sd.py 47.1 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
import torch
2
import contextlib
3
import copy
4
import inspect
comfyanonymous's avatar
comfyanonymous committed
5

comfyanonymous's avatar
comfyanonymous committed
6
7
from . import sd1_clip
from . import sd2_clip
8
from comfy import model_management
9
10
from .ldm.util import instantiate_from_config
from .ldm.models.autoencoder import AutoencoderKL
11
import yaml
comfyanonymous's avatar
comfyanonymous committed
12
from .cldm import cldm
13
from .t2i_adapter import adapter
comfyanonymous's avatar
comfyanonymous committed
14
15

from . import utils
16
from . import clip_vision
17
from . import gligen
18
from . import diffusers_convert
comfyanonymous's avatar
comfyanonymous committed
19
from . import model_base
20

21
def load_model_weights(model, sd, verbose=False, load_state_dict_to=[]):
comfyanonymous's avatar
comfyanonymous committed
22
23
24
25
26
27
    replace_prefix = {"model.diffusion_model.": "diffusion_model."}
    for rp in replace_prefix:
        replace = list(map(lambda a: (a, "{}{}".format(replace_prefix[rp], a[len(rp):])), filter(lambda a: a.startswith(rp), sd.keys())))
        for x in replace:
            sd[x[1]] = sd.pop(x[0])

comfyanonymous's avatar
comfyanonymous committed
28
29
30
31
32
33
34
35
36
    m, u = model.load_state_dict(sd, strict=False)

    k = list(sd.keys())
    for x in k:
        # print(x)
        if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
            y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
            sd[y] = sd.pop(x)

comfyanonymous's avatar
comfyanonymous committed
37
38
39
40
    if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in sd:
        ids = sd['cond_stage_model.transformer.text_model.embeddings.position_ids']
        if ids.dtype == torch.float32:
            sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
41

42
    sd = utils.transformers_convert(sd, "cond_stage_model.model", "cond_stage_model.transformer.text_model", 24)
43

comfyanonymous's avatar
comfyanonymous committed
44
45
46
47
48
49
50
51
52
53
54
55
56
    for x in load_state_dict_to:
        x.load_state_dict(sd, strict=False)

    if len(m) > 0 and verbose:
        print("missing keys:")
        print(m)
    if len(u) > 0 and verbose:
        print("unexpected keys:")
        print(u)

    model.eval()
    return model

57
58
59
60
61
62
63
64
65
LORA_CLIP_MAP = {
    "mlp.fc1": "mlp_fc1",
    "mlp.fc2": "mlp_fc2",
    "self_attn.k_proj": "self_attn_k_proj",
    "self_attn.q_proj": "self_attn_q_proj",
    "self_attn.v_proj": "self_attn_v_proj",
    "self_attn.out_proj": "self_attn_out_proj",
}

comfyanonymous's avatar
comfyanonymous committed
66
LORA_UNET_MAP_ATTENTIONS = {
67
68
69
70
71
72
73
74
75
76
77
78
79
80
    "proj_in": "proj_in",
    "proj_out": "proj_out",
    "transformer_blocks.0.attn1.to_q": "transformer_blocks_0_attn1_to_q",
    "transformer_blocks.0.attn1.to_k": "transformer_blocks_0_attn1_to_k",
    "transformer_blocks.0.attn1.to_v": "transformer_blocks_0_attn1_to_v",
    "transformer_blocks.0.attn1.to_out.0": "transformer_blocks_0_attn1_to_out_0",
    "transformer_blocks.0.attn2.to_q": "transformer_blocks_0_attn2_to_q",
    "transformer_blocks.0.attn2.to_k": "transformer_blocks_0_attn2_to_k",
    "transformer_blocks.0.attn2.to_v": "transformer_blocks_0_attn2_to_v",
    "transformer_blocks.0.attn2.to_out.0": "transformer_blocks_0_attn2_to_out_0",
    "transformer_blocks.0.ff.net.0.proj": "transformer_blocks_0_ff_net_0_proj",
    "transformer_blocks.0.ff.net.2": "transformer_blocks_0_ff_net_2",
}

comfyanonymous's avatar
comfyanonymous committed
81
82
83
84
85
86
LORA_UNET_MAP_RESNET = {
    "in_layers.2": "resnets_{}_conv1",
    "emb_layers.1": "resnets_{}_time_emb_proj",
    "out_layers.3": "resnets_{}_conv2",
    "skip_connection": "resnets_{}_conv_shortcut"
}
87
88

def load_lora(path, to_load):
89
    lora = utils.load_torch_file(path, safe_load=True)
90
91
92
    patch_dict = {}
    loaded_keys = set()
    for x in to_load:
comfyanonymous's avatar
comfyanonymous committed
93
94
95
96
97
98
        alpha_name = "{}.alpha".format(x)
        alpha = None
        if alpha_name in lora.keys():
            alpha = lora[alpha_name].item()
            loaded_keys.add(alpha_name)

99
100
        A_name = "{}.lora_up.weight".format(x)
        B_name = "{}.lora_down.weight".format(x)
101
        mid_name = "{}.lora_mid.weight".format(x)
comfyanonymous's avatar
comfyanonymous committed
102

103
        if A_name in lora.keys():
104
105
106
107
108
            mid = None
            if mid_name in lora.keys():
                mid = lora[mid_name]
                loaded_keys.add(mid_name)
            patch_dict[to_load[x]] = (lora[A_name], lora[B_name], alpha, mid)
109
110
            loaded_keys.add(A_name)
            loaded_keys.add(B_name)
comfyanonymous's avatar
comfyanonymous committed
111

comfyanonymous's avatar
comfyanonymous committed
112
113

        ######## loha
comfyanonymous's avatar
comfyanonymous committed
114
115
116
117
        hada_w1_a_name = "{}.hada_w1_a".format(x)
        hada_w1_b_name = "{}.hada_w1_b".format(x)
        hada_w2_a_name = "{}.hada_w2_a".format(x)
        hada_w2_b_name = "{}.hada_w2_b".format(x)
118
119
        hada_t1_name = "{}.hada_t1".format(x)
        hada_t2_name = "{}.hada_t2".format(x)
comfyanonymous's avatar
comfyanonymous committed
120
        if hada_w1_a_name in lora.keys():
121
122
123
124
125
126
127
128
129
            hada_t1 = None
            hada_t2 = None
            if hada_t1_name in lora.keys():
                hada_t1 = lora[hada_t1_name]
                hada_t2 = lora[hada_t2_name]
                loaded_keys.add(hada_t1_name)
                loaded_keys.add(hada_t2_name)

            patch_dict[to_load[x]] = (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2)
comfyanonymous's avatar
comfyanonymous committed
130
131
132
133
134
            loaded_keys.add(hada_w1_a_name)
            loaded_keys.add(hada_w1_b_name)
            loaded_keys.add(hada_w2_a_name)
            loaded_keys.add(hada_w2_b_name)

comfyanonymous's avatar
comfyanonymous committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

        ######## lokr
        lokr_w1_name = "{}.lokr_w1".format(x)
        lokr_w2_name = "{}.lokr_w2".format(x)
        lokr_w1_a_name = "{}.lokr_w1_a".format(x)
        lokr_w1_b_name = "{}.lokr_w1_b".format(x)
        lokr_t2_name = "{}.lokr_t2".format(x)
        lokr_w2_a_name = "{}.lokr_w2_a".format(x)
        lokr_w2_b_name = "{}.lokr_w2_b".format(x)

        lokr_w1 = None
        if lokr_w1_name in lora.keys():
            lokr_w1 = lora[lokr_w1_name]
            loaded_keys.add(lokr_w1_name)

        lokr_w2 = None
        if lokr_w2_name in lora.keys():
            lokr_w2 = lora[lokr_w2_name]
            loaded_keys.add(lokr_w2_name)

        lokr_w1_a = None
        if lokr_w1_a_name in lora.keys():
            lokr_w1_a = lora[lokr_w1_a_name]
            loaded_keys.add(lokr_w1_a_name)

        lokr_w1_b = None
        if lokr_w1_b_name in lora.keys():
            lokr_w1_b = lora[lokr_w1_b_name]
            loaded_keys.add(lokr_w1_b_name)

        lokr_w2_a = None
        if lokr_w2_a_name in lora.keys():
            lokr_w2_a = lora[lokr_w2_a_name]
            loaded_keys.add(lokr_w2_a_name)

        lokr_w2_b = None
        if lokr_w2_b_name in lora.keys():
            lokr_w2_b = lora[lokr_w2_b_name]
            loaded_keys.add(lokr_w2_b_name)

        lokr_t2 = None
        if lokr_t2_name in lora.keys():
            lokr_t2 = lora[lokr_t2_name]
            loaded_keys.add(lokr_t2_name)

        if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
            patch_dict[to_load[x]] = (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2)

183
184
185
186
187
188
189
190
191
192
    for x in lora.keys():
        if x not in loaded_keys:
            print("lora key not loaded", x)
    return patch_dict

def model_lora_keys(model, key_map={}):
    sdk = model.state_dict().keys()

    counter = 0
    for b in range(12):
comfyanonymous's avatar
comfyanonymous committed
193
        tk = "diffusion_model.input_blocks.{}.1".format(b)
194
        up_counter = 0
comfyanonymous's avatar
comfyanonymous committed
195
        for c in LORA_UNET_MAP_ATTENTIONS:
196
197
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
198
                lora_key = "lora_unet_down_blocks_{}_attentions_{}_{}".format(counter // 2, counter % 2, LORA_UNET_MAP_ATTENTIONS[c])
199
                key_map[lora_key] = k
200
201
202
                up_counter += 1
        if up_counter >= 4:
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
203
    for c in LORA_UNET_MAP_ATTENTIONS:
comfyanonymous's avatar
comfyanonymous committed
204
        k = "diffusion_model.middle_block.1.{}.weight".format(c)
205
        if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
206
            lora_key = "lora_unet_mid_block_attentions_0_{}".format(LORA_UNET_MAP_ATTENTIONS[c])
207
            key_map[lora_key] = k
208
209
    counter = 3
    for b in range(12):
comfyanonymous's avatar
comfyanonymous committed
210
        tk = "diffusion_model.output_blocks.{}.1".format(b)
211
        up_counter = 0
comfyanonymous's avatar
comfyanonymous committed
212
        for c in LORA_UNET_MAP_ATTENTIONS:
213
214
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
215
                lora_key = "lora_unet_up_blocks_{}_attentions_{}_{}".format(counter // 3, counter % 3, LORA_UNET_MAP_ATTENTIONS[c])
216
                key_map[lora_key] = k
217
218
219
220
                up_counter += 1
        if up_counter >= 4:
            counter += 1
    counter = 0
comfyanonymous's avatar
comfyanonymous committed
221
    text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
222
    for b in range(24):
223
224
225
        for c in LORA_CLIP_MAP:
            k = "transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
226
                lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
227
                key_map[lora_key] = k
comfyanonymous's avatar
comfyanonymous committed
228

comfyanonymous's avatar
comfyanonymous committed
229
230
231
232
233

    #Locon stuff
    ds_counter = 0
    counter = 0
    for b in range(12):
comfyanonymous's avatar
comfyanonymous committed
234
        tk = "diffusion_model.input_blocks.{}.0".format(b)
comfyanonymous's avatar
comfyanonymous committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
        key_in = False
        for c in LORA_UNET_MAP_RESNET:
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
                lora_key = "lora_unet_down_blocks_{}_{}".format(counter // 2, LORA_UNET_MAP_RESNET[c].format(counter % 2))
                key_map[lora_key] = k
                key_in = True
        for bb in range(3):
            k = "{}.{}.op.weight".format(tk[:-2], bb)
            if k in sdk:
                lora_key = "lora_unet_down_blocks_{}_downsamplers_0_conv".format(ds_counter)
                key_map[lora_key] = k
                ds_counter += 1
        if key_in:
            counter += 1

    counter = 0
    for b in range(3):
comfyanonymous's avatar
comfyanonymous committed
253
        tk = "diffusion_model.middle_block.{}".format(b)
comfyanonymous's avatar
comfyanonymous committed
254
255
256
257
258
259
260
261
262
263
264
265
266
        key_in = False
        for c in LORA_UNET_MAP_RESNET:
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
                lora_key = "lora_unet_mid_block_{}".format(LORA_UNET_MAP_RESNET[c].format(counter))
                key_map[lora_key] = k
                key_in = True
        if key_in:
            counter += 1

    counter = 0
    us_counter = 0
    for b in range(12):
comfyanonymous's avatar
comfyanonymous committed
267
        tk = "diffusion_model.output_blocks.{}.0".format(b)
comfyanonymous's avatar
comfyanonymous committed
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
        key_in = False
        for c in LORA_UNET_MAP_RESNET:
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
                lora_key = "lora_unet_up_blocks_{}_{}".format(counter // 3, LORA_UNET_MAP_RESNET[c].format(counter % 3))
                key_map[lora_key] = k
                key_in = True
        for bb in range(3):
            k = "{}.{}.conv.weight".format(tk[:-2], bb)
            if k in sdk:
                lora_key = "lora_unet_up_blocks_{}_upsamplers_0_conv".format(us_counter)
                key_map[lora_key] = k
                us_counter += 1
        if key_in:
            counter += 1

284
285
    return key_map

286

287
class ModelPatcher:
288
289
    def __init__(self, model, size=0):
        self.size = size
290
291
292
        self.model = model
        self.patches = []
        self.backup = {}
293
        self.model_options = {"transformer_options":{}}
294
295
296
297
298
299
300
301
302
303
304
305
        self.model_size()

    def model_size(self):
        if self.size > 0:
            return self.size
        model_sd = self.model.state_dict()
        size = 0
        for k in model_sd:
            t = model_sd[k]
            size += t.nelement() * t.element_size()
        self.size = size
        return size
306
307

    def clone(self):
308
        n = ModelPatcher(self.model, self.size)
309
        n.patches = self.patches[:]
310
        n.model_options = copy.deepcopy(self.model_options)
311
312
        return n

313
314
315
    def set_model_tomesd(self, ratio):
        self.model_options["transformer_options"]["tomesd"] = {"ratio": ratio}

316
    def set_model_sampler_cfg_function(self, sampler_cfg_function):
317
318
319
320
        if len(inspect.signature(sampler_cfg_function).parameters) == 3:
            self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way
        else:
            self.model_options["sampler_cfg_function"] = sampler_cfg_function
321
322
323
324
325
326
327
328
329
330
331
332
333

    def set_model_patch(self, patch, name):
        to = self.model_options["transformer_options"]
        if "patches" not in to:
            to["patches"] = {}
        to["patches"][name] = to["patches"].get(name, []) + [patch]

    def set_model_attn1_patch(self, patch):
        self.set_model_patch(patch, "attn1_patch")

    def set_model_attn2_patch(self, patch):
        self.set_model_patch(patch, "attn2_patch")

334
335
336
    def set_model_attn2_output_patch(self, patch):
        self.set_model_patch(patch, "attn2_output_patch")

337
338
339
340
341
342
343
344
345
346
    def model_patches_to(self, device):
        to = self.model_options["transformer_options"]
        if "patches" in to:
            patches = to["patches"]
            for name in patches:
                patch_list = patches[name]
                for i in range(len(patch_list)):
                    if hasattr(patch_list[i], "to"):
                        patch_list[i] = patch_list[i].to(device)

347
    def model_dtype(self):
comfyanonymous's avatar
comfyanonymous committed
348
        return self.model.get_dtype()
349

350
    def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
351
352
353
        p = {}
        model_sd = self.model.state_dict()
        for k in patches:
354
            if k in model_sd:
355
                p[k] = patches[k]
356
        self.patches += [(strength_patch, p, strength_model)]
357
358
        return p.keys()

359
360
361
362
363
364
365
366
    def model_state_dict(self):
        sd = self.model.state_dict()
        keys = list(sd.keys())
        for k in keys:
            if not k.startswith("diffusion_model."):
                sd.pop(k)
        return sd

367
368
369
370
371
    def patch_model(self):
        model_sd = self.model.state_dict()
        for p in self.patches:
            for k in p[1]:
                v = p[1][k]
372
                key = k
comfyanonymous's avatar
comfyanonymous committed
373
                if key not in model_sd:
374
375
376
                    print("could not patch. key doesn't exist in model:", k)
                    continue

comfyanonymous's avatar
comfyanonymous committed
377
378
379
                weight = model_sd[key]
                if key not in self.backup:
                    self.backup[key] = weight.clone()
380
381

                alpha = p[0]
382
383
384
385
                strength_model = p[2]

                if strength_model != 1.0:
                    weight *= strength_model
comfyanonymous's avatar
comfyanonymous committed
386

387
388
389
                if len(v) == 1:
                    weight += alpha * (v[0]).type(weight.dtype).to(weight.device)
                elif len(v) == 4: #lora/locon
comfyanonymous's avatar
comfyanonymous committed
390
391
392
393
394
395
396
397
398
                    mat1 = v[0]
                    mat2 = v[1]
                    if v[2] is not None:
                        alpha *= v[2] / mat2.shape[0]
                    if v[3] is not None:
                        #locon mid weights, hopefully the math is fine because I didn't properly test it
                        final_shape = [mat2.shape[1], mat2.shape[0], v[3].shape[2], v[3].shape[3]]
                        mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1).float(), v[3].transpose(0, 1).flatten(start_dim=1).float()).reshape(final_shape).transpose(0, 1)
                    weight += (alpha * torch.mm(mat1.flatten(start_dim=1).float(), mat2.flatten(start_dim=1).float())).reshape(weight.shape).type(weight.dtype).to(weight.device)
comfyanonymous's avatar
comfyanonymous committed
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
                elif len(v) == 8: #lokr
                    w1 = v[0]
                    w2 = v[1]
                    w1_a = v[3]
                    w1_b = v[4]
                    w2_a = v[5]
                    w2_b = v[6]
                    t2 = v[7]
                    dim = None

                    if w1 is None:
                        dim = w1_b.shape[0]
                        w1 = torch.mm(w1_a.float(), w1_b.float())

                    if w2 is None:
                        dim = w2_b.shape[0]
                        if t2 is None:
                            w2 = torch.mm(w2_a.float(), w2_b.float())
                        else:
                            w2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float(), w2_b.float(), w2_a.float())

                    if len(w2.shape) == 4:
                        w1 = w1.unsqueeze(2).unsqueeze(2)
                    if v[2] is not None and dim is not None:
                        alpha *= v[2] / dim

                    weight += alpha * torch.kron(w1.float(), w2.float()).reshape(weight.shape).type(weight.dtype).to(weight.device)
comfyanonymous's avatar
comfyanonymous committed
426
427
428
429
430
431
432
                else: #loha
                    w1a = v[0]
                    w1b = v[1]
                    if v[2] is not None:
                        alpha *= v[2] / w1b.shape[0]
                    w2a = v[3]
                    w2b = v[4]
433
434
435
436
437
438
439
440
441
442
                    if v[5] is not None: #cp decomposition
                        t1 = v[5]
                        t2 = v[6]
                        m1 = torch.einsum('i j k l, j r, i p -> p r k l', t1.float(), w1b.float(), w1a.float())
                        m2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float(), w2b.float(), w2a.float())
                    else:
                        m1 = torch.mm(w1a.float(), w1b.float())
                        m2 = torch.mm(w2a.float(), w2b.float())

                    weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype).to(weight.device)
443
444
445
        return self.model
    def unpatch_model(self):
        model_sd = self.model.state_dict()
446
447
        keys = list(self.backup.keys())
        for k in keys:
448
            model_sd[k][:] = self.backup[k]
449
450
            del self.backup[k]

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
        self.backup = {}

def load_lora_for_models(model, clip, lora_path, strength_model, strength_clip):
    key_map = model_lora_keys(model.model)
    key_map = model_lora_keys(clip.cond_stage_model, key_map)
    loaded = load_lora(lora_path, key_map)
    new_modelpatcher = model.clone()
    k = new_modelpatcher.add_patches(loaded, strength_model)
    new_clip = clip.clone()
    k1 = new_clip.add_patches(loaded, strength_clip)
    k = set(k)
    k1 = set(k1)
    for x in loaded:
        if (x not in k) and (x not in k1):
            print("NOT LOADED", x)

    return (new_modelpatcher, new_clip)
comfyanonymous's avatar
comfyanonymous committed
468
469
470


class CLIP:
471
472
473
    def __init__(self, config={}, embedding_directory=None, no_init=False):
        if no_init:
            return
comfyanonymous's avatar
comfyanonymous committed
474
        self.target_clip = config["target"]
475
476
477
478
479
        if "params" in config:
            params = config["params"]
        else:
            params = {}

comfyanonymous's avatar
comfyanonymous committed
480
        if self.target_clip.endswith("FrozenOpenCLIPEmbedder"):
comfyanonymous's avatar
comfyanonymous committed
481
482
            clip = sd2_clip.SD2ClipModel
            tokenizer = sd2_clip.SD2Tokenizer
comfyanonymous's avatar
comfyanonymous committed
483
        elif self.target_clip.endswith("FrozenCLIPEmbedder"):
comfyanonymous's avatar
comfyanonymous committed
484
485
            clip = sd1_clip.SD1ClipModel
            tokenizer = sd1_clip.SD1Tokenizer
486

487
488
        self.device = model_management.text_encoder_device()
        params["device"] = self.device
489
        self.cond_stage_model = clip(**(params))
490
491
        self.cond_stage_model = self.cond_stage_model.to(self.device)

492
        self.tokenizer = tokenizer(embedding_directory=embedding_directory)
493
        self.patcher = ModelPatcher(self.cond_stage_model)
494
        self.layer_idx = None
495
496
497
498
499
500
501

    def clone(self):
        n = CLIP(no_init=True)
        n.target_clip = self.target_clip
        n.patcher = self.patcher.clone()
        n.cond_stage_model = self.cond_stage_model
        n.tokenizer = self.tokenizer
comfyanonymous's avatar
comfyanonymous committed
502
        n.layer_idx = self.layer_idx
503
504
        return n

505
506
507
    def load_from_state_dict(self, sd):
        self.cond_stage_model.transformer.load_state_dict(sd, strict=False)

508
509
    def add_patches(self, patches, strength=1.0):
        return self.patcher.add_patches(patches, strength)
comfyanonymous's avatar
comfyanonymous committed
510

511
    def clip_layer(self, layer_idx):
comfyanonymous's avatar
comfyanonymous committed
512
        self.layer_idx = layer_idx
513

514
515
    def tokenize(self, text, return_word_ids=False):
        return self.tokenizer.tokenize_with_weights(text, return_word_ids)
BlenderNeko's avatar
BlenderNeko committed
516

517
    def encode_from_tokens(self, tokens, return_pooled=False):
518
519
        if self.layer_idx is not None:
            self.cond_stage_model.clip_layer(self.layer_idx)
520
521
522
523
524
525
526
        try:
            self.patcher.patch_model()
            cond = self.cond_stage_model.encode_token_weights(tokens)
            self.patcher.unpatch_model()
        except Exception as e:
            self.patcher.unpatch_model()
            raise e
527
528
529
530
        if return_pooled:
            eos_token_index = max(range(len(tokens[0])), key=tokens[0].__getitem__)
            pooled = cond[:, eos_token_index]
            return cond, pooled
comfyanonymous's avatar
comfyanonymous committed
531
532
        return cond

533
    def encode(self, text):
534
        tokens = self.tokenize(text)
535
536
        return self.encode_from_tokens(tokens)

comfyanonymous's avatar
comfyanonymous committed
537
class VAE:
538
    def __init__(self, ckpt_path=None, scale_factor=0.18215, device=None, config=None):
comfyanonymous's avatar
comfyanonymous committed
539
540
541
        if config is None:
            #default SD1.x/SD2.x VAE parameters
            ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
542
            self.first_stage_model = AutoencoderKL(ddconfig, {'target': 'torch.nn.Identity'}, 4, monitor="val/rec_loss")
comfyanonymous's avatar
comfyanonymous committed
543
        else:
544
            self.first_stage_model = AutoencoderKL(**(config['params']))
comfyanonymous's avatar
comfyanonymous committed
545
        self.first_stage_model = self.first_stage_model.eval()
546
547
548
549
550
551
        if ckpt_path is not None:
            sd = utils.load_torch_file(ckpt_path)
            if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format
                sd = diffusers_convert.convert_vae_state_dict(sd)
            self.first_stage_model.load_state_dict(sd, strict=False)

comfyanonymous's avatar
comfyanonymous committed
552
        self.scale_factor = scale_factor
553
554
        if device is None:
            device = model_management.get_torch_device()
comfyanonymous's avatar
comfyanonymous committed
555
556
        self.device = device

557
    def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
pythongosssss's avatar
pythongosssss committed
558
        steps = samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
comfyanonymous's avatar
comfyanonymous committed
559
560
        steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
        steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
pythongosssss's avatar
pythongosssss committed
561
        pbar = utils.ProgressBar(steps)
562

563
564
        decode_fn = lambda a: (self.first_stage_model.decode(1. / self.scale_factor * a.to(self.device)) + 1.0)
        output = torch.clamp((
565
566
567
            (utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8, pbar = pbar) +
            utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8, pbar = pbar) +
             utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8, pbar = pbar))
568
569
570
            / 3.0) / 2.0, min=0.0, max=1.0)
        return output

571
572
573
574
575
576
577
578
579
580
581
582
583
    def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
        steps = pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
        steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
        steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
        pbar = utils.ProgressBar(steps)

        encode_fn = lambda a: self.first_stage_model.encode(2. * a.to(self.device) - 1.).sample() * self.scale_factor
        samples = utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
        samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
        samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
        samples /= 3.0
        return samples

584
    def decode(self, samples_in):
585
        model_management.unload_model()
comfyanonymous's avatar
comfyanonymous committed
586
        self.first_stage_model = self.first_stage_model.to(self.device)
587
        try:
588
589
590
591
592
593
594
595
            free_memory = model_management.get_free_memory(self.device)
            batch_number = int((free_memory * 0.7) / (2562 * samples_in.shape[2] * samples_in.shape[3] * 64))
            batch_number = max(1, batch_number)

            pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * 8), round(samples_in.shape[3] * 8)), device="cpu")
            for x in range(0, samples_in.shape[0], batch_number):
                samples = samples_in[x:x+batch_number].to(self.device)
                pixel_samples[x:x+batch_number] = torch.clamp((self.first_stage_model.decode(1. / self.scale_factor * samples) + 1.0) / 2.0, min=0.0, max=1.0).cpu()
596
597
598
599
        except model_management.OOM_EXCEPTION as e:
            print("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
            pixel_samples = self.decode_tiled_(samples_in)

comfyanonymous's avatar
comfyanonymous committed
600
601
602
603
        self.first_stage_model = self.first_stage_model.cpu()
        pixel_samples = pixel_samples.cpu().movedim(1,-1)
        return pixel_samples

604
    def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16):
605
606
        model_management.unload_model()
        self.first_stage_model = self.first_stage_model.to(self.device)
607
        output = self.decode_tiled_(samples, tile_x, tile_y, overlap)
608
609
610
        self.first_stage_model = self.first_stage_model.cpu()
        return output.movedim(1,-1)

comfyanonymous's avatar
comfyanonymous committed
611
    def encode(self, pixel_samples):
612
        model_management.unload_model()
comfyanonymous's avatar
comfyanonymous committed
613
        self.first_stage_model = self.first_stage_model.to(self.device)
614
615
        pixel_samples = pixel_samples.movedim(-1,1)
        try:
616
617
618
            free_memory = model_management.get_free_memory(self.device)
            batch_number = int((free_memory * 0.7) / (2078 * pixel_samples.shape[2] * pixel_samples.shape[3])) #NOTE: this constant along with the one in the decode above are estimated from the mem usage for the VAE and could change.
            batch_number = max(1, batch_number)
619
620
621
622
            samples = torch.empty((pixel_samples.shape[0], 4, round(pixel_samples.shape[2] // 8), round(pixel_samples.shape[3] // 8)), device="cpu")
            for x in range(0, pixel_samples.shape[0], batch_number):
                pixels_in = (2. * pixel_samples[x:x+batch_number] - 1.).to(self.device)
                samples[x:x+batch_number] = self.first_stage_model.encode(pixels_in).sample().cpu() * self.scale_factor
623

624
625
626
627
        except model_management.OOM_EXCEPTION as e:
            print("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.")
            samples = self.encode_tiled_(pixel_samples)

comfyanonymous's avatar
comfyanonymous committed
628
629
630
        self.first_stage_model = self.first_stage_model.cpu()
        return samples

comfyanonymous's avatar
comfyanonymous committed
631
632
633
    def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
        model_management.unload_model()
        self.first_stage_model = self.first_stage_model.to(self.device)
634
635
        pixel_samples = pixel_samples.movedim(-1,1)
        samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap)
comfyanonymous's avatar
comfyanonymous committed
636
637
        self.first_stage_model = self.first_stage_model.cpu()
        return samples
638

BlenderNeko's avatar
BlenderNeko committed
639
def broadcast_image_to(tensor, target_batch_size, batched_number):
640
    current_batch_size = tensor.shape[0]
641
    #print(current_batch_size, target_batch_size)
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
    if current_batch_size == 1:
        return tensor

    per_batch = target_batch_size // batched_number
    tensor = tensor[:per_batch]

    if per_batch > tensor.shape[0]:
        tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)

    current_batch_size = tensor.shape[0]
    if current_batch_size == target_batch_size:
        return tensor
    else:
        return torch.cat([tensor] * batched_number, dim=0)

comfyanonymous's avatar
comfyanonymous committed
657
class ControlNet:
658
    def __init__(self, control_model, global_average_pooling=False, device=None):
comfyanonymous's avatar
comfyanonymous committed
659
660
661
        self.control_model = control_model
        self.cond_hint_original = None
        self.cond_hint = None
662
        self.strength = 1.0
663
664
        if device is None:
            device = model_management.get_torch_device()
665
        self.device = device
comfyanonymous's avatar
comfyanonymous committed
666
        self.previous_controlnet = None
667
        self.global_average_pooling = global_average_pooling
comfyanonymous's avatar
comfyanonymous committed
668

669
    def get_control(self, x_noisy, t, cond_txt, batched_number):
comfyanonymous's avatar
comfyanonymous committed
670
671
        control_prev = None
        if self.previous_controlnet is not None:
672
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond_txt, batched_number)
comfyanonymous's avatar
comfyanonymous committed
673

674
        output_dtype = x_noisy.dtype
comfyanonymous's avatar
comfyanonymous committed
675
676
677
678
        if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
            self.cond_hint = None
BlenderNeko's avatar
BlenderNeko committed
679
680
681
            self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(self.control_model.dtype).to(self.device)
        if x_noisy.shape[0] != self.cond_hint.shape[0]:
            self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
682
683
684
685
686
687

        if self.control_model.dtype == torch.float16:
            precision_scope = torch.autocast
        else:
            precision_scope = contextlib.nullcontext

688
        with precision_scope(model_management.get_autocast_device(self.device)):
689
            self.control_model = model_management.load_if_low_vram(self.control_model)
690
            control = self.control_model(x=x_noisy, hint=self.cond_hint, timesteps=t, context=cond_txt)
691
            self.control_model = model_management.unload_if_low_vram(self.control_model)
692
        out = {'middle':[], 'output': []}
693
        autocast_enabled = torch.is_autocast_enabled()
comfyanonymous's avatar
comfyanonymous committed
694
695

        for i in range(len(control)):
comfyanonymous's avatar
comfyanonymous committed
696
697
698
699
700
701
            if i == (len(control) - 1):
                key = 'middle'
                index = 0
            else:
                key = 'output'
                index = i
comfyanonymous's avatar
comfyanonymous committed
702
            x = control[i]
703
704
705
            if self.global_average_pooling:
                x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])

706
            x *= self.strength
707
708
            if x.dtype != output_dtype and not autocast_enabled:
                x = x.to(output_dtype)
comfyanonymous's avatar
comfyanonymous committed
709

comfyanonymous's avatar
comfyanonymous committed
710
711
712
713
714
715
716
            if control_prev is not None and key in control_prev:
                prev = control_prev[key][index]
                if prev is not None:
                    x += prev
            out[key].append(x)
        if control_prev is not None and 'input' in control_prev:
            out['input'] = control_prev['input']
717
        return out
comfyanonymous's avatar
comfyanonymous committed
718

719
    def set_cond_hint(self, cond_hint, strength=1.0):
comfyanonymous's avatar
comfyanonymous committed
720
        self.cond_hint_original = cond_hint
721
        self.strength = strength
comfyanonymous's avatar
comfyanonymous committed
722
723
        return self

comfyanonymous's avatar
comfyanonymous committed
724
725
726
727
    def set_previous_controlnet(self, controlnet):
        self.previous_controlnet = controlnet
        return self

comfyanonymous's avatar
comfyanonymous committed
728
    def cleanup(self):
comfyanonymous's avatar
comfyanonymous committed
729
730
        if self.previous_controlnet is not None:
            self.previous_controlnet.cleanup()
comfyanonymous's avatar
comfyanonymous committed
731
732
733
734
735
        if self.cond_hint is not None:
            del self.cond_hint
            self.cond_hint = None

    def copy(self):
736
        c = ControlNet(self.control_model, global_average_pooling=self.global_average_pooling)
comfyanonymous's avatar
comfyanonymous committed
737
        c.cond_hint_original = self.cond_hint_original
738
        c.strength = self.strength
comfyanonymous's avatar
comfyanonymous committed
739
740
        return c

741
    def get_models(self):
comfyanonymous's avatar
comfyanonymous committed
742
743
        out = []
        if self.previous_controlnet is not None:
744
            out += self.previous_controlnet.get_models()
comfyanonymous's avatar
comfyanonymous committed
745
746
747
        out.append(self.control_model)
        return out

748
def load_controlnet(ckpt_path, model=None):
749
    controlnet_data = utils.load_torch_file(ckpt_path, safe_load=True)
comfyanonymous's avatar
comfyanonymous committed
750
751
752
753
754
755
756
757
758
759
    pth_key = 'control_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight'
    pth = False
    sd2 = False
    key = 'input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight'
    if pth_key in controlnet_data:
        pth = True
        key = pth_key
    elif key in controlnet_data:
        pass
    else:
760
761
762
763
        net = load_t2i_adapter(controlnet_data)
        if net is None:
            print("error checkpoint does not contain controlnet or t2i adapter data", ckpt_path)
        return net
comfyanonymous's avatar
comfyanonymous committed
764
765

    context_dim = controlnet_data[key].shape[1]
766
767

    use_fp16 = False
768
    if model_management.should_use_fp16() and controlnet_data[key].dtype == torch.float16:
769
770
        use_fp16 = True

comfyanonymous's avatar
comfyanonymous committed
771
772
773
774
775
776
777
778
779
780
781
782
783
    if context_dim == 768:
        #SD1.x
        control_model = cldm.ControlNet(image_size=32,
                                        in_channels=4,
                                        hint_channels=3,
                                        model_channels=320,
                                        attention_resolutions=[ 4, 2, 1 ],
                                        num_res_blocks=2,
                                        channel_mult=[ 1, 2, 4, 4 ],
                                        num_heads=8,
                                        use_spatial_transformer=True,
                                        transformer_depth=1,
                                        context_dim=context_dim,
784
                                        use_checkpoint=False,
comfyanonymous's avatar
comfyanonymous committed
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
                                        legacy=False,
                                        use_fp16=use_fp16)
    else:
        #SD2.x
        control_model = cldm.ControlNet(image_size=32,
                                        in_channels=4,
                                        hint_channels=3,
                                        model_channels=320,
                                        attention_resolutions=[ 4, 2, 1 ],
                                        num_res_blocks=2,
                                        channel_mult=[ 1, 2, 4, 4 ],
                                        num_head_channels=64,
                                        use_spatial_transformer=True,
                                        use_linear_in_transformer=True,
                                        transformer_depth=1,
                                        context_dim=context_dim,
801
                                        use_checkpoint=False,
comfyanonymous's avatar
comfyanonymous committed
802
803
                                        legacy=False,
                                        use_fp16=use_fp16)
comfyanonymous's avatar
comfyanonymous committed
804
    if pth:
805
806
807
808
809
810
811
        if 'difference' in controlnet_data:
            if model is not None:
                m = model.patch_model()
                model_sd = m.state_dict()
                for x in controlnet_data:
                    c_m = "control_model."
                    if x.startswith(c_m):
comfyanonymous's avatar
comfyanonymous committed
812
                        sd_key = "diffusion_model.{}".format(x[len(c_m):])
813
814
815
816
817
818
819
                        if sd_key in model_sd:
                            cd = controlnet_data[x]
                            cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
                model.unpatch_model()
            else:
                print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")

comfyanonymous's avatar
comfyanonymous committed
820
821
822
823
824
825
826
827
        class WeightsLoader(torch.nn.Module):
            pass
        w = WeightsLoader()
        w.control_model = control_model
        w.load_state_dict(controlnet_data, strict=False)
    else:
        control_model.load_state_dict(controlnet_data, strict=False)

828
829
830
    if use_fp16:
        control_model = control_model.half()

831
832
833
834
835
    global_average_pooling = False
    if ckpt_path.endswith("_shuffle.pth") or ckpt_path.endswith("_shuffle.safetensors") or ckpt_path.endswith("_shuffle_fp16.safetensors"): #TODO: smarter way of enabling global_average_pooling
        global_average_pooling = True

    control = ControlNet(control_model, global_average_pooling=global_average_pooling)
comfyanonymous's avatar
comfyanonymous committed
836
837
    return control

838
class T2IAdapter:
839
    def __init__(self, t2i_model, channels_in, device=None):
840
841
842
        self.t2i_model = t2i_model
        self.channels_in = channels_in
        self.strength = 1.0
843
844
        if device is None:
            device = model_management.get_torch_device()
845
846
847
848
849
850
        self.device = device
        self.previous_controlnet = None
        self.control_input = None
        self.cond_hint_original = None
        self.cond_hint = None

851
    def get_control(self, x_noisy, t, cond_txt, batched_number):
852
853
        control_prev = None
        if self.previous_controlnet is not None:
854
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond_txt, batched_number)
855
856
857
858

        if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
BlenderNeko's avatar
BlenderNeko committed
859
            self.control_input = None
860
            self.cond_hint = None
BlenderNeko's avatar
BlenderNeko committed
861
            self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").float().to(self.device)
862
863
            if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
                self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
BlenderNeko's avatar
BlenderNeko committed
864
865
866
        if x_noisy.shape[0] != self.cond_hint.shape[0]:
            self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
        if self.control_input is None:
867
868
869
870
871
872
873
            self.t2i_model.to(self.device)
            self.control_input = self.t2i_model(self.cond_hint)
            self.t2i_model.cpu()

        output_dtype = x_noisy.dtype
        out = {'input':[]}

comfyanonymous's avatar
comfyanonymous committed
874
        autocast_enabled = torch.is_autocast_enabled()
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
        for i in range(len(self.control_input)):
            key = 'input'
            x = self.control_input[i] * self.strength
            if x.dtype != output_dtype and not autocast_enabled:
                x = x.to(output_dtype)

            if control_prev is not None and key in control_prev:
                index = len(control_prev[key]) - i * 3 - 3
                prev = control_prev[key][index]
                if prev is not None:
                    x += prev
            out[key].insert(0, None)
            out[key].insert(0, None)
            out[key].insert(0, x)

        if control_prev is not None and 'input' in control_prev:
            for i in range(len(out['input'])):
                if out['input'][i] is None:
                    out['input'][i] = control_prev['input'][i]
        if control_prev is not None and 'middle' in control_prev:
            out['middle'] = control_prev['middle']
        if control_prev is not None and 'output' in control_prev:
            out['output'] = control_prev['output']
        return out

    def set_cond_hint(self, cond_hint, strength=1.0):
        self.cond_hint_original = cond_hint
        self.strength = strength
        return self

    def set_previous_controlnet(self, controlnet):
        self.previous_controlnet = controlnet
        return self

    def copy(self):
        c = T2IAdapter(self.t2i_model, self.channels_in)
        c.cond_hint_original = self.cond_hint_original
        c.strength = self.strength
        return c

    def cleanup(self):
        if self.previous_controlnet is not None:
            self.previous_controlnet.cleanup()
        if self.cond_hint is not None:
            del self.cond_hint
            self.cond_hint = None

922
    def get_models(self):
923
924
        out = []
        if self.previous_controlnet is not None:
925
            out += self.previous_controlnet.get_models()
926
927
        return out

928
def load_t2i_adapter(t2i_data):
929
    keys = t2i_data.keys()
930
    if "body.0.in_conv.weight" in keys:
931
932
        cin = t2i_data['body.0.in_conv.weight'].shape[1]
        model_ad = adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
933
    elif 'conv_in.weight' in keys:
934
935
        cin = t2i_data['conv_in.weight'].shape[1]
        model_ad = adapter.Adapter(cin=cin, channels=[320, 640, 1280, 1280][:4], nums_rb=2, ksize=1, sk=True, use_conv=False)
936
937
    else:
        return None
938
939
    model_ad.load_state_dict(t2i_data)
    return T2IAdapter(model_ad, cin // 64)
comfyanonymous's avatar
comfyanonymous committed
940

941
942
943
944
945
946
947
948
949
950

class StyleModel:
    def __init__(self, model, device="cpu"):
        self.model = model

    def get_cond(self, input):
        return self.model(input.last_hidden_state)


def load_style_model(ckpt_path):
951
    model_data = utils.load_torch_file(ckpt_path, safe_load=True)
952
953
954
955
956
957
958
959
960
    keys = model_data.keys()
    if "style_embedding" in keys:
        model = adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
    else:
        raise Exception("invalid style model {}".format(ckpt_path))
    model.load_state_dict(model_data)
    return StyleModel(model)


961
def load_clip(ckpt_path, embedding_directory=None):
962
    clip_data = utils.load_torch_file(ckpt_path, safe_load=True)
963
964
    config = {}
    if "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data:
comfyanonymous's avatar
comfyanonymous committed
965
        config['target'] = 'comfy.ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder'
966
    else:
comfyanonymous's avatar
comfyanonymous committed
967
        config['target'] = 'comfy.ldm.modules.encoders.modules.FrozenCLIPEmbedder'
968
969
970
    clip = CLIP(config=config, embedding_directory=embedding_directory)
    clip.load_from_state_dict(clip_data)
    return clip
comfyanonymous's avatar
comfyanonymous committed
971

972
def load_gligen(ckpt_path):
973
    data = utils.load_torch_file(ckpt_path, safe_load=True)
974
975
976
977
978
    model = gligen.load_gligen(data)
    if model_management.should_use_fp16():
        model = model.half()
    return model

comfyanonymous's avatar
comfyanonymous committed
979
980
981
982
def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None):
    if config is None:
        with open(config_path, 'r') as stream:
            config = yaml.safe_load(stream)
comfyanonymous's avatar
comfyanonymous committed
983
984
985
986
987
    model_config_params = config['model']['params']
    clip_config = model_config_params['cond_stage_config']
    scale_factor = model_config_params['scale_factor']
    vae_config = model_config_params['first_stage_config']

988
989
990
    fp16 = False
    if "unet_config" in model_config_params:
        if "params" in model_config_params["unet_config"]:
comfyanonymous's avatar
comfyanonymous committed
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
            unet_config = model_config_params["unet_config"]["params"]
            if "use_fp16" in unet_config:
                fp16 = unet_config["use_fp16"]

    noise_aug_config = None
    if "noise_aug_config" in model_config_params:
        noise_aug_config = model_config_params["noise_aug_config"]

    v_prediction = False

    if "parameterization" in model_config_params:
        if model_config_params["parameterization"] == "v":
            v_prediction = True
1004

comfyanonymous's avatar
comfyanonymous committed
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
    clip = None
    vae = None

    class WeightsLoader(torch.nn.Module):
        pass

    w = WeightsLoader()
    load_state_dict_to = []
    if output_vae:
        vae = VAE(scale_factor=scale_factor, config=vae_config)
        w.first_stage_model = vae.first_stage_model
        load_state_dict_to = [w]

    if output_clip:
1019
        clip = CLIP(config=clip_config, embedding_directory=embedding_directory)
comfyanonymous's avatar
comfyanonymous committed
1020
1021
1022
        w.cond_stage_model = clip.cond_stage_model
        load_state_dict_to = [w]

comfyanonymous's avatar
comfyanonymous committed
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
    if config['model']["target"].endswith("LatentInpaintDiffusion"):
        model = model_base.SDInpaint(unet_config, v_prediction=v_prediction)
    elif config['model']["target"].endswith("ImageEmbeddingConditionedLatentDiffusion"):
        model = model_base.SD21UNCLIP(unet_config, noise_aug_config["params"], v_prediction=v_prediction)
    else:
        model = model_base.BaseModel(unet_config, v_prediction=v_prediction)

    if state_dict is None:
        state_dict = utils.load_torch_file(ckpt_path)
    model = load_model_weights(model, state_dict, verbose=False, load_state_dict_to=load_state_dict_to)
1033
1034
1035
1036

    if fp16:
        model = model.half()

1037
    return (ModelPatcher(model), clip, vae)
1038
1039


1040
1041
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None):
    sd = utils.load_torch_file(ckpt_path)
1042
1043
    sd_keys = sd.keys()
    clip = None
1044
    clipvision = None
1045
1046
    vae = None

1047
1048
    fp16 = model_management.should_use_fp16()

1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
    class WeightsLoader(torch.nn.Module):
        pass

    w = WeightsLoader()
    load_state_dict_to = []
    if output_vae:
        vae = VAE()
        w.first_stage_model = vae.first_stage_model
        load_state_dict_to = [w]

    if output_clip:
        clip_config = {}
        if "cond_stage_model.model.transformer.resblocks.22.attn.out_proj.weight" in sd_keys:
comfyanonymous's avatar
comfyanonymous committed
1062
            clip_config['target'] = 'comfy.ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder'
1063
        else:
comfyanonymous's avatar
comfyanonymous committed
1064
            clip_config['target'] = 'comfy.ldm.modules.encoders.modules.FrozenCLIPEmbedder'
1065
1066
1067
1068
        clip = CLIP(config=clip_config, embedding_directory=embedding_directory)
        w.cond_stage_model = clip.cond_stage_model
        load_state_dict_to = [w]

1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
    clipvision_key = "embedder.model.visual.transformer.resblocks.0.attn.in_proj_weight"
    noise_aug_config = None
    if clipvision_key in sd_keys:
        size = sd[clipvision_key].shape[1]

        if output_clipvision:
            clipvision = clip_vision.load_clipvision_from_sd(sd)

        noise_aug_key = "noise_augmentor.betas"
        if noise_aug_key in sd_keys:
            noise_aug_config = {}
            params = {}
            noise_schedule_config = {}
            noise_schedule_config["timesteps"] = sd[noise_aug_key].shape[0]
            noise_schedule_config["beta_schedule"] = "squaredcos_cap_v2"
            params["noise_schedule_config"] = noise_schedule_config
comfyanonymous's avatar
comfyanonymous committed
1085
            noise_aug_config['target'] = "comfy.ldm.modules.encoders.noise_aug_modules.CLIPEmbeddingNoiseAugmentation"
1086
1087
1088
1089
1090
1091
            if size == 1280: #h
                params["timestep_dim"] = 1024
            elif size == 1024: #l
                params["timestep_dim"] = 768
            noise_aug_config['params'] = params

1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
    sd_config = {
        "linear_start": 0.00085,
        "linear_end": 0.012,
        "num_timesteps_cond": 1,
        "log_every_t": 200,
        "timesteps": 1000,
        "first_stage_key": "jpg",
        "cond_stage_key": "txt",
        "image_size": 64,
        "channels": 4,
        "cond_stage_trainable": False,
        "monitor": "val/loss_simple_ema",
        "scale_factor": 0.18215,
        "use_ema": False,
    }

    unet_config = {
1109
        "use_checkpoint": False,
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
        "image_size": 32,
        "out_channels": 4,
        "attention_resolutions": [
            4,
            2,
            1
        ],
        "num_res_blocks": 2,
        "channel_mult": [
            1,
            2,
            4,
            4
        ],
        "use_spatial_transformer": True,
        "transformer_depth": 1,
        "legacy": False
    }

comfyanonymous's avatar
comfyanonymous committed
1129
    if len(sd['model.diffusion_model.input_blocks.4.1.proj_in.weight'].shape) == 2:
1130
1131
1132
1133
1134
        unet_config['use_linear_in_transformer'] = True

    unet_config["use_fp16"] = fp16
    unet_config["model_channels"] = sd['model.diffusion_model.input_blocks.0.0.weight'].shape[0]
    unet_config["in_channels"] = sd['model.diffusion_model.input_blocks.0.0.weight'].shape[1]
comfyanonymous's avatar
comfyanonymous committed
1135
    unet_config["context_dim"] = sd['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_k.weight'].shape[1]
1136

comfyanonymous's avatar
comfyanonymous committed
1137
    sd_config["unet_config"] = {"target": "comfy.ldm.modules.diffusionmodules.openaimodel.UNetModel", "params": unet_config}
1138

comfyanonymous's avatar
comfyanonymous committed
1139
1140
    unclip_model = False
    inpaint_model = False
1141
1142
1143
1144
1145
    if noise_aug_config is not None: #SD2.x unclip model
        sd_config["noise_aug_config"] = noise_aug_config
        sd_config["image_size"] = 96
        sd_config["embedding_dropout"] = 0.25
        sd_config["conditioning_key"] = 'crossattn-adm'
comfyanonymous's avatar
comfyanonymous committed
1146
        unclip_model = True
1147
    elif unet_config["in_channels"] > 4: #inpainting model
1148
1149
        sd_config["conditioning_key"] = "hybrid"
        sd_config["finetune_keys"] = None
comfyanonymous's avatar
comfyanonymous committed
1150
        inpaint_model = True
1151
1152
1153
    else:
        sd_config["conditioning_key"] = "crossattn"

comfyanonymous's avatar
comfyanonymous committed
1154
    if unet_config["context_dim"] == 768:
1155
        unet_config["num_heads"] = 8 #SD1.x
comfyanonymous's avatar
comfyanonymous committed
1156
1157
    else:
        unet_config["num_head_channels"] = 64 #SD2.x
1158

1159
1160
1161
1162
1163
    unclip = 'model.diffusion_model.label_emb.0.0.weight'
    if unclip in sd_keys:
        unet_config["num_classes"] = "sequential"
        unet_config["adm_in_channels"] = sd[unclip].shape[1]

comfyanonymous's avatar
comfyanonymous committed
1164
    v_prediction = False
comfyanonymous's avatar
comfyanonymous committed
1165
1166
1167
1168
    if unet_config["context_dim"] == 1024 and unet_config["in_channels"] == 4: #only SD2.x non inpainting models are v prediction
        k = "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1.bias"
        out = sd[k]
        if torch.std(out, unbiased=False) > 0.09: # not sure how well this will actually work. I guess we will find out.
comfyanonymous's avatar
comfyanonymous committed
1169
            v_prediction = True
comfyanonymous's avatar
comfyanonymous committed
1170
            sd_config["parameterization"] = 'v'
1171

comfyanonymous's avatar
comfyanonymous committed
1172
1173
1174
1175
1176
1177
1178
    if inpaint_model:
        model = model_base.SDInpaint(unet_config, v_prediction=v_prediction)
    elif unclip_model:
        model = model_base.SD21UNCLIP(unet_config, noise_aug_config["params"], v_prediction=v_prediction)
    else:
        model = model_base.BaseModel(unet_config, v_prediction=v_prediction)

1179
1180
    model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to)

1181
    return (ModelPatcher(model), clip, vae, clipvision)