sd.py 46 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
import torch
2
import contextlib
3
import copy
4
import inspect
comfyanonymous's avatar
comfyanonymous committed
5

6
from comfy import model_management
7
8
from .ldm.util import instantiate_from_config
from .ldm.models.autoencoder import AutoencoderKL
9
import yaml
comfyanonymous's avatar
comfyanonymous committed
10
from .cldm import cldm
11
from .t2i_adapter import adapter
comfyanonymous's avatar
comfyanonymous committed
12
13

from . import utils
14
from . import clip_vision
15
from . import gligen
16
from . import diffusers_convert
comfyanonymous's avatar
comfyanonymous committed
17
from . import model_base
18
from . import model_detection
19

20
21
from . import sd1_clip
from . import sd2_clip
22
from . import sdxl_clip
comfyanonymous's avatar
comfyanonymous committed
23

24
def load_model_weights(model, sd):
comfyanonymous's avatar
comfyanonymous committed
25
    m, u = model.load_state_dict(sd, strict=False)
26
27
    m = set(m)
    unexpected_keys = set(u)
comfyanonymous's avatar
comfyanonymous committed
28
29
30

    k = list(sd.keys())
    for x in k:
31
32
33
34
35
36
37
38
39
40
        if x not in unexpected_keys:
            w = sd.pop(x)
            del w
    if len(m) > 0:
        print("missing", m)
    return model

def load_clip_weights(model, sd):
    k = list(sd.keys())
    for x in k:
comfyanonymous's avatar
comfyanonymous committed
41
42
43
44
        if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
            y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
            sd[y] = sd.pop(x)

comfyanonymous's avatar
comfyanonymous committed
45
46
47
48
    if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in sd:
        ids = sd['cond_stage_model.transformer.text_model.embeddings.position_ids']
        if ids.dtype == torch.float32:
            sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
49

50
51
    sd = utils.transformers_convert(sd, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24)
    return load_model_weights(model, sd)
comfyanonymous's avatar
comfyanonymous committed
52

53
54
55
56
57
58
59
60
61
LORA_CLIP_MAP = {
    "mlp.fc1": "mlp_fc1",
    "mlp.fc2": "mlp_fc2",
    "self_attn.k_proj": "self_attn_k_proj",
    "self_attn.q_proj": "self_attn_q_proj",
    "self_attn.v_proj": "self_attn_v_proj",
    "self_attn.out_proj": "self_attn_out_proj",
}

comfyanonymous's avatar
comfyanonymous committed
62
LORA_UNET_MAP_ATTENTIONS = {
63
64
65
66
    "proj_in": "proj_in",
    "proj_out": "proj_out",
}

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
transformer_lora_blocks = {
    "transformer_blocks.{}.attn1.to_q": "transformer_blocks_{}_attn1_to_q",
    "transformer_blocks.{}.attn1.to_k": "transformer_blocks_{}_attn1_to_k",
    "transformer_blocks.{}.attn1.to_v": "transformer_blocks_{}_attn1_to_v",
    "transformer_blocks.{}.attn1.to_out.0": "transformer_blocks_{}_attn1_to_out_0",
    "transformer_blocks.{}.attn2.to_q": "transformer_blocks_{}_attn2_to_q",
    "transformer_blocks.{}.attn2.to_k": "transformer_blocks_{}_attn2_to_k",
    "transformer_blocks.{}.attn2.to_v": "transformer_blocks_{}_attn2_to_v",
    "transformer_blocks.{}.attn2.to_out.0": "transformer_blocks_{}_attn2_to_out_0",
    "transformer_blocks.{}.ff.net.0.proj": "transformer_blocks_{}_ff_net_0_proj",
    "transformer_blocks.{}.ff.net.2": "transformer_blocks_{}_ff_net_2",
}

for i in range(10):
    for k in transformer_lora_blocks:
        LORA_UNET_MAP_ATTENTIONS[k.format(i)] = transformer_lora_blocks[k].format(i)


comfyanonymous's avatar
comfyanonymous committed
85
86
87
88
89
90
LORA_UNET_MAP_RESNET = {
    "in_layers.2": "resnets_{}_conv1",
    "emb_layers.1": "resnets_{}_time_emb_proj",
    "out_layers.3": "resnets_{}_conv2",
    "skip_connection": "resnets_{}_conv_shortcut"
}
91
92

def load_lora(path, to_load):
93
    lora = utils.load_torch_file(path, safe_load=True)
94
95
96
    patch_dict = {}
    loaded_keys = set()
    for x in to_load:
comfyanonymous's avatar
comfyanonymous committed
97
98
99
100
101
102
        alpha_name = "{}.alpha".format(x)
        alpha = None
        if alpha_name in lora.keys():
            alpha = lora[alpha_name].item()
            loaded_keys.add(alpha_name)

103
104
        A_name = "{}.lora_up.weight".format(x)
        B_name = "{}.lora_down.weight".format(x)
105
        mid_name = "{}.lora_mid.weight".format(x)
comfyanonymous's avatar
comfyanonymous committed
106

107
        if A_name in lora.keys():
108
109
110
111
112
            mid = None
            if mid_name in lora.keys():
                mid = lora[mid_name]
                loaded_keys.add(mid_name)
            patch_dict[to_load[x]] = (lora[A_name], lora[B_name], alpha, mid)
113
114
            loaded_keys.add(A_name)
            loaded_keys.add(B_name)
comfyanonymous's avatar
comfyanonymous committed
115

comfyanonymous's avatar
comfyanonymous committed
116
117

        ######## loha
comfyanonymous's avatar
comfyanonymous committed
118
119
120
121
        hada_w1_a_name = "{}.hada_w1_a".format(x)
        hada_w1_b_name = "{}.hada_w1_b".format(x)
        hada_w2_a_name = "{}.hada_w2_a".format(x)
        hada_w2_b_name = "{}.hada_w2_b".format(x)
122
123
        hada_t1_name = "{}.hada_t1".format(x)
        hada_t2_name = "{}.hada_t2".format(x)
comfyanonymous's avatar
comfyanonymous committed
124
        if hada_w1_a_name in lora.keys():
125
126
127
128
129
130
131
132
133
            hada_t1 = None
            hada_t2 = None
            if hada_t1_name in lora.keys():
                hada_t1 = lora[hada_t1_name]
                hada_t2 = lora[hada_t2_name]
                loaded_keys.add(hada_t1_name)
                loaded_keys.add(hada_t2_name)

            patch_dict[to_load[x]] = (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2)
comfyanonymous's avatar
comfyanonymous committed
134
135
136
137
138
            loaded_keys.add(hada_w1_a_name)
            loaded_keys.add(hada_w1_b_name)
            loaded_keys.add(hada_w2_a_name)
            loaded_keys.add(hada_w2_b_name)

comfyanonymous's avatar
comfyanonymous committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

        ######## lokr
        lokr_w1_name = "{}.lokr_w1".format(x)
        lokr_w2_name = "{}.lokr_w2".format(x)
        lokr_w1_a_name = "{}.lokr_w1_a".format(x)
        lokr_w1_b_name = "{}.lokr_w1_b".format(x)
        lokr_t2_name = "{}.lokr_t2".format(x)
        lokr_w2_a_name = "{}.lokr_w2_a".format(x)
        lokr_w2_b_name = "{}.lokr_w2_b".format(x)

        lokr_w1 = None
        if lokr_w1_name in lora.keys():
            lokr_w1 = lora[lokr_w1_name]
            loaded_keys.add(lokr_w1_name)

        lokr_w2 = None
        if lokr_w2_name in lora.keys():
            lokr_w2 = lora[lokr_w2_name]
            loaded_keys.add(lokr_w2_name)

        lokr_w1_a = None
        if lokr_w1_a_name in lora.keys():
            lokr_w1_a = lora[lokr_w1_a_name]
            loaded_keys.add(lokr_w1_a_name)

        lokr_w1_b = None
        if lokr_w1_b_name in lora.keys():
            lokr_w1_b = lora[lokr_w1_b_name]
            loaded_keys.add(lokr_w1_b_name)

        lokr_w2_a = None
        if lokr_w2_a_name in lora.keys():
            lokr_w2_a = lora[lokr_w2_a_name]
            loaded_keys.add(lokr_w2_a_name)

        lokr_w2_b = None
        if lokr_w2_b_name in lora.keys():
            lokr_w2_b = lora[lokr_w2_b_name]
            loaded_keys.add(lokr_w2_b_name)

        lokr_t2 = None
        if lokr_t2_name in lora.keys():
            lokr_t2 = lora[lokr_t2_name]
            loaded_keys.add(lokr_t2_name)

        if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
            patch_dict[to_load[x]] = (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2)

187
188
189
190
191
192
193
194
195
196
    for x in lora.keys():
        if x not in loaded_keys:
            print("lora key not loaded", x)
    return patch_dict

def model_lora_keys(model, key_map={}):
    sdk = model.state_dict().keys()

    counter = 0
    for b in range(12):
comfyanonymous's avatar
comfyanonymous committed
197
        tk = "diffusion_model.input_blocks.{}.1".format(b)
198
        up_counter = 0
comfyanonymous's avatar
comfyanonymous committed
199
        for c in LORA_UNET_MAP_ATTENTIONS:
200
201
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
202
                lora_key = "lora_unet_down_blocks_{}_attentions_{}_{}".format(counter // 2, counter % 2, LORA_UNET_MAP_ATTENTIONS[c])
203
                key_map[lora_key] = k
204
205
206
                up_counter += 1
        if up_counter >= 4:
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
207
    for c in LORA_UNET_MAP_ATTENTIONS:
comfyanonymous's avatar
comfyanonymous committed
208
        k = "diffusion_model.middle_block.1.{}.weight".format(c)
209
        if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
210
            lora_key = "lora_unet_mid_block_attentions_0_{}".format(LORA_UNET_MAP_ATTENTIONS[c])
211
            key_map[lora_key] = k
212
213
    counter = 3
    for b in range(12):
comfyanonymous's avatar
comfyanonymous committed
214
        tk = "diffusion_model.output_blocks.{}.1".format(b)
215
        up_counter = 0
comfyanonymous's avatar
comfyanonymous committed
216
        for c in LORA_UNET_MAP_ATTENTIONS:
217
218
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
219
                lora_key = "lora_unet_up_blocks_{}_attentions_{}_{}".format(counter // 3, counter % 3, LORA_UNET_MAP_ATTENTIONS[c])
220
                key_map[lora_key] = k
221
222
223
224
                up_counter += 1
        if up_counter >= 4:
            counter += 1
    counter = 0
comfyanonymous's avatar
comfyanonymous committed
225
    text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
226
227
    clip_l_present = False
    for b in range(32):
228
229
230
        for c in LORA_CLIP_MAP:
            k = "transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
231
                lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
232
                key_map[lora_key] = k
comfyanonymous's avatar
comfyanonymous committed
233

234
235
236
237
238
239
240
241
242
243
244
245
246
247
            k = "clip_l.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
                lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
                key_map[lora_key] = k
                clip_l_present = True

            k = "clip_g.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
                if clip_l_present:
                    lora_key = "lora_te2_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
                else:
                    lora_key = "lora_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #TODO: test if this is correct for SDXL-Refiner
                key_map[lora_key] = k

comfyanonymous's avatar
comfyanonymous committed
248
249
250
251
252

    #Locon stuff
    ds_counter = 0
    counter = 0
    for b in range(12):
comfyanonymous's avatar
comfyanonymous committed
253
        tk = "diffusion_model.input_blocks.{}.0".format(b)
comfyanonymous's avatar
comfyanonymous committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
        key_in = False
        for c in LORA_UNET_MAP_RESNET:
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
                lora_key = "lora_unet_down_blocks_{}_{}".format(counter // 2, LORA_UNET_MAP_RESNET[c].format(counter % 2))
                key_map[lora_key] = k
                key_in = True
        for bb in range(3):
            k = "{}.{}.op.weight".format(tk[:-2], bb)
            if k in sdk:
                lora_key = "lora_unet_down_blocks_{}_downsamplers_0_conv".format(ds_counter)
                key_map[lora_key] = k
                ds_counter += 1
        if key_in:
            counter += 1

    counter = 0
    for b in range(3):
comfyanonymous's avatar
comfyanonymous committed
272
        tk = "diffusion_model.middle_block.{}".format(b)
comfyanonymous's avatar
comfyanonymous committed
273
274
275
276
277
278
279
280
281
282
283
284
285
        key_in = False
        for c in LORA_UNET_MAP_RESNET:
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
                lora_key = "lora_unet_mid_block_{}".format(LORA_UNET_MAP_RESNET[c].format(counter))
                key_map[lora_key] = k
                key_in = True
        if key_in:
            counter += 1

    counter = 0
    us_counter = 0
    for b in range(12):
comfyanonymous's avatar
comfyanonymous committed
286
        tk = "diffusion_model.output_blocks.{}.0".format(b)
comfyanonymous's avatar
comfyanonymous committed
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
        key_in = False
        for c in LORA_UNET_MAP_RESNET:
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
                lora_key = "lora_unet_up_blocks_{}_{}".format(counter // 3, LORA_UNET_MAP_RESNET[c].format(counter % 3))
                key_map[lora_key] = k
                key_in = True
        for bb in range(3):
            k = "{}.{}.conv.weight".format(tk[:-2], bb)
            if k in sdk:
                lora_key = "lora_unet_up_blocks_{}_upsamplers_0_conv".format(us_counter)
                key_map[lora_key] = k
                us_counter += 1
        if key_in:
            counter += 1

303
304
305
306
307
    for k in sdk:
        if k.startswith("diffusion_model.") and k.endswith(".weight"):
            key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
            key_map["lora_unet_{}".format(key_lora)] = k

308
309
    return key_map

310

311
class ModelPatcher:
312
313
    def __init__(self, model, size=0):
        self.size = size
314
315
316
        self.model = model
        self.patches = []
        self.backup = {}
317
        self.model_options = {"transformer_options":{}}
318
319
320
321
322
323
324
325
326
327
328
        self.model_size()

    def model_size(self):
        if self.size > 0:
            return self.size
        model_sd = self.model.state_dict()
        size = 0
        for k in model_sd:
            t = model_sd[k]
            size += t.nelement() * t.element_size()
        self.size = size
329
        self.model_keys = set(model_sd.keys())
330
        return size
331
332

    def clone(self):
333
        n = ModelPatcher(self.model, self.size)
334
        n.patches = self.patches[:]
335
        n.model_options = copy.deepcopy(self.model_options)
336
        n.model_keys = self.model_keys
337
338
        return n

339
    def set_model_sampler_cfg_function(self, sampler_cfg_function):
340
341
342
343
        if len(inspect.signature(sampler_cfg_function).parameters) == 3:
            self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way
        else:
            self.model_options["sampler_cfg_function"] = sampler_cfg_function
344
345
346
347
348
349
350

    def set_model_patch(self, patch, name):
        to = self.model_options["transformer_options"]
        if "patches" not in to:
            to["patches"] = {}
        to["patches"][name] = to["patches"].get(name, []) + [patch]

351
352
353
354
355
356
357
358
    def set_model_patch_replace(self, patch, name, block_name, number):
        to = self.model_options["transformer_options"]
        if "patches_replace" not in to:
            to["patches_replace"] = {}
        if name not in to["patches_replace"]:
            to["patches_replace"][name] = {}
        to["patches_replace"][name][(block_name, number)] = patch

359
360
361
362
363
364
    def set_model_attn1_patch(self, patch):
        self.set_model_patch(patch, "attn1_patch")

    def set_model_attn2_patch(self, patch):
        self.set_model_patch(patch, "attn2_patch")

365
366
367
368
369
370
371
372
373
    def set_model_attn1_replace(self, patch, block_name, number):
        self.set_model_patch_replace(patch, "attn1", block_name, number)

    def set_model_attn2_replace(self, patch, block_name, number):
        self.set_model_patch_replace(patch, "attn2", block_name, number)

    def set_model_attn1_output_patch(self, patch):
        self.set_model_patch(patch, "attn1_output_patch")

374
375
376
    def set_model_attn2_output_patch(self, patch):
        self.set_model_patch(patch, "attn2_output_patch")

377
378
379
380
381
382
383
384
385
    def model_patches_to(self, device):
        to = self.model_options["transformer_options"]
        if "patches" in to:
            patches = to["patches"]
            for name in patches:
                patch_list = patches[name]
                for i in range(len(patch_list)):
                    if hasattr(patch_list[i], "to"):
                        patch_list[i] = patch_list[i].to(device)
386
387
388
389
390
391
392
        if "patches_replace" in to:
            patches = to["patches_replace"]
            for name in patches:
                patch_list = patches[name]
                for k in patch_list:
                    if hasattr(patch_list[k], "to"):
                        patch_list[k] = patch_list[k].to(device)
393

394
    def model_dtype(self):
comfyanonymous's avatar
comfyanonymous committed
395
        return self.model.get_dtype()
396

397
    def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
398
399
        p = {}
        for k in patches:
400
            if k in self.model_keys:
401
                p[k] = patches[k]
402
        self.patches += [(strength_patch, p, strength_model)]
403
404
        return p.keys()

405
    def model_state_dict(self, filter_prefix=None):
406
407
        sd = self.model.state_dict()
        keys = list(sd.keys())
408
409
410
411
        if filter_prefix is not None:
            for k in keys:
                if not k.startswith(filter_prefix):
                    sd.pop(k)
412
413
        return sd

414
    def patch_model(self):
415
        model_sd = self.model_state_dict()
416
417
418
        for p in self.patches:
            for k in p[1]:
                v = p[1][k]
419
                key = k
comfyanonymous's avatar
comfyanonymous committed
420
                if key not in model_sd:
421
422
423
                    print("could not patch. key doesn't exist in model:", k)
                    continue

comfyanonymous's avatar
comfyanonymous committed
424
425
426
                weight = model_sd[key]
                if key not in self.backup:
                    self.backup[key] = weight.clone()
427
428

                alpha = p[0]
429
430
431
432
                strength_model = p[2]

                if strength_model != 1.0:
                    weight *= strength_model
comfyanonymous's avatar
comfyanonymous committed
433

434
                if len(v) == 1:
435
436
437
438
439
                    w1 = v[0]
                    if w1.shape != weight.shape:
                        print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
                    else:
                        weight += alpha * w1.type(weight.dtype).to(weight.device)
440
                elif len(v) == 4: #lora/locon
comfyanonymous's avatar
comfyanonymous committed
441
442
443
444
445
446
447
448
449
                    mat1 = v[0]
                    mat2 = v[1]
                    if v[2] is not None:
                        alpha *= v[2] / mat2.shape[0]
                    if v[3] is not None:
                        #locon mid weights, hopefully the math is fine because I didn't properly test it
                        final_shape = [mat2.shape[1], mat2.shape[0], v[3].shape[2], v[3].shape[3]]
                        mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1).float(), v[3].transpose(0, 1).flatten(start_dim=1).float()).reshape(final_shape).transpose(0, 1)
                    weight += (alpha * torch.mm(mat1.flatten(start_dim=1).float(), mat2.flatten(start_dim=1).float())).reshape(weight.shape).type(weight.dtype).to(weight.device)
comfyanonymous's avatar
comfyanonymous committed
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
                elif len(v) == 8: #lokr
                    w1 = v[0]
                    w2 = v[1]
                    w1_a = v[3]
                    w1_b = v[4]
                    w2_a = v[5]
                    w2_b = v[6]
                    t2 = v[7]
                    dim = None

                    if w1 is None:
                        dim = w1_b.shape[0]
                        w1 = torch.mm(w1_a.float(), w1_b.float())

                    if w2 is None:
                        dim = w2_b.shape[0]
                        if t2 is None:
                            w2 = torch.mm(w2_a.float(), w2_b.float())
                        else:
                            w2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float(), w2_b.float(), w2_a.float())

                    if len(w2.shape) == 4:
                        w1 = w1.unsqueeze(2).unsqueeze(2)
                    if v[2] is not None and dim is not None:
                        alpha *= v[2] / dim

                    weight += alpha * torch.kron(w1.float(), w2.float()).reshape(weight.shape).type(weight.dtype).to(weight.device)
comfyanonymous's avatar
comfyanonymous committed
477
478
479
480
481
482
483
                else: #loha
                    w1a = v[0]
                    w1b = v[1]
                    if v[2] is not None:
                        alpha *= v[2] / w1b.shape[0]
                    w2a = v[3]
                    w2b = v[4]
484
485
486
487
488
489
490
491
492
493
                    if v[5] is not None: #cp decomposition
                        t1 = v[5]
                        t2 = v[6]
                        m1 = torch.einsum('i j k l, j r, i p -> p r k l', t1.float(), w1b.float(), w1a.float())
                        m2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float(), w2b.float(), w2a.float())
                    else:
                        m1 = torch.mm(w1a.float(), w1b.float())
                        m2 = torch.mm(w2a.float(), w2b.float())

                    weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype).to(weight.device)
494
495
        return self.model
    def unpatch_model(self):
496
        model_sd = self.model_state_dict()
497
498
        keys = list(self.backup.keys())
        for k in keys:
499
            model_sd[k][:] = self.backup[k]
500
501
            del self.backup[k]

502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
        self.backup = {}

def load_lora_for_models(model, clip, lora_path, strength_model, strength_clip):
    key_map = model_lora_keys(model.model)
    key_map = model_lora_keys(clip.cond_stage_model, key_map)
    loaded = load_lora(lora_path, key_map)
    new_modelpatcher = model.clone()
    k = new_modelpatcher.add_patches(loaded, strength_model)
    new_clip = clip.clone()
    k1 = new_clip.add_patches(loaded, strength_clip)
    k = set(k)
    k1 = set(k1)
    for x in loaded:
        if (x not in k) and (x not in k1):
            print("NOT LOADED", x)

    return (new_modelpatcher, new_clip)
comfyanonymous's avatar
comfyanonymous committed
519
520
521


class CLIP:
522
    def __init__(self, target=None, embedding_directory=None, no_init=False):
523
524
        if no_init:
            return
525
526
527
        params = target.params
        clip = target.clip
        tokenizer = target.tokenizer
528

529
530
        self.device = model_management.text_encoder_device()
        params["device"] = self.device
531
        self.cond_stage_model = clip(**(params))
532
533
        self.cond_stage_model = self.cond_stage_model.to(self.device)

534
        self.tokenizer = tokenizer(embedding_directory=embedding_directory)
535
        self.patcher = ModelPatcher(self.cond_stage_model)
536
        self.layer_idx = None
537
538
539
540
541
542

    def clone(self):
        n = CLIP(no_init=True)
        n.patcher = self.patcher.clone()
        n.cond_stage_model = self.cond_stage_model
        n.tokenizer = self.tokenizer
comfyanonymous's avatar
comfyanonymous committed
543
        n.layer_idx = self.layer_idx
544
        n.device = self.device
545
546
        return n

547
    def load_from_state_dict(self, sd):
548
        self.cond_stage_model.load_sd(sd)
549

550
551
    def add_patches(self, patches, strength=1.0):
        return self.patcher.add_patches(patches, strength)
comfyanonymous's avatar
comfyanonymous committed
552

553
    def clip_layer(self, layer_idx):
comfyanonymous's avatar
comfyanonymous committed
554
        self.layer_idx = layer_idx
555

556
557
    def tokenize(self, text, return_word_ids=False):
        return self.tokenizer.tokenize_with_weights(text, return_word_ids)
BlenderNeko's avatar
BlenderNeko committed
558

559
    def encode_from_tokens(self, tokens, return_pooled=False):
560
561
        if self.layer_idx is not None:
            self.cond_stage_model.clip_layer(self.layer_idx)
562
        try:
563
            self.patch_model()
564
            cond, pooled = self.cond_stage_model.encode_token_weights(tokens)
565
            self.unpatch_model()
566
        except Exception as e:
567
            self.unpatch_model()
568
            raise e
569
570

        cond_out = cond
571
        if return_pooled:
572
573
            return cond_out, pooled
        return cond_out
comfyanonymous's avatar
comfyanonymous committed
574

575
    def encode(self, text):
576
        tokens = self.tokenize(text)
577
578
        return self.encode_from_tokens(tokens)

579
580
    def load_sd(self, sd):
        return self.cond_stage_model.load_sd(sd)
581

582
583
584
585
586
587
588
589
590
    def get_sd(self):
        return self.cond_stage_model.state_dict()

    def patch_model(self):
        self.patcher.patch_model()

    def unpatch_model(self):
        self.patcher.unpatch_model()

comfyanonymous's avatar
comfyanonymous committed
591
class VAE:
592
    def __init__(self, ckpt_path=None, device=None, config=None):
comfyanonymous's avatar
comfyanonymous committed
593
594
595
        if config is None:
            #default SD1.x/SD2.x VAE parameters
            ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
596
            self.first_stage_model = AutoencoderKL(ddconfig, {'target': 'torch.nn.Identity'}, 4, monitor="val/rec_loss")
comfyanonymous's avatar
comfyanonymous committed
597
        else:
598
            self.first_stage_model = AutoencoderKL(**(config['params']))
comfyanonymous's avatar
comfyanonymous committed
599
        self.first_stage_model = self.first_stage_model.eval()
600
601
602
603
604
605
        if ckpt_path is not None:
            sd = utils.load_torch_file(ckpt_path)
            if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format
                sd = diffusers_convert.convert_vae_state_dict(sd)
            self.first_stage_model.load_state_dict(sd, strict=False)

606
607
        if device is None:
            device = model_management.get_torch_device()
comfyanonymous's avatar
comfyanonymous committed
608
609
        self.device = device

610
    def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
pythongosssss's avatar
pythongosssss committed
611
        steps = samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
comfyanonymous's avatar
comfyanonymous committed
612
613
        steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
        steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
pythongosssss's avatar
pythongosssss committed
614
        pbar = utils.ProgressBar(steps)
615

616
        decode_fn = lambda a: (self.first_stage_model.decode(a.to(self.device)) + 1.0)
617
        output = torch.clamp((
618
619
620
            (utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8, pbar = pbar) +
            utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8, pbar = pbar) +
             utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8, pbar = pbar))
621
622
623
            / 3.0) / 2.0, min=0.0, max=1.0)
        return output

624
625
626
627
628
629
    def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
        steps = pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
        steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
        steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
        pbar = utils.ProgressBar(steps)

630
        encode_fn = lambda a: self.first_stage_model.encode(2. * a.to(self.device) - 1.).sample()
631
632
633
634
635
636
        samples = utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
        samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
        samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
        samples /= 3.0
        return samples

637
    def decode(self, samples_in):
638
        model_management.unload_model()
comfyanonymous's avatar
comfyanonymous committed
639
        self.first_stage_model = self.first_stage_model.to(self.device)
640
        try:
641
642
643
644
645
646
647
            free_memory = model_management.get_free_memory(self.device)
            batch_number = int((free_memory * 0.7) / (2562 * samples_in.shape[2] * samples_in.shape[3] * 64))
            batch_number = max(1, batch_number)

            pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * 8), round(samples_in.shape[3] * 8)), device="cpu")
            for x in range(0, samples_in.shape[0], batch_number):
                samples = samples_in[x:x+batch_number].to(self.device)
648
                pixel_samples[x:x+batch_number] = torch.clamp((self.first_stage_model.decode(samples) + 1.0) / 2.0, min=0.0, max=1.0).cpu()
649
650
651
652
        except model_management.OOM_EXCEPTION as e:
            print("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
            pixel_samples = self.decode_tiled_(samples_in)

comfyanonymous's avatar
comfyanonymous committed
653
654
655
656
        self.first_stage_model = self.first_stage_model.cpu()
        pixel_samples = pixel_samples.cpu().movedim(1,-1)
        return pixel_samples

657
    def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16):
658
659
        model_management.unload_model()
        self.first_stage_model = self.first_stage_model.to(self.device)
660
        output = self.decode_tiled_(samples, tile_x, tile_y, overlap)
661
662
663
        self.first_stage_model = self.first_stage_model.cpu()
        return output.movedim(1,-1)

comfyanonymous's avatar
comfyanonymous committed
664
    def encode(self, pixel_samples):
665
        model_management.unload_model()
comfyanonymous's avatar
comfyanonymous committed
666
        self.first_stage_model = self.first_stage_model.to(self.device)
667
668
        pixel_samples = pixel_samples.movedim(-1,1)
        try:
669
670
671
            free_memory = model_management.get_free_memory(self.device)
            batch_number = int((free_memory * 0.7) / (2078 * pixel_samples.shape[2] * pixel_samples.shape[3])) #NOTE: this constant along with the one in the decode above are estimated from the mem usage for the VAE and could change.
            batch_number = max(1, batch_number)
672
673
674
            samples = torch.empty((pixel_samples.shape[0], 4, round(pixel_samples.shape[2] // 8), round(pixel_samples.shape[3] // 8)), device="cpu")
            for x in range(0, pixel_samples.shape[0], batch_number):
                pixels_in = (2. * pixel_samples[x:x+batch_number] - 1.).to(self.device)
675
                samples[x:x+batch_number] = self.first_stage_model.encode(pixels_in).sample().cpu()
676

677
678
679
680
        except model_management.OOM_EXCEPTION as e:
            print("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.")
            samples = self.encode_tiled_(pixel_samples)

comfyanonymous's avatar
comfyanonymous committed
681
682
683
        self.first_stage_model = self.first_stage_model.cpu()
        return samples

comfyanonymous's avatar
comfyanonymous committed
684
685
686
    def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
        model_management.unload_model()
        self.first_stage_model = self.first_stage_model.to(self.device)
687
688
        pixel_samples = pixel_samples.movedim(-1,1)
        samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap)
comfyanonymous's avatar
comfyanonymous committed
689
690
        self.first_stage_model = self.first_stage_model.cpu()
        return samples
691

692
693
694
695
    def get_sd(self):
        return self.first_stage_model.state_dict()


BlenderNeko's avatar
BlenderNeko committed
696
def broadcast_image_to(tensor, target_batch_size, batched_number):
697
    current_batch_size = tensor.shape[0]
698
    #print(current_batch_size, target_batch_size)
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
    if current_batch_size == 1:
        return tensor

    per_batch = target_batch_size // batched_number
    tensor = tensor[:per_batch]

    if per_batch > tensor.shape[0]:
        tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)

    current_batch_size = tensor.shape[0]
    if current_batch_size == target_batch_size:
        return tensor
    else:
        return torch.cat([tensor] * batched_number, dim=0)

comfyanonymous's avatar
comfyanonymous committed
714
class ControlNet:
715
    def __init__(self, control_model, global_average_pooling=False, device=None):
comfyanonymous's avatar
comfyanonymous committed
716
717
718
        self.control_model = control_model
        self.cond_hint_original = None
        self.cond_hint = None
719
        self.strength = 1.0
720
721
        if device is None:
            device = model_management.get_torch_device()
722
        self.device = device
comfyanonymous's avatar
comfyanonymous committed
723
        self.previous_controlnet = None
724
        self.global_average_pooling = global_average_pooling
comfyanonymous's avatar
comfyanonymous committed
725

726
    def get_control(self, x_noisy, t, cond, batched_number):
comfyanonymous's avatar
comfyanonymous committed
727
728
        control_prev = None
        if self.previous_controlnet is not None:
729
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
comfyanonymous's avatar
comfyanonymous committed
730

731
        output_dtype = x_noisy.dtype
comfyanonymous's avatar
comfyanonymous committed
732
733
734
735
        if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
            self.cond_hint = None
BlenderNeko's avatar
BlenderNeko committed
736
737
738
            self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(self.control_model.dtype).to(self.device)
        if x_noisy.shape[0] != self.cond_hint.shape[0]:
            self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
739
740
741
742
743
744

        if self.control_model.dtype == torch.float16:
            precision_scope = torch.autocast
        else:
            precision_scope = contextlib.nullcontext

745
        with precision_scope(model_management.get_autocast_device(self.device)):
746
            self.control_model = model_management.load_if_low_vram(self.control_model)
747
748
749
            context = torch.cat(cond['c_crossattn'], 1)
            y = cond.get('c_adm', None)
            control = self.control_model(x=x_noisy, hint=self.cond_hint, timesteps=t, context=context, y=y)
750
            self.control_model = model_management.unload_if_low_vram(self.control_model)
751
        out = {'middle':[], 'output': []}
752
        autocast_enabled = torch.is_autocast_enabled()
comfyanonymous's avatar
comfyanonymous committed
753
754

        for i in range(len(control)):
comfyanonymous's avatar
comfyanonymous committed
755
756
757
758
759
760
            if i == (len(control) - 1):
                key = 'middle'
                index = 0
            else:
                key = 'output'
                index = i
comfyanonymous's avatar
comfyanonymous committed
761
            x = control[i]
762
763
764
            if self.global_average_pooling:
                x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])

765
            x *= self.strength
766
767
            if x.dtype != output_dtype and not autocast_enabled:
                x = x.to(output_dtype)
comfyanonymous's avatar
comfyanonymous committed
768

comfyanonymous's avatar
comfyanonymous committed
769
770
771
772
773
774
775
            if control_prev is not None and key in control_prev:
                prev = control_prev[key][index]
                if prev is not None:
                    x += prev
            out[key].append(x)
        if control_prev is not None and 'input' in control_prev:
            out['input'] = control_prev['input']
776
        return out
comfyanonymous's avatar
comfyanonymous committed
777

778
    def set_cond_hint(self, cond_hint, strength=1.0):
comfyanonymous's avatar
comfyanonymous committed
779
        self.cond_hint_original = cond_hint
780
        self.strength = strength
comfyanonymous's avatar
comfyanonymous committed
781
782
        return self

comfyanonymous's avatar
comfyanonymous committed
783
784
785
786
    def set_previous_controlnet(self, controlnet):
        self.previous_controlnet = controlnet
        return self

comfyanonymous's avatar
comfyanonymous committed
787
    def cleanup(self):
comfyanonymous's avatar
comfyanonymous committed
788
789
        if self.previous_controlnet is not None:
            self.previous_controlnet.cleanup()
comfyanonymous's avatar
comfyanonymous committed
790
791
792
793
794
        if self.cond_hint is not None:
            del self.cond_hint
            self.cond_hint = None

    def copy(self):
795
        c = ControlNet(self.control_model, global_average_pooling=self.global_average_pooling)
comfyanonymous's avatar
comfyanonymous committed
796
        c.cond_hint_original = self.cond_hint_original
797
        c.strength = self.strength
comfyanonymous's avatar
comfyanonymous committed
798
799
        return c

800
    def get_models(self):
comfyanonymous's avatar
comfyanonymous committed
801
802
        out = []
        if self.previous_controlnet is not None:
803
            out += self.previous_controlnet.get_models()
comfyanonymous's avatar
comfyanonymous committed
804
805
806
        out.append(self.control_model)
        return out

807
def load_controlnet(ckpt_path, model=None):
808
    controlnet_data = utils.load_torch_file(ckpt_path, safe_load=True)
809
    pth_key = 'control_model.zero_convs.0.0.weight'
comfyanonymous's avatar
comfyanonymous committed
810
    pth = False
811
    key = 'zero_convs.0.0.weight'
comfyanonymous's avatar
comfyanonymous committed
812
813
814
    if pth_key in controlnet_data:
        pth = True
        key = pth_key
815
        prefix = "control_model."
comfyanonymous's avatar
comfyanonymous committed
816
    elif key in controlnet_data:
817
        prefix = ""
comfyanonymous's avatar
comfyanonymous committed
818
    else:
819
820
821
822
        net = load_t2i_adapter(controlnet_data)
        if net is None:
            print("error checkpoint does not contain controlnet or t2i adapter data", ckpt_path)
        return net
comfyanonymous's avatar
comfyanonymous committed
823

824
825
826
827
828
829
830
    use_fp16 = model_management.should_use_fp16()

    controlnet_config = model_detection.model_config_from_unet(controlnet_data, prefix, use_fp16).unet_config
    controlnet_config.pop("out_channels")
    controlnet_config["hint_channels"] = 3
    control_model = cldm.ControlNet(**controlnet_config)

comfyanonymous's avatar
comfyanonymous committed
831
    if pth:
832
833
834
835
836
837
838
        if 'difference' in controlnet_data:
            if model is not None:
                m = model.patch_model()
                model_sd = m.state_dict()
                for x in controlnet_data:
                    c_m = "control_model."
                    if x.startswith(c_m):
comfyanonymous's avatar
comfyanonymous committed
839
                        sd_key = "diffusion_model.{}".format(x[len(c_m):])
840
841
842
843
844
845
846
                        if sd_key in model_sd:
                            cd = controlnet_data[x]
                            cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
                model.unpatch_model()
            else:
                print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")

comfyanonymous's avatar
comfyanonymous committed
847
848
849
850
        class WeightsLoader(torch.nn.Module):
            pass
        w = WeightsLoader()
        w.control_model = control_model
851
        missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
comfyanonymous's avatar
comfyanonymous committed
852
    else:
853
854
        missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
    print(missing, unexpected)
comfyanonymous's avatar
comfyanonymous committed
855

856
857
858
    if use_fp16:
        control_model = control_model.half()

859
860
861
862
863
    global_average_pooling = False
    if ckpt_path.endswith("_shuffle.pth") or ckpt_path.endswith("_shuffle.safetensors") or ckpt_path.endswith("_shuffle_fp16.safetensors"): #TODO: smarter way of enabling global_average_pooling
        global_average_pooling = True

    control = ControlNet(control_model, global_average_pooling=global_average_pooling)
comfyanonymous's avatar
comfyanonymous committed
864
865
    return control

866
class T2IAdapter:
867
    def __init__(self, t2i_model, channels_in, device=None):
868
869
870
        self.t2i_model = t2i_model
        self.channels_in = channels_in
        self.strength = 1.0
871
872
        if device is None:
            device = model_management.get_torch_device()
873
874
875
876
877
878
        self.device = device
        self.previous_controlnet = None
        self.control_input = None
        self.cond_hint_original = None
        self.cond_hint = None

879
    def get_control(self, x_noisy, t, cond, batched_number):
880
881
        control_prev = None
        if self.previous_controlnet is not None:
882
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
883
884
885
886

        if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
BlenderNeko's avatar
BlenderNeko committed
887
            self.control_input = None
888
            self.cond_hint = None
BlenderNeko's avatar
BlenderNeko committed
889
            self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").float().to(self.device)
890
891
            if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
                self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
BlenderNeko's avatar
BlenderNeko committed
892
893
894
        if x_noisy.shape[0] != self.cond_hint.shape[0]:
            self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
        if self.control_input is None:
895
896
897
898
899
900
901
            self.t2i_model.to(self.device)
            self.control_input = self.t2i_model(self.cond_hint)
            self.t2i_model.cpu()

        output_dtype = x_noisy.dtype
        out = {'input':[]}

comfyanonymous's avatar
comfyanonymous committed
902
        autocast_enabled = torch.is_autocast_enabled()
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
        for i in range(len(self.control_input)):
            key = 'input'
            x = self.control_input[i] * self.strength
            if x.dtype != output_dtype and not autocast_enabled:
                x = x.to(output_dtype)

            if control_prev is not None and key in control_prev:
                index = len(control_prev[key]) - i * 3 - 3
                prev = control_prev[key][index]
                if prev is not None:
                    x += prev
            out[key].insert(0, None)
            out[key].insert(0, None)
            out[key].insert(0, x)

        if control_prev is not None and 'input' in control_prev:
            for i in range(len(out['input'])):
                if out['input'][i] is None:
                    out['input'][i] = control_prev['input'][i]
        if control_prev is not None and 'middle' in control_prev:
            out['middle'] = control_prev['middle']
        if control_prev is not None and 'output' in control_prev:
            out['output'] = control_prev['output']
        return out

    def set_cond_hint(self, cond_hint, strength=1.0):
        self.cond_hint_original = cond_hint
        self.strength = strength
        return self

    def set_previous_controlnet(self, controlnet):
        self.previous_controlnet = controlnet
        return self

    def copy(self):
        c = T2IAdapter(self.t2i_model, self.channels_in)
        c.cond_hint_original = self.cond_hint_original
        c.strength = self.strength
        return c

    def cleanup(self):
        if self.previous_controlnet is not None:
            self.previous_controlnet.cleanup()
        if self.cond_hint is not None:
            del self.cond_hint
            self.cond_hint = None

950
    def get_models(self):
951
952
        out = []
        if self.previous_controlnet is not None:
953
            out += self.previous_controlnet.get_models()
954
955
        return out

956
def load_t2i_adapter(t2i_data):
957
    keys = t2i_data.keys()
958
959
960
    if 'adapter' in keys:
        t2i_data = t2i_data['adapter']
        keys = t2i_data.keys()
961
    if "body.0.in_conv.weight" in keys:
962
963
        cin = t2i_data['body.0.in_conv.weight'].shape[1]
        model_ad = adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
964
    elif 'conv_in.weight' in keys:
965
        cin = t2i_data['conv_in.weight'].shape[1]
966
967
968
969
970
971
972
        channel = t2i_data['conv_in.weight'].shape[0]
        ksize = t2i_data['body.0.block2.weight'].shape[2]
        use_conv = False
        down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys))
        if len(down_opts) > 0:
            use_conv = True
        model_ad = adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv)
973
974
    else:
        return None
975
976
    model_ad.load_state_dict(t2i_data)
    return T2IAdapter(model_ad, cin // 64)
comfyanonymous's avatar
comfyanonymous committed
977

978
979
980
981
982
983
984
985
986
987

class StyleModel:
    def __init__(self, model, device="cpu"):
        self.model = model

    def get_cond(self, input):
        return self.model(input.last_hidden_state)


def load_style_model(ckpt_path):
988
    model_data = utils.load_torch_file(ckpt_path, safe_load=True)
989
990
991
992
993
994
995
996
997
    keys = model_data.keys()
    if "style_embedding" in keys:
        model = adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
    else:
        raise Exception("invalid style model {}".format(ckpt_path))
    model.load_state_dict(model_data)
    return StyleModel(model)


998
999
1000
1001
1002
def load_clip(ckpt_paths, embedding_directory=None):
    clip_data = []
    for p in ckpt_paths:
        clip_data.append(utils.load_torch_file(p, safe_load=True))

comfyanonymous's avatar
comfyanonymous committed
1003
1004
1005
    class EmptyClass:
        pass

1006
1007
1008
1009
    for i in range(len(clip_data)):
        if "transformer.resblocks.0.ln_1.weight" in clip_data[i]:
            clip_data[i] = utils.transformers_convert(clip_data[i], "", "text_model.", 32)

comfyanonymous's avatar
comfyanonymous committed
1010
1011
    clip_target = EmptyClass()
    clip_target.params = {}
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
    if len(clip_data) == 1:
        if "text_model.encoder.layers.30.mlp.fc1.weight" in clip_data[0]:
            clip_target.clip = sdxl_clip.SDXLRefinerClipModel
            clip_target.tokenizer = sdxl_clip.SDXLTokenizer
        elif "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data[0]:
            clip_target.clip = sd2_clip.SD2ClipModel
            clip_target.tokenizer = sd2_clip.SD2Tokenizer
        else:
            clip_target.clip = sd1_clip.SD1ClipModel
            clip_target.tokenizer = sd1_clip.SD1Tokenizer
1022
    else:
1023
1024
        clip_target.clip = sdxl_clip.SDXLClipModel
        clip_target.tokenizer = sdxl_clip.SDXLTokenizer
comfyanonymous's avatar
comfyanonymous committed
1025
1026

    clip = CLIP(clip_target, embedding_directory=embedding_directory)
1027
1028
1029
1030
1031
1032
1033
    for c in clip_data:
        m, u = clip.load_sd(c)
        if len(m) > 0:
            print("clip missing:", m)

        if len(u) > 0:
            print("clip unexpected:", u)
1034
    return clip
comfyanonymous's avatar
comfyanonymous committed
1035

1036
def load_gligen(ckpt_path):
1037
    data = utils.load_torch_file(ckpt_path, safe_load=True)
1038
1039
1040
1041
1042
    model = gligen.load_gligen(data)
    if model_management.should_use_fp16():
        model = model.half()
    return model

comfyanonymous's avatar
comfyanonymous committed
1043
def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None):
1044
    #TODO: this function is a mess and should be removed eventually
comfyanonymous's avatar
comfyanonymous committed
1045
1046
1047
    if config is None:
        with open(config_path, 'r') as stream:
            config = yaml.safe_load(stream)
comfyanonymous's avatar
comfyanonymous committed
1048
1049
1050
1051
1052
    model_config_params = config['model']['params']
    clip_config = model_config_params['cond_stage_config']
    scale_factor = model_config_params['scale_factor']
    vae_config = model_config_params['first_stage_config']

1053
1054
1055
    fp16 = False
    if "unet_config" in model_config_params:
        if "params" in model_config_params["unet_config"]:
comfyanonymous's avatar
comfyanonymous committed
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
            unet_config = model_config_params["unet_config"]["params"]
            if "use_fp16" in unet_config:
                fp16 = unet_config["use_fp16"]

    noise_aug_config = None
    if "noise_aug_config" in model_config_params:
        noise_aug_config = model_config_params["noise_aug_config"]

    v_prediction = False

    if "parameterization" in model_config_params:
        if model_config_params["parameterization"] == "v":
            v_prediction = True
1069

comfyanonymous's avatar
comfyanonymous committed
1070
1071
1072
1073
1074
1075
    clip = None
    vae = None

    class WeightsLoader(torch.nn.Module):
        pass

1076
1077
    if state_dict is None:
        state_dict = utils.load_torch_file(ckpt_path)
comfyanonymous's avatar
comfyanonymous committed
1078

1079
1080
1081
1082
1083
1084
1085
1086
    class EmptyClass:
        pass

    model_config = EmptyClass()
    model_config.unet_config = unet_config
    from . import latent_formats
    model_config.latent_format = latent_formats.SD15(scale_factor=scale_factor)

comfyanonymous's avatar
comfyanonymous committed
1087
    if config['model']["target"].endswith("LatentInpaintDiffusion"):
1088
        model = model_base.SDInpaint(model_config, v_prediction=v_prediction)
comfyanonymous's avatar
comfyanonymous committed
1089
    elif config['model']["target"].endswith("ImageEmbeddingConditionedLatentDiffusion"):
1090
        model = model_base.SD21UNCLIP(model_config, noise_aug_config["params"], v_prediction=v_prediction)
comfyanonymous's avatar
comfyanonymous committed
1091
    else:
1092
        model = model_base.BaseModel(model_config, v_prediction=v_prediction)
comfyanonymous's avatar
comfyanonymous committed
1093

1094
1095
1096
    if fp16:
        model = model.half()

1097
1098
1099
1100
    model.load_model_weights(state_dict, "model.diffusion_model.")

    if output_vae:
        w = WeightsLoader()
1101
        vae = VAE(config=vae_config)
1102
1103
1104
1105
1106
1107
        w.first_stage_model = vae.first_stage_model
        load_model_weights(w, state_dict)

    if output_clip:
        w = WeightsLoader()
        clip_target = EmptyClass()
1108
        clip_target.params = clip_config.get("params", {})
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
        if clip_config["target"].endswith("FrozenOpenCLIPEmbedder"):
            clip_target.clip = sd2_clip.SD2ClipModel
            clip_target.tokenizer = sd2_clip.SD2Tokenizer
        elif clip_config["target"].endswith("FrozenCLIPEmbedder"):
            clip_target.clip = sd1_clip.SD1ClipModel
            clip_target.tokenizer = sd1_clip.SD1Tokenizer
        clip = CLIP(clip_target, embedding_directory=embedding_directory)
        w.cond_stage_model = clip.cond_stage_model
        load_clip_weights(w, state_dict)

1119
    return (ModelPatcher(model), clip, vae)
1120
1121


1122
1123
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None):
    sd = utils.load_torch_file(ckpt_path)
1124
1125
    sd_keys = sd.keys()
    clip = None
1126
    clipvision = None
1127
    vae = None
1128
1129
    model = None
    clip_target = None
1130

1131
1132
    fp16 = model_management.should_use_fp16()

1133
1134
1135
    class WeightsLoader(torch.nn.Module):
        pass

1136
1137
1138
    model_config = model_detection.model_config_from_unet(sd, "model.diffusion_model.", fp16)
    if model_config is None:
        raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path))
1139

1140
    if model_config.clip_vision_prefix is not None:
1141
        if output_clipvision:
1142
            clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True)
1143

1144
    model = model_config.get_model(sd)
1145
    model = model.to(model_management.unet_offload_device())
1146
    model.load_model_weights(sd, "model.diffusion_model.")
1147

1148
    if output_vae:
1149
        vae = VAE()
1150
1151
1152
        w = WeightsLoader()
        w.first_stage_model = vae.first_stage_model
        load_model_weights(w, sd)
1153

1154
1155
1156
1157
1158
1159
1160
    if output_clip:
        w = WeightsLoader()
        clip_target = model_config.clip_target()
        clip = CLIP(clip_target, embedding_directory=embedding_directory)
        w.cond_stage_model = clip.cond_stage_model
        sd = model_config.process_clip_state_dict(sd)
        load_model_weights(w, sd)
comfyanonymous's avatar
comfyanonymous committed
1161

1162
1163
1164
    left_over = sd.keys()
    if len(left_over) > 0:
        print("left over keys:", left_over)
1165

1166
    return (ModelPatcher(model), clip, vae, clipvision)
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179

def save_checkpoint(output_path, model, clip, vae, metadata=None):
    try:
        model.patch_model()
        clip.patch_model()
        sd = model.model.state_dict_for_saving(clip.get_sd(), vae.get_sd())
        utils.save_torch_file(sd, output_path, metadata=metadata)
        model.unpatch_model()
        clip.unpatch_model()
    except Exception as e:
        model.unpatch_model()
        clip.unpatch_model()
        raise e