sd.py 43.9 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
import torch
2
import contextlib
3
import copy
comfyanonymous's avatar
comfyanonymous committed
4

comfyanonymous's avatar
comfyanonymous committed
5
6
from . import sd1_clip
from . import sd2_clip
7
from comfy import model_management
8
9
from .ldm.util import instantiate_from_config
from .ldm.models.autoencoder import AutoencoderKL
10
import yaml
comfyanonymous's avatar
comfyanonymous committed
11
from .cldm import cldm
12
from .t2i_adapter import adapter
comfyanonymous's avatar
comfyanonymous committed
13
14

from . import utils
15
from . import clip_vision
16
from . import gligen
17
from . import diffusers_convert
18

19
def load_model_weights(model, sd, verbose=False, load_state_dict_to=[]):
comfyanonymous's avatar
comfyanonymous committed
20
21
22
23
24
25
26
27
28
    m, u = model.load_state_dict(sd, strict=False)

    k = list(sd.keys())
    for x in k:
        # print(x)
        if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
            y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
            sd[y] = sd.pop(x)

comfyanonymous's avatar
comfyanonymous committed
29
30
31
32
    if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in sd:
        ids = sd['cond_stage_model.transformer.text_model.embeddings.position_ids']
        if ids.dtype == torch.float32:
            sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
33

34
    sd = utils.transformers_convert(sd, "cond_stage_model.model", "cond_stage_model.transformer.text_model", 24)
35

comfyanonymous's avatar
comfyanonymous committed
36
37
38
39
40
41
42
43
44
45
46
47
48
    for x in load_state_dict_to:
        x.load_state_dict(sd, strict=False)

    if len(m) > 0 and verbose:
        print("missing keys:")
        print(m)
    if len(u) > 0 and verbose:
        print("unexpected keys:")
        print(u)

    model.eval()
    return model

49
50
51
52
53
54
55
56
57
LORA_CLIP_MAP = {
    "mlp.fc1": "mlp_fc1",
    "mlp.fc2": "mlp_fc2",
    "self_attn.k_proj": "self_attn_k_proj",
    "self_attn.q_proj": "self_attn_q_proj",
    "self_attn.v_proj": "self_attn_v_proj",
    "self_attn.out_proj": "self_attn_out_proj",
}

comfyanonymous's avatar
comfyanonymous committed
58
LORA_UNET_MAP_ATTENTIONS = {
59
60
61
62
63
64
65
66
67
68
69
70
71
72
    "proj_in": "proj_in",
    "proj_out": "proj_out",
    "transformer_blocks.0.attn1.to_q": "transformer_blocks_0_attn1_to_q",
    "transformer_blocks.0.attn1.to_k": "transformer_blocks_0_attn1_to_k",
    "transformer_blocks.0.attn1.to_v": "transformer_blocks_0_attn1_to_v",
    "transformer_blocks.0.attn1.to_out.0": "transformer_blocks_0_attn1_to_out_0",
    "transformer_blocks.0.attn2.to_q": "transformer_blocks_0_attn2_to_q",
    "transformer_blocks.0.attn2.to_k": "transformer_blocks_0_attn2_to_k",
    "transformer_blocks.0.attn2.to_v": "transformer_blocks_0_attn2_to_v",
    "transformer_blocks.0.attn2.to_out.0": "transformer_blocks_0_attn2_to_out_0",
    "transformer_blocks.0.ff.net.0.proj": "transformer_blocks_0_ff_net_0_proj",
    "transformer_blocks.0.ff.net.2": "transformer_blocks_0_ff_net_2",
}

comfyanonymous's avatar
comfyanonymous committed
73
74
75
76
77
78
LORA_UNET_MAP_RESNET = {
    "in_layers.2": "resnets_{}_conv1",
    "emb_layers.1": "resnets_{}_time_emb_proj",
    "out_layers.3": "resnets_{}_conv2",
    "skip_connection": "resnets_{}_conv_shortcut"
}
79
80

def load_lora(path, to_load):
81
    lora = utils.load_torch_file(path)
82
83
84
    patch_dict = {}
    loaded_keys = set()
    for x in to_load:
comfyanonymous's avatar
comfyanonymous committed
85
86
87
88
89
90
        alpha_name = "{}.alpha".format(x)
        alpha = None
        if alpha_name in lora.keys():
            alpha = lora[alpha_name].item()
            loaded_keys.add(alpha_name)

91
92
        A_name = "{}.lora_up.weight".format(x)
        B_name = "{}.lora_down.weight".format(x)
93
        mid_name = "{}.lora_mid.weight".format(x)
comfyanonymous's avatar
comfyanonymous committed
94

95
        if A_name in lora.keys():
96
97
98
99
100
            mid = None
            if mid_name in lora.keys():
                mid = lora[mid_name]
                loaded_keys.add(mid_name)
            patch_dict[to_load[x]] = (lora[A_name], lora[B_name], alpha, mid)
101
102
            loaded_keys.add(A_name)
            loaded_keys.add(B_name)
comfyanonymous's avatar
comfyanonymous committed
103

comfyanonymous's avatar
comfyanonymous committed
104
105

        ######## loha
comfyanonymous's avatar
comfyanonymous committed
106
107
108
109
        hada_w1_a_name = "{}.hada_w1_a".format(x)
        hada_w1_b_name = "{}.hada_w1_b".format(x)
        hada_w2_a_name = "{}.hada_w2_a".format(x)
        hada_w2_b_name = "{}.hada_w2_b".format(x)
110
111
        hada_t1_name = "{}.hada_t1".format(x)
        hada_t2_name = "{}.hada_t2".format(x)
comfyanonymous's avatar
comfyanonymous committed
112
        if hada_w1_a_name in lora.keys():
113
114
115
116
117
118
119
120
121
            hada_t1 = None
            hada_t2 = None
            if hada_t1_name in lora.keys():
                hada_t1 = lora[hada_t1_name]
                hada_t2 = lora[hada_t2_name]
                loaded_keys.add(hada_t1_name)
                loaded_keys.add(hada_t2_name)

            patch_dict[to_load[x]] = (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2)
comfyanonymous's avatar
comfyanonymous committed
122
123
124
125
126
            loaded_keys.add(hada_w1_a_name)
            loaded_keys.add(hada_w1_b_name)
            loaded_keys.add(hada_w2_a_name)
            loaded_keys.add(hada_w2_b_name)

comfyanonymous's avatar
comfyanonymous committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

        ######## lokr
        lokr_w1_name = "{}.lokr_w1".format(x)
        lokr_w2_name = "{}.lokr_w2".format(x)
        lokr_w1_a_name = "{}.lokr_w1_a".format(x)
        lokr_w1_b_name = "{}.lokr_w1_b".format(x)
        lokr_t2_name = "{}.lokr_t2".format(x)
        lokr_w2_a_name = "{}.lokr_w2_a".format(x)
        lokr_w2_b_name = "{}.lokr_w2_b".format(x)

        lokr_w1 = None
        if lokr_w1_name in lora.keys():
            lokr_w1 = lora[lokr_w1_name]
            loaded_keys.add(lokr_w1_name)

        lokr_w2 = None
        if lokr_w2_name in lora.keys():
            lokr_w2 = lora[lokr_w2_name]
            loaded_keys.add(lokr_w2_name)

        lokr_w1_a = None
        if lokr_w1_a_name in lora.keys():
            lokr_w1_a = lora[lokr_w1_a_name]
            loaded_keys.add(lokr_w1_a_name)

        lokr_w1_b = None
        if lokr_w1_b_name in lora.keys():
            lokr_w1_b = lora[lokr_w1_b_name]
            loaded_keys.add(lokr_w1_b_name)

        lokr_w2_a = None
        if lokr_w2_a_name in lora.keys():
            lokr_w2_a = lora[lokr_w2_a_name]
            loaded_keys.add(lokr_w2_a_name)

        lokr_w2_b = None
        if lokr_w2_b_name in lora.keys():
            lokr_w2_b = lora[lokr_w2_b_name]
            loaded_keys.add(lokr_w2_b_name)

        lokr_t2 = None
        if lokr_t2_name in lora.keys():
            lokr_t2 = lora[lokr_t2_name]
            loaded_keys.add(lokr_t2_name)

        if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
            patch_dict[to_load[x]] = (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2)

175
176
177
178
179
180
181
182
183
184
185
186
    for x in lora.keys():
        if x not in loaded_keys:
            print("lora key not loaded", x)
    return patch_dict

def model_lora_keys(model, key_map={}):
    sdk = model.state_dict().keys()

    counter = 0
    for b in range(12):
        tk = "model.diffusion_model.input_blocks.{}.1".format(b)
        up_counter = 0
comfyanonymous's avatar
comfyanonymous committed
187
        for c in LORA_UNET_MAP_ATTENTIONS:
188
189
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
190
                lora_key = "lora_unet_down_blocks_{}_attentions_{}_{}".format(counter // 2, counter % 2, LORA_UNET_MAP_ATTENTIONS[c])
191
                key_map[lora_key] = k
192
193
194
                up_counter += 1
        if up_counter >= 4:
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
195
    for c in LORA_UNET_MAP_ATTENTIONS:
196
197
        k = "model.diffusion_model.middle_block.1.{}.weight".format(c)
        if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
198
            lora_key = "lora_unet_mid_block_attentions_0_{}".format(LORA_UNET_MAP_ATTENTIONS[c])
199
            key_map[lora_key] = k
200
201
202
203
    counter = 3
    for b in range(12):
        tk = "model.diffusion_model.output_blocks.{}.1".format(b)
        up_counter = 0
comfyanonymous's avatar
comfyanonymous committed
204
        for c in LORA_UNET_MAP_ATTENTIONS:
205
206
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
207
                lora_key = "lora_unet_up_blocks_{}_attentions_{}_{}".format(counter // 3, counter % 3, LORA_UNET_MAP_ATTENTIONS[c])
208
                key_map[lora_key] = k
209
210
211
212
                up_counter += 1
        if up_counter >= 4:
            counter += 1
    counter = 0
comfyanonymous's avatar
comfyanonymous committed
213
    text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
214
    for b in range(24):
215
216
217
        for c in LORA_CLIP_MAP:
            k = "transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
218
                lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
219
                key_map[lora_key] = k
comfyanonymous's avatar
comfyanonymous committed
220

comfyanonymous's avatar
comfyanonymous committed
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

    #Locon stuff
    ds_counter = 0
    counter = 0
    for b in range(12):
        tk = "model.diffusion_model.input_blocks.{}.0".format(b)
        key_in = False
        for c in LORA_UNET_MAP_RESNET:
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
                lora_key = "lora_unet_down_blocks_{}_{}".format(counter // 2, LORA_UNET_MAP_RESNET[c].format(counter % 2))
                key_map[lora_key] = k
                key_in = True
        for bb in range(3):
            k = "{}.{}.op.weight".format(tk[:-2], bb)
            if k in sdk:
                lora_key = "lora_unet_down_blocks_{}_downsamplers_0_conv".format(ds_counter)
                key_map[lora_key] = k
                ds_counter += 1
        if key_in:
            counter += 1

    counter = 0
    for b in range(3):
        tk = "model.diffusion_model.middle_block.{}".format(b)
        key_in = False
        for c in LORA_UNET_MAP_RESNET:
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
                lora_key = "lora_unet_mid_block_{}".format(LORA_UNET_MAP_RESNET[c].format(counter))
                key_map[lora_key] = k
                key_in = True
        if key_in:
            counter += 1

    counter = 0
    us_counter = 0
    for b in range(12):
        tk = "model.diffusion_model.output_blocks.{}.0".format(b)
        key_in = False
        for c in LORA_UNET_MAP_RESNET:
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
                lora_key = "lora_unet_up_blocks_{}_{}".format(counter // 3, LORA_UNET_MAP_RESNET[c].format(counter % 3))
                key_map[lora_key] = k
                key_in = True
        for bb in range(3):
            k = "{}.{}.conv.weight".format(tk[:-2], bb)
            if k in sdk:
                lora_key = "lora_unet_up_blocks_{}_upsamplers_0_conv".format(us_counter)
                key_map[lora_key] = k
                us_counter += 1
        if key_in:
            counter += 1

276
277
    return key_map

278

279
class ModelPatcher:
280
281
    def __init__(self, model, size=0):
        self.size = size
282
283
284
        self.model = model
        self.patches = []
        self.backup = {}
285
        self.model_options = {"transformer_options":{}}
286
287
288
289
290
291
292
293
294
295
296
297
        self.model_size()

    def model_size(self):
        if self.size > 0:
            return self.size
        model_sd = self.model.state_dict()
        size = 0
        for k in model_sd:
            t = model_sd[k]
            size += t.nelement() * t.element_size()
        self.size = size
        return size
298
299

    def clone(self):
300
        n = ModelPatcher(self.model, self.size)
301
        n.patches = self.patches[:]
302
        n.model_options = copy.deepcopy(self.model_options)
303
304
        return n

305
306
307
    def set_model_tomesd(self, ratio):
        self.model_options["transformer_options"]["tomesd"] = {"ratio": ratio}

308
309
310
    def set_model_sampler_cfg_function(self, sampler_cfg_function):
        self.model_options["sampler_cfg_function"] = sampler_cfg_function

311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333

    def set_model_patch(self, patch, name):
        to = self.model_options["transformer_options"]
        if "patches" not in to:
            to["patches"] = {}
        to["patches"][name] = to["patches"].get(name, []) + [patch]

    def set_model_attn1_patch(self, patch):
        self.set_model_patch(patch, "attn1_patch")

    def set_model_attn2_patch(self, patch):
        self.set_model_patch(patch, "attn2_patch")

    def model_patches_to(self, device):
        to = self.model_options["transformer_options"]
        if "patches" in to:
            patches = to["patches"]
            for name in patches:
                patch_list = patches[name]
                for i in range(len(patch_list)):
                    if hasattr(patch_list[i], "to"):
                        patch_list[i] = patch_list[i].to(device)

334
335
336
    def model_dtype(self):
        return self.model.diffusion_model.dtype

337
338
339
340
    def add_patches(self, patches, strength=1.0):
        p = {}
        model_sd = self.model.state_dict()
        for k in patches:
341
            if k in model_sd:
342
343
344
345
346
347
348
349
350
                p[k] = patches[k]
        self.patches += [(strength, p)]
        return p.keys()

    def patch_model(self):
        model_sd = self.model.state_dict()
        for p in self.patches:
            for k in p[1]:
                v = p[1][k]
351
                key = k
comfyanonymous's avatar
comfyanonymous committed
352
                if key not in model_sd:
353
354
355
                    print("could not patch. key doesn't exist in model:", k)
                    continue

comfyanonymous's avatar
comfyanonymous committed
356
357
358
                weight = model_sd[key]
                if key not in self.backup:
                    self.backup[key] = weight.clone()
359
360

                alpha = p[0]
comfyanonymous's avatar
comfyanonymous committed
361
362
363
364
365
366
367
368
369
370
371

                if len(v) == 4: #lora/locon
                    mat1 = v[0]
                    mat2 = v[1]
                    if v[2] is not None:
                        alpha *= v[2] / mat2.shape[0]
                    if v[3] is not None:
                        #locon mid weights, hopefully the math is fine because I didn't properly test it
                        final_shape = [mat2.shape[1], mat2.shape[0], v[3].shape[2], v[3].shape[3]]
                        mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1).float(), v[3].transpose(0, 1).flatten(start_dim=1).float()).reshape(final_shape).transpose(0, 1)
                    weight += (alpha * torch.mm(mat1.flatten(start_dim=1).float(), mat2.flatten(start_dim=1).float())).reshape(weight.shape).type(weight.dtype).to(weight.device)
comfyanonymous's avatar
comfyanonymous committed
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
                elif len(v) == 8: #lokr
                    w1 = v[0]
                    w2 = v[1]
                    w1_a = v[3]
                    w1_b = v[4]
                    w2_a = v[5]
                    w2_b = v[6]
                    t2 = v[7]
                    dim = None

                    if w1 is None:
                        dim = w1_b.shape[0]
                        w1 = torch.mm(w1_a.float(), w1_b.float())

                    if w2 is None:
                        dim = w2_b.shape[0]
                        if t2 is None:
                            w2 = torch.mm(w2_a.float(), w2_b.float())
                        else:
                            w2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float(), w2_b.float(), w2_a.float())

                    if len(w2.shape) == 4:
                        w1 = w1.unsqueeze(2).unsqueeze(2)
                    if v[2] is not None and dim is not None:
                        alpha *= v[2] / dim

                    weight += alpha * torch.kron(w1.float(), w2.float()).reshape(weight.shape).type(weight.dtype).to(weight.device)
comfyanonymous's avatar
comfyanonymous committed
399
400
401
402
403
404
405
                else: #loha
                    w1a = v[0]
                    w1b = v[1]
                    if v[2] is not None:
                        alpha *= v[2] / w1b.shape[0]
                    w2a = v[3]
                    w2b = v[4]
406
407
408
409
410
411
412
413
414
415
                    if v[5] is not None: #cp decomposition
                        t1 = v[5]
                        t2 = v[6]
                        m1 = torch.einsum('i j k l, j r, i p -> p r k l', t1.float(), w1b.float(), w1a.float())
                        m2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float(), w2b.float(), w2a.float())
                    else:
                        m1 = torch.mm(w1a.float(), w1b.float())
                        m2 = torch.mm(w2a.float(), w2b.float())

                    weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype).to(weight.device)
416
417
418
        return self.model
    def unpatch_model(self):
        model_sd = self.model.state_dict()
419
420
        keys = list(self.backup.keys())
        for k in keys:
421
            model_sd[k][:] = self.backup[k]
422
423
            del self.backup[k]

424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
        self.backup = {}

def load_lora_for_models(model, clip, lora_path, strength_model, strength_clip):
    key_map = model_lora_keys(model.model)
    key_map = model_lora_keys(clip.cond_stage_model, key_map)
    loaded = load_lora(lora_path, key_map)
    new_modelpatcher = model.clone()
    k = new_modelpatcher.add_patches(loaded, strength_model)
    new_clip = clip.clone()
    k1 = new_clip.add_patches(loaded, strength_clip)
    k = set(k)
    k1 = set(k1)
    for x in loaded:
        if (x not in k) and (x not in k1):
            print("NOT LOADED", x)

    return (new_modelpatcher, new_clip)
comfyanonymous's avatar
comfyanonymous committed
441
442
443


class CLIP:
444
445
446
    def __init__(self, config={}, embedding_directory=None, no_init=False):
        if no_init:
            return
comfyanonymous's avatar
comfyanonymous committed
447
        self.target_clip = config["target"]
448
449
450
451
452
        if "params" in config:
            params = config["params"]
        else:
            params = {}

comfyanonymous's avatar
comfyanonymous committed
453
        if self.target_clip.endswith("FrozenOpenCLIPEmbedder"):
comfyanonymous's avatar
comfyanonymous committed
454
455
            clip = sd2_clip.SD2ClipModel
            tokenizer = sd2_clip.SD2Tokenizer
comfyanonymous's avatar
comfyanonymous committed
456
        elif self.target_clip.endswith("FrozenCLIPEmbedder"):
comfyanonymous's avatar
comfyanonymous committed
457
458
            clip = sd1_clip.SD1ClipModel
            tokenizer = sd1_clip.SD1Tokenizer
459
460

        self.cond_stage_model = clip(**(params))
461
        self.tokenizer = tokenizer(embedding_directory=embedding_directory)
462
        self.patcher = ModelPatcher(self.cond_stage_model)
463
        self.layer_idx = None
464
465
466
467
468
469
470

    def clone(self):
        n = CLIP(no_init=True)
        n.target_clip = self.target_clip
        n.patcher = self.patcher.clone()
        n.cond_stage_model = self.cond_stage_model
        n.tokenizer = self.tokenizer
comfyanonymous's avatar
comfyanonymous committed
471
        n.layer_idx = self.layer_idx
472
473
        return n

474
475
476
    def load_from_state_dict(self, sd):
        self.cond_stage_model.transformer.load_state_dict(sd, strict=False)

477
478
    def add_patches(self, patches, strength=1.0):
        return self.patcher.add_patches(patches, strength)
comfyanonymous's avatar
comfyanonymous committed
479

480
    def clip_layer(self, layer_idx):
comfyanonymous's avatar
comfyanonymous committed
481
        self.layer_idx = layer_idx
482

483
484
    def tokenize(self, text, return_word_ids=False):
        return self.tokenizer.tokenize_with_weights(text, return_word_ids)
BlenderNeko's avatar
BlenderNeko committed
485

486
    def encode_from_tokens(self, tokens, return_pooled=False):
487
488
        if self.layer_idx is not None:
            self.cond_stage_model.clip_layer(self.layer_idx)
489
490
491
492
493
494
495
        try:
            self.patcher.patch_model()
            cond = self.cond_stage_model.encode_token_weights(tokens)
            self.patcher.unpatch_model()
        except Exception as e:
            self.patcher.unpatch_model()
            raise e
496
497
498
499
        if return_pooled:
            eos_token_index = max(range(len(tokens[0])), key=tokens[0].__getitem__)
            pooled = cond[:, eos_token_index]
            return cond, pooled
comfyanonymous's avatar
comfyanonymous committed
500
501
        return cond

502
    def encode(self, text):
503
        tokens = self.tokenize(text)
504
505
        return self.encode_from_tokens(tokens)

comfyanonymous's avatar
comfyanonymous committed
506
class VAE:
507
    def __init__(self, ckpt_path=None, scale_factor=0.18215, device=None, config=None):
comfyanonymous's avatar
comfyanonymous committed
508
509
510
        if config is None:
            #default SD1.x/SD2.x VAE parameters
            ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
511
            self.first_stage_model = AutoencoderKL(ddconfig, {'target': 'torch.nn.Identity'}, 4, monitor="val/rec_loss")
comfyanonymous's avatar
comfyanonymous committed
512
        else:
513
            self.first_stage_model = AutoencoderKL(**(config['params']))
comfyanonymous's avatar
comfyanonymous committed
514
        self.first_stage_model = self.first_stage_model.eval()
515
516
517
518
519
520
        if ckpt_path is not None:
            sd = utils.load_torch_file(ckpt_path)
            if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format
                sd = diffusers_convert.convert_vae_state_dict(sd)
            self.first_stage_model.load_state_dict(sd, strict=False)

comfyanonymous's avatar
comfyanonymous committed
521
        self.scale_factor = scale_factor
522
523
        if device is None:
            device = model_management.get_torch_device()
comfyanonymous's avatar
comfyanonymous committed
524
525
        self.device = device

526
    def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
pythongosssss's avatar
pythongosssss committed
527
        steps = samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
comfyanonymous's avatar
comfyanonymous committed
528
529
        steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
        steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
pythongosssss's avatar
pythongosssss committed
530
        pbar = utils.ProgressBar(steps)
531

532
533
        decode_fn = lambda a: (self.first_stage_model.decode(1. / self.scale_factor * a.to(self.device)) + 1.0)
        output = torch.clamp((
534
535
536
            (utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8, pbar = pbar) +
            utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8, pbar = pbar) +
             utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8, pbar = pbar))
537
538
539
540
            / 3.0) / 2.0, min=0.0, max=1.0)
        return output

    def decode(self, samples_in):
541
        model_management.unload_model()
comfyanonymous's avatar
comfyanonymous committed
542
        self.first_stage_model = self.first_stage_model.to(self.device)
543
        try:
544
545
546
547
548
549
550
551
            free_memory = model_management.get_free_memory(self.device)
            batch_number = int((free_memory * 0.7) / (2562 * samples_in.shape[2] * samples_in.shape[3] * 64))
            batch_number = max(1, batch_number)

            pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * 8), round(samples_in.shape[3] * 8)), device="cpu")
            for x in range(0, samples_in.shape[0], batch_number):
                samples = samples_in[x:x+batch_number].to(self.device)
                pixel_samples[x:x+batch_number] = torch.clamp((self.first_stage_model.decode(1. / self.scale_factor * samples) + 1.0) / 2.0, min=0.0, max=1.0).cpu()
552
553
554
555
        except model_management.OOM_EXCEPTION as e:
            print("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
            pixel_samples = self.decode_tiled_(samples_in)

comfyanonymous's avatar
comfyanonymous committed
556
557
558
559
        self.first_stage_model = self.first_stage_model.cpu()
        pixel_samples = pixel_samples.cpu().movedim(1,-1)
        return pixel_samples

560
    def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16):
561
562
        model_management.unload_model()
        self.first_stage_model = self.first_stage_model.to(self.device)
563
        output = self.decode_tiled_(samples, tile_x, tile_y, overlap)
564
565
566
        self.first_stage_model = self.first_stage_model.cpu()
        return output.movedim(1,-1)

comfyanonymous's avatar
comfyanonymous committed
567
    def encode(self, pixel_samples):
568
        model_management.unload_model()
comfyanonymous's avatar
comfyanonymous committed
569
570
571
572
573
574
575
        self.first_stage_model = self.first_stage_model.to(self.device)
        pixel_samples = pixel_samples.movedim(-1,1).to(self.device)
        samples = self.first_stage_model.encode(2. * pixel_samples - 1.).sample() * self.scale_factor
        self.first_stage_model = self.first_stage_model.cpu()
        samples = samples.cpu()
        return samples

comfyanonymous's avatar
comfyanonymous committed
576
577
578
579
    def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
        model_management.unload_model()
        self.first_stage_model = self.first_stage_model.to(self.device)
        pixel_samples = pixel_samples.movedim(-1,1).to(self.device)
580

comfyanonymous's avatar
comfyanonymous committed
581
582
583
        steps = pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
        steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
        steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
pythongosssss's avatar
pythongosssss committed
584
585
        pbar = utils.ProgressBar(steps)

586
587
588
        samples = utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
        samples += utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
        samples += utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
589
        samples /= 3.0
comfyanonymous's avatar
comfyanonymous committed
590
591
592
        self.first_stage_model = self.first_stage_model.cpu()
        samples = samples.cpu()
        return samples
593

BlenderNeko's avatar
BlenderNeko committed
594
def broadcast_image_to(tensor, target_batch_size, batched_number):
595
    current_batch_size = tensor.shape[0]
596
    #print(current_batch_size, target_batch_size)
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
    if current_batch_size == 1:
        return tensor

    per_batch = target_batch_size // batched_number
    tensor = tensor[:per_batch]

    if per_batch > tensor.shape[0]:
        tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)

    current_batch_size = tensor.shape[0]
    if current_batch_size == target_batch_size:
        return tensor
    else:
        return torch.cat([tensor] * batched_number, dim=0)

comfyanonymous's avatar
comfyanonymous committed
612
class ControlNet:
613
    def __init__(self, control_model, global_average_pooling=False, device=None):
comfyanonymous's avatar
comfyanonymous committed
614
615
616
        self.control_model = control_model
        self.cond_hint_original = None
        self.cond_hint = None
617
        self.strength = 1.0
618
619
        if device is None:
            device = model_management.get_torch_device()
620
        self.device = device
comfyanonymous's avatar
comfyanonymous committed
621
        self.previous_controlnet = None
622
        self.global_average_pooling = global_average_pooling
comfyanonymous's avatar
comfyanonymous committed
623

624
    def get_control(self, x_noisy, t, cond_txt, batched_number):
comfyanonymous's avatar
comfyanonymous committed
625
626
        control_prev = None
        if self.previous_controlnet is not None:
627
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond_txt, batched_number)
comfyanonymous's avatar
comfyanonymous committed
628

629
        output_dtype = x_noisy.dtype
comfyanonymous's avatar
comfyanonymous committed
630
631
632
633
        if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
            self.cond_hint = None
BlenderNeko's avatar
BlenderNeko committed
634
635
636
            self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(self.control_model.dtype).to(self.device)
        if x_noisy.shape[0] != self.cond_hint.shape[0]:
            self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
637
638
639
640
641
642

        if self.control_model.dtype == torch.float16:
            precision_scope = torch.autocast
        else:
            precision_scope = contextlib.nullcontext

643
        with precision_scope(model_management.get_autocast_device(self.device)):
644
            self.control_model = model_management.load_if_low_vram(self.control_model)
645
            control = self.control_model(x=x_noisy, hint=self.cond_hint, timesteps=t, context=cond_txt)
646
            self.control_model = model_management.unload_if_low_vram(self.control_model)
647
        out = {'middle':[], 'output': []}
648
        autocast_enabled = torch.is_autocast_enabled()
comfyanonymous's avatar
comfyanonymous committed
649
650

        for i in range(len(control)):
comfyanonymous's avatar
comfyanonymous committed
651
652
653
654
655
656
            if i == (len(control) - 1):
                key = 'middle'
                index = 0
            else:
                key = 'output'
                index = i
comfyanonymous's avatar
comfyanonymous committed
657
            x = control[i]
658
659
660
            if self.global_average_pooling:
                x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])

661
            x *= self.strength
662
663
            if x.dtype != output_dtype and not autocast_enabled:
                x = x.to(output_dtype)
comfyanonymous's avatar
comfyanonymous committed
664

comfyanonymous's avatar
comfyanonymous committed
665
666
667
668
669
670
671
            if control_prev is not None and key in control_prev:
                prev = control_prev[key][index]
                if prev is not None:
                    x += prev
            out[key].append(x)
        if control_prev is not None and 'input' in control_prev:
            out['input'] = control_prev['input']
672
        return out
comfyanonymous's avatar
comfyanonymous committed
673

674
    def set_cond_hint(self, cond_hint, strength=1.0):
comfyanonymous's avatar
comfyanonymous committed
675
        self.cond_hint_original = cond_hint
676
        self.strength = strength
comfyanonymous's avatar
comfyanonymous committed
677
678
        return self

comfyanonymous's avatar
comfyanonymous committed
679
680
681
682
    def set_previous_controlnet(self, controlnet):
        self.previous_controlnet = controlnet
        return self

comfyanonymous's avatar
comfyanonymous committed
683
    def cleanup(self):
comfyanonymous's avatar
comfyanonymous committed
684
685
        if self.previous_controlnet is not None:
            self.previous_controlnet.cleanup()
comfyanonymous's avatar
comfyanonymous committed
686
687
688
689
690
        if self.cond_hint is not None:
            del self.cond_hint
            self.cond_hint = None

    def copy(self):
691
        c = ControlNet(self.control_model, global_average_pooling=self.global_average_pooling)
comfyanonymous's avatar
comfyanonymous committed
692
        c.cond_hint_original = self.cond_hint_original
693
        c.strength = self.strength
comfyanonymous's avatar
comfyanonymous committed
694
695
        return c

696
    def get_models(self):
comfyanonymous's avatar
comfyanonymous committed
697
698
        out = []
        if self.previous_controlnet is not None:
699
            out += self.previous_controlnet.get_models()
comfyanonymous's avatar
comfyanonymous committed
700
701
702
        out.append(self.control_model)
        return out

703
def load_controlnet(ckpt_path, model=None):
704
    controlnet_data = utils.load_torch_file(ckpt_path)
comfyanonymous's avatar
comfyanonymous committed
705
706
707
708
709
710
711
712
713
714
    pth_key = 'control_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight'
    pth = False
    sd2 = False
    key = 'input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight'
    if pth_key in controlnet_data:
        pth = True
        key = pth_key
    elif key in controlnet_data:
        pass
    else:
715
716
717
718
        net = load_t2i_adapter(controlnet_data)
        if net is None:
            print("error checkpoint does not contain controlnet or t2i adapter data", ckpt_path)
        return net
comfyanonymous's avatar
comfyanonymous committed
719
720

    context_dim = controlnet_data[key].shape[1]
721
722

    use_fp16 = False
723
    if model_management.should_use_fp16() and controlnet_data[key].dtype == torch.float16:
724
725
        use_fp16 = True

comfyanonymous's avatar
comfyanonymous committed
726
727
728
729
730
731
732
733
734
735
736
737
738
    if context_dim == 768:
        #SD1.x
        control_model = cldm.ControlNet(image_size=32,
                                        in_channels=4,
                                        hint_channels=3,
                                        model_channels=320,
                                        attention_resolutions=[ 4, 2, 1 ],
                                        num_res_blocks=2,
                                        channel_mult=[ 1, 2, 4, 4 ],
                                        num_heads=8,
                                        use_spatial_transformer=True,
                                        transformer_depth=1,
                                        context_dim=context_dim,
739
                                        use_checkpoint=False,
comfyanonymous's avatar
comfyanonymous committed
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
                                        legacy=False,
                                        use_fp16=use_fp16)
    else:
        #SD2.x
        control_model = cldm.ControlNet(image_size=32,
                                        in_channels=4,
                                        hint_channels=3,
                                        model_channels=320,
                                        attention_resolutions=[ 4, 2, 1 ],
                                        num_res_blocks=2,
                                        channel_mult=[ 1, 2, 4, 4 ],
                                        num_head_channels=64,
                                        use_spatial_transformer=True,
                                        use_linear_in_transformer=True,
                                        transformer_depth=1,
                                        context_dim=context_dim,
756
                                        use_checkpoint=False,
comfyanonymous's avatar
comfyanonymous committed
757
758
                                        legacy=False,
                                        use_fp16=use_fp16)
comfyanonymous's avatar
comfyanonymous committed
759
    if pth:
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
        if 'difference' in controlnet_data:
            if model is not None:
                m = model.patch_model()
                model_sd = m.state_dict()
                for x in controlnet_data:
                    c_m = "control_model."
                    if x.startswith(c_m):
                        sd_key = "model.diffusion_model.{}".format(x[len(c_m):])
                        if sd_key in model_sd:
                            cd = controlnet_data[x]
                            cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
                model.unpatch_model()
            else:
                print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")

comfyanonymous's avatar
comfyanonymous committed
775
776
777
778
779
780
781
782
        class WeightsLoader(torch.nn.Module):
            pass
        w = WeightsLoader()
        w.control_model = control_model
        w.load_state_dict(controlnet_data, strict=False)
    else:
        control_model.load_state_dict(controlnet_data, strict=False)

783
784
785
    if use_fp16:
        control_model = control_model.half()

786
787
788
789
790
    global_average_pooling = False
    if ckpt_path.endswith("_shuffle.pth") or ckpt_path.endswith("_shuffle.safetensors") or ckpt_path.endswith("_shuffle_fp16.safetensors"): #TODO: smarter way of enabling global_average_pooling
        global_average_pooling = True

    control = ControlNet(control_model, global_average_pooling=global_average_pooling)
comfyanonymous's avatar
comfyanonymous committed
791
792
    return control

793
class T2IAdapter:
794
    def __init__(self, t2i_model, channels_in, device=None):
795
796
797
        self.t2i_model = t2i_model
        self.channels_in = channels_in
        self.strength = 1.0
798
799
        if device is None:
            device = model_management.get_torch_device()
800
801
802
803
804
805
        self.device = device
        self.previous_controlnet = None
        self.control_input = None
        self.cond_hint_original = None
        self.cond_hint = None

806
    def get_control(self, x_noisy, t, cond_txt, batched_number):
807
808
        control_prev = None
        if self.previous_controlnet is not None:
809
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond_txt, batched_number)
810
811
812
813

        if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
BlenderNeko's avatar
BlenderNeko committed
814
            self.control_input = None
815
            self.cond_hint = None
BlenderNeko's avatar
BlenderNeko committed
816
            self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").float().to(self.device)
817
818
            if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
                self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
BlenderNeko's avatar
BlenderNeko committed
819
820
821
        if x_noisy.shape[0] != self.cond_hint.shape[0]:
            self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
        if self.control_input is None:
822
823
824
825
826
827
828
            self.t2i_model.to(self.device)
            self.control_input = self.t2i_model(self.cond_hint)
            self.t2i_model.cpu()

        output_dtype = x_noisy.dtype
        out = {'input':[]}

comfyanonymous's avatar
comfyanonymous committed
829
        autocast_enabled = torch.is_autocast_enabled()
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
        for i in range(len(self.control_input)):
            key = 'input'
            x = self.control_input[i] * self.strength
            if x.dtype != output_dtype and not autocast_enabled:
                x = x.to(output_dtype)

            if control_prev is not None and key in control_prev:
                index = len(control_prev[key]) - i * 3 - 3
                prev = control_prev[key][index]
                if prev is not None:
                    x += prev
            out[key].insert(0, None)
            out[key].insert(0, None)
            out[key].insert(0, x)

        if control_prev is not None and 'input' in control_prev:
            for i in range(len(out['input'])):
                if out['input'][i] is None:
                    out['input'][i] = control_prev['input'][i]
        if control_prev is not None and 'middle' in control_prev:
            out['middle'] = control_prev['middle']
        if control_prev is not None and 'output' in control_prev:
            out['output'] = control_prev['output']
        return out

    def set_cond_hint(self, cond_hint, strength=1.0):
        self.cond_hint_original = cond_hint
        self.strength = strength
        return self

    def set_previous_controlnet(self, controlnet):
        self.previous_controlnet = controlnet
        return self

    def copy(self):
        c = T2IAdapter(self.t2i_model, self.channels_in)
        c.cond_hint_original = self.cond_hint_original
        c.strength = self.strength
        return c

    def cleanup(self):
        if self.previous_controlnet is not None:
            self.previous_controlnet.cleanup()
        if self.cond_hint is not None:
            del self.cond_hint
            self.cond_hint = None

877
    def get_models(self):
878
879
        out = []
        if self.previous_controlnet is not None:
880
            out += self.previous_controlnet.get_models()
881
882
        return out

883
def load_t2i_adapter(t2i_data):
884
    keys = t2i_data.keys()
885
    if "body.0.in_conv.weight" in keys:
886
887
        cin = t2i_data['body.0.in_conv.weight'].shape[1]
        model_ad = adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
888
    elif 'conv_in.weight' in keys:
889
890
        cin = t2i_data['conv_in.weight'].shape[1]
        model_ad = adapter.Adapter(cin=cin, channels=[320, 640, 1280, 1280][:4], nums_rb=2, ksize=1, sk=True, use_conv=False)
891
892
    else:
        return None
893
894
    model_ad.load_state_dict(t2i_data)
    return T2IAdapter(model_ad, cin // 64)
comfyanonymous's avatar
comfyanonymous committed
895

896
897
898
899
900
901
902
903
904
905

class StyleModel:
    def __init__(self, model, device="cpu"):
        self.model = model

    def get_cond(self, input):
        return self.model(input.last_hidden_state)


def load_style_model(ckpt_path):
906
    model_data = utils.load_torch_file(ckpt_path)
907
908
909
910
911
912
913
914
915
    keys = model_data.keys()
    if "style_embedding" in keys:
        model = adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
    else:
        raise Exception("invalid style model {}".format(ckpt_path))
    model.load_state_dict(model_data)
    return StyleModel(model)


916
def load_clip(ckpt_path, embedding_directory=None):
917
    clip_data = utils.load_torch_file(ckpt_path)
918
919
    config = {}
    if "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data:
comfyanonymous's avatar
comfyanonymous committed
920
        config['target'] = 'comfy.ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder'
921
    else:
comfyanonymous's avatar
comfyanonymous committed
922
        config['target'] = 'comfy.ldm.modules.encoders.modules.FrozenCLIPEmbedder'
923
924
925
    clip = CLIP(config=config, embedding_directory=embedding_directory)
    clip.load_from_state_dict(clip_data)
    return clip
comfyanonymous's avatar
comfyanonymous committed
926

927
928
929
930
931
932
933
def load_gligen(ckpt_path):
    data = utils.load_torch_file(ckpt_path)
    model = gligen.load_gligen(data)
    if model_management.should_use_fp16():
        model = model.half()
    return model

934
def load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=None):
935
936
    with open(config_path, 'r') as stream:
        config = yaml.safe_load(stream)
comfyanonymous's avatar
comfyanonymous committed
937
938
939
940
941
    model_config_params = config['model']['params']
    clip_config = model_config_params['cond_stage_config']
    scale_factor = model_config_params['scale_factor']
    vae_config = model_config_params['first_stage_config']

942
943
944
945
946
947
    fp16 = False
    if "unet_config" in model_config_params:
        if "params" in model_config_params["unet_config"]:
            if "use_fp16" in model_config_params["unet_config"]["params"]:
                fp16 = model_config_params["unet_config"]["params"]["use_fp16"]

comfyanonymous's avatar
comfyanonymous committed
948
949
950
951
952
953
954
955
956
957
958
959
960
961
    clip = None
    vae = None

    class WeightsLoader(torch.nn.Module):
        pass

    w = WeightsLoader()
    load_state_dict_to = []
    if output_vae:
        vae = VAE(scale_factor=scale_factor, config=vae_config)
        w.first_stage_model = vae.first_stage_model
        load_state_dict_to = [w]

    if output_clip:
962
        clip = CLIP(config=clip_config, embedding_directory=embedding_directory)
comfyanonymous's avatar
comfyanonymous committed
963
964
965
        w.cond_stage_model = clip.cond_stage_model
        load_state_dict_to = [w]

966
    model = instantiate_from_config(config["model"])
967
    sd = utils.load_torch_file(ckpt_path)
968
    model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to)
969
970
971
972

    if fp16:
        model = model.half()

973
    return (ModelPatcher(model), clip, vae)
974
975


976
977
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None):
    sd = utils.load_torch_file(ckpt_path)
978
979
    sd_keys = sd.keys()
    clip = None
980
    clipvision = None
981
982
    vae = None

983
984
    fp16 = model_management.should_use_fp16()

985
986
987
988
989
990
991
992
993
994
995
996
997
    class WeightsLoader(torch.nn.Module):
        pass

    w = WeightsLoader()
    load_state_dict_to = []
    if output_vae:
        vae = VAE()
        w.first_stage_model = vae.first_stage_model
        load_state_dict_to = [w]

    if output_clip:
        clip_config = {}
        if "cond_stage_model.model.transformer.resblocks.22.attn.out_proj.weight" in sd_keys:
comfyanonymous's avatar
comfyanonymous committed
998
            clip_config['target'] = 'comfy.ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder'
999
        else:
comfyanonymous's avatar
comfyanonymous committed
1000
            clip_config['target'] = 'comfy.ldm.modules.encoders.modules.FrozenCLIPEmbedder'
1001
1002
1003
1004
        clip = CLIP(config=clip_config, embedding_directory=embedding_directory)
        w.cond_stage_model = clip.cond_stage_model
        load_state_dict_to = [w]

1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
    clipvision_key = "embedder.model.visual.transformer.resblocks.0.attn.in_proj_weight"
    noise_aug_config = None
    if clipvision_key in sd_keys:
        size = sd[clipvision_key].shape[1]

        if output_clipvision:
            clipvision = clip_vision.load_clipvision_from_sd(sd)

        noise_aug_key = "noise_augmentor.betas"
        if noise_aug_key in sd_keys:
            noise_aug_config = {}
            params = {}
            noise_schedule_config = {}
            noise_schedule_config["timesteps"] = sd[noise_aug_key].shape[0]
            noise_schedule_config["beta_schedule"] = "squaredcos_cap_v2"
            params["noise_schedule_config"] = noise_schedule_config
comfyanonymous's avatar
comfyanonymous committed
1021
            noise_aug_config['target'] = "comfy.ldm.modules.encoders.noise_aug_modules.CLIPEmbeddingNoiseAugmentation"
1022
1023
1024
1025
1026
1027
            if size == 1280: #h
                params["timestep_dim"] = 1024
            elif size == 1024: #l
                params["timestep_dim"] = 768
            noise_aug_config['params'] = params

1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
    sd_config = {
        "linear_start": 0.00085,
        "linear_end": 0.012,
        "num_timesteps_cond": 1,
        "log_every_t": 200,
        "timesteps": 1000,
        "first_stage_key": "jpg",
        "cond_stage_key": "txt",
        "image_size": 64,
        "channels": 4,
        "cond_stage_trainable": False,
        "monitor": "val/loss_simple_ema",
        "scale_factor": 0.18215,
        "use_ema": False,
    }

    unet_config = {
1045
        "use_checkpoint": False,
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
        "image_size": 32,
        "out_channels": 4,
        "attention_resolutions": [
            4,
            2,
            1
        ],
        "num_res_blocks": 2,
        "channel_mult": [
            1,
            2,
            4,
            4
        ],
        "use_spatial_transformer": True,
        "transformer_depth": 1,
        "legacy": False
    }

comfyanonymous's avatar
comfyanonymous committed
1065
    if len(sd['model.diffusion_model.input_blocks.4.1.proj_in.weight'].shape) == 2:
1066
1067
1068
1069
1070
        unet_config['use_linear_in_transformer'] = True

    unet_config["use_fp16"] = fp16
    unet_config["model_channels"] = sd['model.diffusion_model.input_blocks.0.0.weight'].shape[0]
    unet_config["in_channels"] = sd['model.diffusion_model.input_blocks.0.0.weight'].shape[1]
comfyanonymous's avatar
comfyanonymous committed
1071
    unet_config["context_dim"] = sd['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_k.weight'].shape[1]
1072

comfyanonymous's avatar
comfyanonymous committed
1073
1074
    sd_config["unet_config"] = {"target": "comfy.ldm.modules.diffusionmodules.openaimodel.UNetModel", "params": unet_config}
    model_config = {"target": "comfy.ldm.models.diffusion.ddpm.LatentDiffusion", "params": sd_config}
1075

1076
1077
1078
1079
1080
    if noise_aug_config is not None: #SD2.x unclip model
        sd_config["noise_aug_config"] = noise_aug_config
        sd_config["image_size"] = 96
        sd_config["embedding_dropout"] = 0.25
        sd_config["conditioning_key"] = 'crossattn-adm'
comfyanonymous's avatar
comfyanonymous committed
1081
        model_config["target"] = "comfy.ldm.models.diffusion.ddpm.ImageEmbeddingConditionedLatentDiffusion"
1082
    elif unet_config["in_channels"] > 4: #inpainting model
1083
1084
        sd_config["conditioning_key"] = "hybrid"
        sd_config["finetune_keys"] = None
comfyanonymous's avatar
comfyanonymous committed
1085
        model_config["target"] = "comfy.ldm.models.diffusion.ddpm.LatentInpaintDiffusion"
1086
1087
1088
    else:
        sd_config["conditioning_key"] = "crossattn"

comfyanonymous's avatar
comfyanonymous committed
1089
    if unet_config["context_dim"] == 768:
1090
        unet_config["num_heads"] = 8 #SD1.x
comfyanonymous's avatar
comfyanonymous committed
1091
1092
    else:
        unet_config["num_head_channels"] = 64 #SD2.x
1093

1094
1095
1096
1097
1098
    unclip = 'model.diffusion_model.label_emb.0.0.weight'
    if unclip in sd_keys:
        unet_config["num_classes"] = "sequential"
        unet_config["adm_in_channels"] = sd[unclip].shape[1]

comfyanonymous's avatar
comfyanonymous committed
1099
1100
1101
1102
1103
    if unet_config["context_dim"] == 1024 and unet_config["in_channels"] == 4: #only SD2.x non inpainting models are v prediction
        k = "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1.bias"
        out = sd[k]
        if torch.std(out, unbiased=False) > 0.09: # not sure how well this will actually work. I guess we will find out.
            sd_config["parameterization"] = 'v'
1104
1105
1106
1107

    model = instantiate_from_config(model_config)
    model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to)

1108
1109
1110
    if fp16:
        model = model.half()

1111
    return (ModelPatcher(model), clip, vae, clipvision)