sd.py 25.4 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
import torch
2
import contextlib
comfyanonymous's avatar
comfyanonymous committed
3
4
5

import sd1_clip
import sd2_clip
6
import model_management
comfyanonymous's avatar
comfyanonymous committed
7
8
9
from ldm.util import instantiate_from_config
from ldm.models.autoencoder import AutoencoderKL
from omegaconf import OmegaConf
comfyanonymous's avatar
comfyanonymous committed
10
from .cldm import cldm
11
from .t2i_adapter import adapter
comfyanonymous's avatar
comfyanonymous committed
12
13

from . import utils
comfyanonymous's avatar
comfyanonymous committed
14

15
def load_torch_file(ckpt):
comfyanonymous's avatar
comfyanonymous committed
16
17
18
19
20
21
22
    if ckpt.lower().endswith(".safetensors"):
        import safetensors.torch
        sd = safetensors.torch.load_file(ckpt, device="cpu")
    else:
        pl_sd = torch.load(ckpt, map_location="cpu")
        if "global_step" in pl_sd:
            print(f"Global Step: {pl_sd['global_step']}")
23
24
25
26
        if "state_dict" in pl_sd:
            sd = pl_sd["state_dict"]
        else:
            sd = pl_sd
27
28
    return sd

29
def load_model_weights(model, sd, verbose=False, load_state_dict_to=[]):
comfyanonymous's avatar
comfyanonymous committed
30
31
32
33
34
35
36
37
38
    m, u = model.load_state_dict(sd, strict=False)

    k = list(sd.keys())
    for x in k:
        # print(x)
        if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
            y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
            sd[y] = sd.pop(x)

comfyanonymous's avatar
comfyanonymous committed
39
40
41
42
    if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in sd:
        ids = sd['cond_stage_model.transformer.text_model.embeddings.position_ids']
        if ids.dtype == torch.float32:
            sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
    keys_to_replace = {
        "cond_stage_model.model.positional_embedding": "cond_stage_model.transformer.text_model.embeddings.position_embedding.weight",
        "cond_stage_model.model.token_embedding.weight": "cond_stage_model.transformer.text_model.embeddings.token_embedding.weight",
        "cond_stage_model.model.ln_final.weight": "cond_stage_model.transformer.text_model.final_layer_norm.weight",
        "cond_stage_model.model.ln_final.bias": "cond_stage_model.transformer.text_model.final_layer_norm.bias",
    }

    for x in keys_to_replace:
        if x in sd:
            sd[keys_to_replace[x]] = sd.pop(x)

    resblock_to_replace = {
        "ln_1": "layer_norm1",
        "ln_2": "layer_norm2",
        "mlp.c_fc": "mlp.fc1",
        "mlp.c_proj": "mlp.fc2",
        "attn.out_proj": "self_attn.out_proj",
    }

    for resblock in range(24):
        for x in resblock_to_replace:
            for y in ["weight", "bias"]:
                k = "cond_stage_model.model.transformer.resblocks.{}.{}.{}".format(resblock, x, y)
                k_to = "cond_stage_model.transformer.text_model.encoder.layers.{}.{}.{}".format(resblock, resblock_to_replace[x], y)
                if k in sd:
                    sd[k_to] = sd.pop(k)

        for y in ["weight", "bias"]:
            k_from = "cond_stage_model.model.transformer.resblocks.{}.attn.in_proj_{}".format(resblock, y)
            if k_from in sd:
                weights = sd.pop(k_from)
                for x in range(3):
                    p = ["self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj"]
                    k_to = "cond_stage_model.transformer.text_model.encoder.layers.{}.{}.{}".format(resblock, p[x], y)
                    sd[k_to] = weights[1024*x:1024*(x + 1)]

comfyanonymous's avatar
comfyanonymous committed
80
81
82
83
84
85
86
87
88
89
90
91
92
    for x in load_state_dict_to:
        x.load_state_dict(sd, strict=False)

    if len(m) > 0 and verbose:
        print("missing keys:")
        print(m)
    if len(u) > 0 and verbose:
        print("unexpected keys:")
        print(u)

    model.eval()
    return model

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
LORA_CLIP_MAP = {
    "mlp.fc1": "mlp_fc1",
    "mlp.fc2": "mlp_fc2",
    "self_attn.k_proj": "self_attn_k_proj",
    "self_attn.q_proj": "self_attn_q_proj",
    "self_attn.v_proj": "self_attn_v_proj",
    "self_attn.out_proj": "self_attn_out_proj",
}

LORA_UNET_MAP = {
    "proj_in": "proj_in",
    "proj_out": "proj_out",
    "transformer_blocks.0.attn1.to_q": "transformer_blocks_0_attn1_to_q",
    "transformer_blocks.0.attn1.to_k": "transformer_blocks_0_attn1_to_k",
    "transformer_blocks.0.attn1.to_v": "transformer_blocks_0_attn1_to_v",
    "transformer_blocks.0.attn1.to_out.0": "transformer_blocks_0_attn1_to_out_0",
    "transformer_blocks.0.attn2.to_q": "transformer_blocks_0_attn2_to_q",
    "transformer_blocks.0.attn2.to_k": "transformer_blocks_0_attn2_to_k",
    "transformer_blocks.0.attn2.to_v": "transformer_blocks_0_attn2_to_v",
    "transformer_blocks.0.attn2.to_out.0": "transformer_blocks_0_attn2_to_out_0",
    "transformer_blocks.0.ff.net.0.proj": "transformer_blocks_0_ff_net_0_proj",
    "transformer_blocks.0.ff.net.2": "transformer_blocks_0_ff_net_2",
}


def load_lora(path, to_load):
    lora = load_torch_file(path)
    patch_dict = {}
    loaded_keys = set()
    for x in to_load:
        A_name = "{}.lora_up.weight".format(x)
        B_name = "{}.lora_down.weight".format(x)
        alpha_name = "{}.alpha".format(x)
        if A_name in lora.keys():
            alpha = None
            if alpha_name in lora.keys():
                alpha = lora[alpha_name].item()
                loaded_keys.add(alpha_name)
            patch_dict[to_load[x]] = (lora[A_name], lora[B_name], alpha)
            loaded_keys.add(A_name)
            loaded_keys.add(B_name)
    for x in lora.keys():
        if x not in loaded_keys:
            print("lora key not loaded", x)
    return patch_dict

def model_lora_keys(model, key_map={}):
    sdk = model.state_dict().keys()

    counter = 0
    for b in range(12):
        tk = "model.diffusion_model.input_blocks.{}.1".format(b)
        up_counter = 0
        for c in LORA_UNET_MAP:
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
                lora_key = "lora_unet_down_blocks_{}_attentions_{}_{}".format(counter // 2, counter % 2, LORA_UNET_MAP[c])
150
                key_map[lora_key] = k
151
152
153
154
155
156
157
                up_counter += 1
        if up_counter >= 4:
            counter += 1
    for c in LORA_UNET_MAP:
        k = "model.diffusion_model.middle_block.1.{}.weight".format(c)
        if k in sdk:
            lora_key = "lora_unet_mid_block_attentions_0_{}".format(LORA_UNET_MAP[c])
158
            key_map[lora_key] = k
159
160
161
162
163
164
165
166
    counter = 3
    for b in range(12):
        tk = "model.diffusion_model.output_blocks.{}.1".format(b)
        up_counter = 0
        for c in LORA_UNET_MAP:
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
                lora_key = "lora_unet_up_blocks_{}_attentions_{}_{}".format(counter // 3, counter % 3, LORA_UNET_MAP[c])
167
                key_map[lora_key] = k
168
169
170
171
                up_counter += 1
        if up_counter >= 4:
            counter += 1
    counter = 0
comfyanonymous's avatar
comfyanonymous committed
172
    text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
173
    for b in range(24):
174
175
176
        for c in LORA_CLIP_MAP:
            k = "transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
177
                lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
178
                key_map[lora_key] = k
comfyanonymous's avatar
comfyanonymous committed
179

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
    return key_map

class ModelPatcher:
    def __init__(self, model):
        self.model = model
        self.patches = []
        self.backup = {}

    def clone(self):
        n = ModelPatcher(self.model)
        n.patches = self.patches[:]
        return n

    def add_patches(self, patches, strength=1.0):
        p = {}
        model_sd = self.model.state_dict()
        for k in patches:
197
            if k in model_sd:
198
199
200
201
202
203
204
205
206
                p[k] = patches[k]
        self.patches += [(strength, p)]
        return p.keys()

    def patch_model(self):
        model_sd = self.model.state_dict()
        for p in self.patches:
            for k in p[1]:
                v = p[1][k]
207
                key = k
comfyanonymous's avatar
comfyanonymous committed
208
                if key not in model_sd:
209
210
211
                    print("could not patch. key doesn't exist in model:", k)
                    continue

comfyanonymous's avatar
comfyanonymous committed
212
213
214
                weight = model_sd[key]
                if key not in self.backup:
                    self.backup[key] = weight.clone()
215
216
217
218
219
220

                alpha = p[0]
                mat1 = v[0]
                mat2 = v[1]
                if v[2] is not None:
                    alpha *= v[2] / mat2.shape[0]
221
                weight += (alpha * torch.mm(mat1.flatten(start_dim=1).float(), mat2.flatten(start_dim=1).float())).reshape(weight.shape).type(weight.dtype).to(weight.device)
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
        return self.model
    def unpatch_model(self):
        model_sd = self.model.state_dict()
        for k in self.backup:
            model_sd[k][:] = self.backup[k]
        self.backup = {}

def load_lora_for_models(model, clip, lora_path, strength_model, strength_clip):
    key_map = model_lora_keys(model.model)
    key_map = model_lora_keys(clip.cond_stage_model, key_map)
    loaded = load_lora(lora_path, key_map)
    new_modelpatcher = model.clone()
    k = new_modelpatcher.add_patches(loaded, strength_model)
    new_clip = clip.clone()
    k1 = new_clip.add_patches(loaded, strength_clip)
    k = set(k)
    k1 = set(k1)
    for x in loaded:
        if (x not in k) and (x not in k1):
            print("NOT LOADED", x)

    return (new_modelpatcher, new_clip)
comfyanonymous's avatar
comfyanonymous committed
244
245
246


class CLIP:
247
248
249
    def __init__(self, config={}, embedding_directory=None, no_init=False):
        if no_init:
            return
comfyanonymous's avatar
comfyanonymous committed
250
        self.target_clip = config["target"]
251
252
253
254
255
        if "params" in config:
            params = config["params"]
        else:
            params = {}

comfyanonymous's avatar
comfyanonymous committed
256
257
258
259
260
261
        if self.target_clip == "ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder":
            clip = sd2_clip.SD2ClipModel
            tokenizer = sd2_clip.SD2Tokenizer
        elif self.target_clip == "ldm.modules.encoders.modules.FrozenCLIPEmbedder":
            clip = sd1_clip.SD1ClipModel
            tokenizer = sd1_clip.SD1Tokenizer
262
263

        self.cond_stage_model = clip(**(params))
264
        self.tokenizer = tokenizer(embedding_directory=embedding_directory)
265
266
267
268
269
270
271
272
273
274
        self.patcher = ModelPatcher(self.cond_stage_model)

    def clone(self):
        n = CLIP(no_init=True)
        n.target_clip = self.target_clip
        n.patcher = self.patcher.clone()
        n.cond_stage_model = self.cond_stage_model
        n.tokenizer = self.tokenizer
        return n

275
276
277
    def load_from_state_dict(self, sd):
        self.cond_stage_model.transformer.load_state_dict(sd, strict=False)

278
279
    def add_patches(self, patches, strength=1.0):
        return self.patcher.add_patches(patches, strength)
comfyanonymous's avatar
comfyanonymous committed
280

281
282
283
    def clip_layer(self, layer_idx):
        return self.cond_stage_model.clip_layer(layer_idx)

comfyanonymous's avatar
comfyanonymous committed
284
285
    def encode(self, text):
        tokens = self.tokenizer.tokenize_with_weights(text)
286
287
288
289
290
291
292
        try:
            self.patcher.patch_model()
            cond = self.cond_stage_model.encode_token_weights(tokens)
            self.patcher.unpatch_model()
        except Exception as e:
            self.patcher.unpatch_model()
            raise e
comfyanonymous's avatar
comfyanonymous committed
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
        return cond

class VAE:
    def __init__(self, ckpt_path=None, scale_factor=0.18215, device="cuda", config=None):
        if config is None:
            #default SD1.x/SD2.x VAE parameters
            ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
            self.first_stage_model = AutoencoderKL(ddconfig, {'target': 'torch.nn.Identity'}, 4, monitor="val/rec_loss", ckpt_path=ckpt_path)
        else:
            self.first_stage_model = AutoencoderKL(**(config['params']), ckpt_path=ckpt_path)
        self.first_stage_model = self.first_stage_model.eval()
        self.scale_factor = scale_factor
        self.device = device

    def decode(self, samples):
308
        model_management.unload_model()
comfyanonymous's avatar
comfyanonymous committed
309
310
311
312
313
314
315
316
        self.first_stage_model = self.first_stage_model.to(self.device)
        samples = samples.to(self.device)
        pixel_samples = self.first_stage_model.decode(1. / self.scale_factor * samples)
        pixel_samples = torch.clamp((pixel_samples + 1.0) / 2.0, min=0.0, max=1.0)
        self.first_stage_model = self.first_stage_model.cpu()
        pixel_samples = pixel_samples.cpu().movedim(1,-1)
        return pixel_samples

317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
    def decode_tiled(self, samples):
        tile_x = tile_y = 64
        overlap = 8
        model_management.unload_model()
        output = torch.empty((samples.shape[0], 3, samples.shape[2] * 8, samples.shape[3] * 8), device="cpu")
        self.first_stage_model = self.first_stage_model.to(self.device)
        for b in range(samples.shape[0]):
            s = samples[b:b+1]
            out = torch.zeros((s.shape[0], 3, s.shape[2] * 8, s.shape[3] * 8), device="cpu")
            out_div = torch.zeros((s.shape[0], 3, s.shape[2] * 8, s.shape[3] * 8), device="cpu")
            for y in range(0, s.shape[2], tile_y - overlap):
                for x in range(0, s.shape[3], tile_x - overlap):
                    s_in = s[:,:,y:y+tile_y,x:x+tile_x]

                    pixel_samples = self.first_stage_model.decode(1. / self.scale_factor * s_in.to(self.device))
                    pixel_samples = torch.clamp((pixel_samples + 1.0) / 2.0, min=0.0, max=1.0)
                    ps = pixel_samples.cpu()
                    mask = torch.ones_like(ps)
                    feather = overlap * 8
                    for t in range(feather):
                            mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))
                            mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                            mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                            mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
                    out[:,:,y*8:(y+tile_y)*8,x*8:(x+tile_x)*8] += ps * mask
                    out_div[:,:,y*8:(y+tile_y)*8,x*8:(x+tile_x)*8] += mask

            output[b:b+1] = out/out_div
        self.first_stage_model = self.first_stage_model.cpu()
        return output.movedim(1,-1)

comfyanonymous's avatar
comfyanonymous committed
348
    def encode(self, pixel_samples):
349
        model_management.unload_model()
comfyanonymous's avatar
comfyanonymous committed
350
351
352
353
354
355
356
        self.first_stage_model = self.first_stage_model.to(self.device)
        pixel_samples = pixel_samples.movedim(-1,1).to(self.device)
        samples = self.first_stage_model.encode(2. * pixel_samples - 1.).sample() * self.scale_factor
        self.first_stage_model = self.first_stage_model.cpu()
        samples = samples.cpu()
        return samples

357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378

def resize_image_to(tensor, target_latent_tensor, batched_number):
    tensor = utils.common_upscale(tensor, target_latent_tensor.shape[3] * 8, target_latent_tensor.shape[2] * 8, 'nearest-exact', "center")
    target_batch_size = target_latent_tensor.shape[0]

    current_batch_size = tensor.shape[0]
    print(current_batch_size, target_batch_size)
    if current_batch_size == 1:
        return tensor

    per_batch = target_batch_size // batched_number
    tensor = tensor[:per_batch]

    if per_batch > tensor.shape[0]:
        tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)

    current_batch_size = tensor.shape[0]
    if current_batch_size == target_batch_size:
        return tensor
    else:
        return torch.cat([tensor] * batched_number, dim=0)

comfyanonymous's avatar
comfyanonymous committed
379
class ControlNet:
380
    def __init__(self, control_model, device="cuda"):
comfyanonymous's avatar
comfyanonymous committed
381
382
383
        self.control_model = control_model
        self.cond_hint_original = None
        self.cond_hint = None
384
        self.strength = 1.0
385
        self.device = device
comfyanonymous's avatar
comfyanonymous committed
386
        self.previous_controlnet = None
comfyanonymous's avatar
comfyanonymous committed
387

388
    def get_control(self, x_noisy, t, cond_txt, batched_number):
comfyanonymous's avatar
comfyanonymous committed
389
390
        control_prev = None
        if self.previous_controlnet is not None:
391
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond_txt, batched_number)
comfyanonymous's avatar
comfyanonymous committed
392

393
        output_dtype = x_noisy.dtype
comfyanonymous's avatar
comfyanonymous committed
394
395
396
397
        if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
            self.cond_hint = None
398
            self.cond_hint = resize_image_to(self.cond_hint_original, x_noisy, batched_number).to(self.control_model.dtype).to(self.device)
399
400
401
402
403
404
405

        if self.control_model.dtype == torch.float16:
            precision_scope = torch.autocast
        else:
            precision_scope = contextlib.nullcontext

        with precision_scope(self.device):
406
            self.control_model = model_management.load_if_low_vram(self.control_model)
407
            control = self.control_model(x=x_noisy, hint=self.cond_hint, timesteps=t, context=cond_txt)
408
            self.control_model = model_management.unload_if_low_vram(self.control_model)
409
        out = {'middle':[], 'output': []}
410
        autocast_enabled = torch.is_autocast_enabled()
comfyanonymous's avatar
comfyanonymous committed
411
412

        for i in range(len(control)):
comfyanonymous's avatar
comfyanonymous committed
413
414
415
416
417
418
            if i == (len(control) - 1):
                key = 'middle'
                index = 0
            else:
                key = 'output'
                index = i
comfyanonymous's avatar
comfyanonymous committed
419
            x = control[i]
420
            x *= self.strength
421
422
            if x.dtype != output_dtype and not autocast_enabled:
                x = x.to(output_dtype)
comfyanonymous's avatar
comfyanonymous committed
423

comfyanonymous's avatar
comfyanonymous committed
424
425
426
427
428
429
430
            if control_prev is not None and key in control_prev:
                prev = control_prev[key][index]
                if prev is not None:
                    x += prev
            out[key].append(x)
        if control_prev is not None and 'input' in control_prev:
            out['input'] = control_prev['input']
431
        return out
comfyanonymous's avatar
comfyanonymous committed
432

433
    def set_cond_hint(self, cond_hint, strength=1.0):
comfyanonymous's avatar
comfyanonymous committed
434
        self.cond_hint_original = cond_hint
435
        self.strength = strength
comfyanonymous's avatar
comfyanonymous committed
436
437
        return self

comfyanonymous's avatar
comfyanonymous committed
438
439
440
441
    def set_previous_controlnet(self, controlnet):
        self.previous_controlnet = controlnet
        return self

comfyanonymous's avatar
comfyanonymous committed
442
    def cleanup(self):
comfyanonymous's avatar
comfyanonymous committed
443
444
        if self.previous_controlnet is not None:
            self.previous_controlnet.cleanup()
comfyanonymous's avatar
comfyanonymous committed
445
446
447
448
449
450
451
        if self.cond_hint is not None:
            del self.cond_hint
            self.cond_hint = None

    def copy(self):
        c = ControlNet(self.control_model)
        c.cond_hint_original = self.cond_hint_original
452
        c.strength = self.strength
comfyanonymous's avatar
comfyanonymous committed
453
454
        return c

comfyanonymous's avatar
comfyanonymous committed
455
456
457
458
459
460
461
    def get_control_models(self):
        out = []
        if self.previous_controlnet is not None:
            out += self.previous_controlnet.get_control_models()
        out.append(self.control_model)
        return out

462
def load_controlnet(ckpt_path, model=None):
comfyanonymous's avatar
comfyanonymous committed
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
    controlnet_data = load_torch_file(ckpt_path)
    pth_key = 'control_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight'
    pth = False
    sd2 = False
    key = 'input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight'
    if pth_key in controlnet_data:
        pth = True
        key = pth_key
    elif key in controlnet_data:
        pass
    else:
        print("error checkpoint does not contain controlnet data", ckpt_path)
        return None

    context_dim = controlnet_data[key].shape[1]
478
479
480
481
482

    use_fp16 = False
    if controlnet_data[key].dtype == torch.float16:
        use_fp16 = True

comfyanonymous's avatar
comfyanonymous committed
483
484
485
486
487
488
489
490
491
492
493
494
    control_model = cldm.ControlNet(image_size=32,
                                    in_channels=4,
                                    hint_channels=3,
                                    model_channels=320,
                                    attention_resolutions=[ 4, 2, 1 ],
                                    num_res_blocks=2,
                                    channel_mult=[ 1, 2, 4, 4 ],
                                    num_heads=8,
                                    use_spatial_transformer=True,
                                    transformer_depth=1,
                                    context_dim=context_dim,
                                    use_checkpoint=True,
495
496
                                    legacy=False,
                                    use_fp16=use_fp16)
comfyanonymous's avatar
comfyanonymous committed
497
498

    if pth:
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
        if 'difference' in controlnet_data:
            if model is not None:
                m = model.patch_model()
                model_sd = m.state_dict()
                for x in controlnet_data:
                    c_m = "control_model."
                    if x.startswith(c_m):
                        sd_key = "model.diffusion_model.{}".format(x[len(c_m):])
                        if sd_key in model_sd:
                            cd = controlnet_data[x]
                            cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
                model.unpatch_model()
            else:
                print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")

comfyanonymous's avatar
comfyanonymous committed
514
515
516
517
518
519
520
521
522
523
524
        class WeightsLoader(torch.nn.Module):
            pass
        w = WeightsLoader()
        w.control_model = control_model
        w.load_state_dict(controlnet_data, strict=False)
    else:
        control_model.load_state_dict(controlnet_data, strict=False)

    control = ControlNet(control_model)
    return control

525
526
527
528
529
530
531
532
533
534
535
class T2IAdapter:
    def __init__(self, t2i_model, channels_in, device="cuda"):
        self.t2i_model = t2i_model
        self.channels_in = channels_in
        self.strength = 1.0
        self.device = device
        self.previous_controlnet = None
        self.control_input = None
        self.cond_hint_original = None
        self.cond_hint = None

536
    def get_control(self, x_noisy, t, cond_txt, batched_number):
537
538
        control_prev = None
        if self.previous_controlnet is not None:
539
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond_txt, batched_number)
540
541
542
543
544

        if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
            self.cond_hint = None
545
            self.cond_hint = resize_image_to(self.cond_hint_original, x_noisy, batched_number).float().to(self.device)
546
547
548
549
550
551
552
553
554
            if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
                self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
            self.t2i_model.to(self.device)
            self.control_input = self.t2i_model(self.cond_hint)
            self.t2i_model.cpu()

        output_dtype = x_noisy.dtype
        out = {'input':[]}

comfyanonymous's avatar
comfyanonymous committed
555
        autocast_enabled = torch.is_autocast_enabled()
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
        for i in range(len(self.control_input)):
            key = 'input'
            x = self.control_input[i] * self.strength
            if x.dtype != output_dtype and not autocast_enabled:
                x = x.to(output_dtype)

            if control_prev is not None and key in control_prev:
                index = len(control_prev[key]) - i * 3 - 3
                prev = control_prev[key][index]
                if prev is not None:
                    x += prev
            out[key].insert(0, None)
            out[key].insert(0, None)
            out[key].insert(0, x)

        if control_prev is not None and 'input' in control_prev:
            for i in range(len(out['input'])):
                if out['input'][i] is None:
                    out['input'][i] = control_prev['input'][i]
        if control_prev is not None and 'middle' in control_prev:
            out['middle'] = control_prev['middle']
        if control_prev is not None and 'output' in control_prev:
            out['output'] = control_prev['output']
        return out

    def set_cond_hint(self, cond_hint, strength=1.0):
        self.cond_hint_original = cond_hint
        self.strength = strength
        return self

    def set_previous_controlnet(self, controlnet):
        self.previous_controlnet = controlnet
        return self

    def copy(self):
        c = T2IAdapter(self.t2i_model, self.channels_in)
        c.cond_hint_original = self.cond_hint_original
        c.strength = self.strength
        return c

    def cleanup(self):
        if self.previous_controlnet is not None:
            self.previous_controlnet.cleanup()
        if self.cond_hint is not None:
            del self.cond_hint
            self.cond_hint = None

    def get_control_models(self):
        out = []
        if self.previous_controlnet is not None:
            out += self.previous_controlnet.get_control_models()
        return out

def load_t2i_adapter(ckpt_path, model=None):
    t2i_data = load_torch_file(ckpt_path)
    cin = t2i_data['conv_in.weight'].shape[1]
    model_ad = adapter.Adapter(cin=cin, channels=[320, 640, 1280, 1280][:4], nums_rb=2, ksize=1, sk=True, use_conv=False)
    model_ad.load_state_dict(t2i_data)
    return T2IAdapter(model_ad, cin // 64)
comfyanonymous's avatar
comfyanonymous committed
615

616
617
618
619
620
621
622
623
624
625
def load_clip(ckpt_path, embedding_directory=None):
    clip_data = load_torch_file(ckpt_path)
    config = {}
    if "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data:
        config['target'] = 'ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder'
    else:
        config['target'] = 'ldm.modules.encoders.modules.FrozenCLIPEmbedder'
    clip = CLIP(config=config, embedding_directory=embedding_directory)
    clip.load_from_state_dict(clip_data)
    return clip
comfyanonymous's avatar
comfyanonymous committed
626

627
def load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=None):
comfyanonymous's avatar
comfyanonymous committed
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
    config = OmegaConf.load(config_path)
    model_config_params = config['model']['params']
    clip_config = model_config_params['cond_stage_config']
    scale_factor = model_config_params['scale_factor']
    vae_config = model_config_params['first_stage_config']

    clip = None
    vae = None

    class WeightsLoader(torch.nn.Module):
        pass

    w = WeightsLoader()
    load_state_dict_to = []
    if output_vae:
        vae = VAE(scale_factor=scale_factor, config=vae_config)
        w.first_stage_model = vae.first_stage_model
        load_state_dict_to = [w]

    if output_clip:
648
        clip = CLIP(config=clip_config, embedding_directory=embedding_directory)
comfyanonymous's avatar
comfyanonymous committed
649
650
651
        w.cond_stage_model = clip.cond_stage_model
        load_state_dict_to = [w]

652
653
654
    model = instantiate_from_config(config.model)
    sd = load_torch_file(ckpt_path)
    model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to)
655
    return (ModelPatcher(model), clip, vae)