def load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=None):
comfyanonymous's avatar
comfyanonymous committed
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
    config = OmegaConf.load(config_path)
    model_config_params = config['model']['params']
    clip_config = model_config_params['cond_stage_config']
    scale_factor = model_config_params['scale_factor']
    vae_config = model_config_params['first_stage_config']

    clip = None
    vae = None

    class WeightsLoader(torch.nn.Module):
        pass

    w = WeightsLoader()
    load_state_dict_to = []
    if output_vae:
        vae = VAE(scale_factor=scale_factor, config=vae_config)
        w.first_stage_model = vae.first_stage_model
        load_state_dict_to = [w]

    if output_clip:
683
        clip = CLIP(config=clip_config, embedding_directory=embedding_directory)
comfyanonymous's avatar
comfyanonymous committed
684
685
686
        w.cond_stage_model = clip.cond_stage_model
        load_state_dict_to = [w]

687
688
689
    model = instantiate_from_config(config.model)
    sd = load_torch_file(ckpt_path)
    model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to)
690
    return (ModelPatcher(model), clip, vae)
691
692


693
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=None):
694
695
696
697
698
    sd = load_torch_file(ckpt_path)
    sd_keys = sd.keys()
    clip = None
    vae = None

699
700
    fp16 = model_management.should_use_fp16()

701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
    class WeightsLoader(torch.nn.Module):
        pass

    w = WeightsLoader()
    load_state_dict_to = []
    if output_vae:
        vae = VAE()
        w.first_stage_model = vae.first_stage_model
        load_state_dict_to = [w]

    if output_clip:
        clip_config = {}
        if "cond_stage_model.model.transformer.resblocks.22.attn.out_proj.weight" in sd_keys:
            clip_config['target'] = 'ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder'
        else:
            clip_config['target'] = 'ldm.modules.encoders.modules.FrozenCLIPEmbedder'
        clip = CLIP(config=clip_config, embedding_directory=embedding_directory)
        w.cond_stage_model = clip.cond_stage_model
        load_state_dict_to = [w]

    sd_config = {
        "linear_start": 0.00085,
        "linear_end": 0.012,
        "num_timesteps_cond": 1,
        "log_every_t": 200,
        "timesteps": 1000,
        "first_stage_key": "jpg",
        "cond_stage_key": "txt",
        "image_size": 64,
        "channels": 4,
        "cond_stage_trainable": False,
        "monitor": "val/loss_simple_ema",
        "scale_factor": 0.18215,
        "use_ema": False,
    }

    unet_config = {
        "use_checkpoint": True,
        "image_size": 32,
        "out_channels": 4,
        "attention_resolutions": [
            4,
            2,
            1
        ],
        "num_res_blocks": 2,
        "channel_mult": [
            1,
            2,
            4,
            4
        ],
        "use_spatial_transformer": True,
        "transformer_depth": 1,
        "legacy": False
    }

    if len(sd['model.diffusion_model.input_blocks.1.1.proj_in.weight'].shape) == 2:
        unet_config['use_linear_in_transformer'] = True

    unet_config["use_fp16"] = fp16
    unet_config["model_channels"] = sd['model.diffusion_model.input_blocks.0.0.weight'].shape[0]
    unet_config["in_channels"] = sd['model.diffusion_model.input_blocks.0.0.weight'].shape[1]
    unet_config["context_dim"] = sd['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight'].shape[1]

    sd_config["unet_config"] = {"target": "ldm.modules.diffusionmodules.openaimodel.UNetModel", "params": unet_config}
    model_config = {"target": "ldm.models.diffusion.ddpm.LatentDiffusion", "params": sd_config}

    if unet_config["in_channels"] > 4: #inpainting model
        sd_config["conditioning_key"] = "hybrid"
        sd_config["finetune_keys"] = None
        model_config["target"] = "ldm.models.diffusion.ddpm.LatentInpaintDiffusion"
    else:
        sd_config["conditioning_key"] = "crossattn"

    if unet_config["context_dim"] == 1024:
        unet_config["num_head_channels"] = 64 #SD2.x
    else:
        unet_config["num_heads"] = 8 #SD1.x

comfyanonymous's avatar
comfyanonymous committed
781
782
783
784
785
    if unet_config["context_dim"] == 1024 and unet_config["in_channels"] == 4: #only SD2.x non inpainting models are v prediction
        k = "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1.bias"
        out = sd[k]
        if torch.std(out, unbiased=False) > 0.09: # not sure how well this will actually work. I guess we will find out.
            sd_config["parameterization"] = 'v'
786
787
788
789
790

    model = instantiate_from_config(model_config)
    model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to)

    return (ModelPatcher(model), clip, vae)