samplers.py 27 KB
Newer Older
1
from .k_diffusion import sampling as k_diffusion_sampling
2
from .extra_samplers import uni_pc
comfyanonymous's avatar
comfyanonymous committed
3
import torch
comfyanonymous's avatar
comfyanonymous committed
4
import collections
5
from comfy import model_management
comfyanonymous's avatar
comfyanonymous committed
6
import math
7
import logging
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
def get_area_and_mult(conds, x_in, timestep_in):
    area = (x_in.shape[2], x_in.shape[3], 0, 0)
    strength = 1.0

    if 'timestep_start' in conds:
        timestep_start = conds['timestep_start']
        if timestep_in[0] > timestep_start:
            return None
    if 'timestep_end' in conds:
        timestep_end = conds['timestep_end']
        if timestep_in[0] < timestep_end:
            return None
    if 'area' in conds:
        area = conds['area']
    if 'strength' in conds:
        strength = conds['strength']

    input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
    if 'mask' in conds:
        # Scale the mask to the size of the input
        # The mask should have been resized as we began the sampling process
        mask_strength = 1.0
        if "mask_strength" in conds:
            mask_strength = conds["mask_strength"]
        mask = conds['mask']
        assert(mask.shape[1] == x_in.shape[2])
        assert(mask.shape[2] == x_in.shape[3])
        mask = mask[:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] * mask_strength
        mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
    else:
        mask = torch.ones_like(input_x)
    mult = mask * strength

    if 'mask' not in conds:
        rr = 8
        if area[2] != 0:
            for t in range(rr):
                mult[:,:,t:1+t,:] *= ((1.0/rr) * (t + 1))
        if (area[0] + area[2]) < x_in.shape[2]:
            for t in range(rr):
                mult[:,:,area[0] - 1 - t:area[0] - t,:] *= ((1.0/rr) * (t + 1))
        if area[3] != 0:
            for t in range(rr):
                mult[:,:,:,t:1+t] *= ((1.0/rr) * (t + 1))
        if (area[1] + area[3]) < x_in.shape[3]:
            for t in range(rr):
                mult[:,:,:,area[1] - 1 - t:area[1] - t] *= ((1.0/rr) * (t + 1))

    conditioning = {}
    model_conds = conds["model_conds"]
    for c in model_conds:
        conditioning[c] = model_conds[c].process_cond(batch_size=x_in.shape[0], device=x_in.device, area=area)

comfyanonymous's avatar
comfyanonymous committed
62
    control = conds.get('control', None)
63
64
65
66
67
68
69
70
71
72
73
74
75
76

    patches = None
    if 'gligen' in conds:
        gligen = conds['gligen']
        patches = {}
        gligen_type = gligen[0]
        gligen_model = gligen[1]
        if gligen_type == "position":
            gligen_patch = gligen_model.model.set_position(input_x.shape, gligen[2], input_x.device)
        else:
            gligen_patch = gligen_model.model.set_empty(input_x.shape, input_x.device)

        patches['middle_patch'] = [gligen_patch]

comfyanonymous's avatar
comfyanonymous committed
77
78
    cond_obj = collections.namedtuple('cond_obj', ['input_x', 'mult', 'conditioning', 'area', 'control', 'patches'])
    return cond_obj(input_x, mult, conditioning, area, control, patches)
79
80
81
82
83
84
85
86
87
88
89
90

def cond_equal_size(c1, c2):
    if c1 is c2:
        return True
    if c1.keys() != c2.keys():
        return False
    for k in c1:
        if not c1[k].can_concat(c2[k]):
            return False
    return True

def can_concat_cond(c1, c2):
comfyanonymous's avatar
comfyanonymous committed
91
    if c1.input_x.shape != c2.input_x.shape:
92
93
        return False

comfyanonymous's avatar
comfyanonymous committed
94
95
    def objects_concatable(obj1, obj2):
        if (obj1 is None) != (obj2 is None):
96
            return False
comfyanonymous's avatar
comfyanonymous committed
97
98
99
100
        if obj1 is not None:
            if obj1 is not obj2:
                return False
        return True
101

comfyanonymous's avatar
comfyanonymous committed
102
103
104
105
    if not objects_concatable(c1.control, c2.control):
        return False

    if not objects_concatable(c1.patches, c2.patches):
106
107
        return False

comfyanonymous's avatar
comfyanonymous committed
108
    return cond_equal_size(c1.conditioning, c2.conditioning)
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

def cond_cat(c_list):
    c_crossattn = []
    c_concat = []
    c_adm = []
    crossattn_max_len = 0

    temp = {}
    for x in c_list:
        for k in x:
            cur = temp.get(k, [])
            cur.append(x[k])
            temp[k] = cur

    out = {}
    for k in temp:
        conds = temp[k]
        out[k] = conds[0].concat(conds[1:])

    return out

130
131
132
def calc_cond_batch(model, conds, x_in, timestep, model_options):
    out_conds = []
    out_counts = []
133
134
    to_run = []

135
136
137
    for i in range(len(conds)):
        out_conds.append(torch.zeros_like(x_in))
        out_counts.append(torch.ones_like(x_in) * 1e-37)
138

139
140
141
142
143
144
145
146
        cond = conds[i]
        if cond is not None:
            for x in cond:
                p = get_area_and_mult(x, x_in, timestep)
                if p is None:
                    continue

                to_run += [(p, i)]
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

    while len(to_run) > 0:
        first = to_run[0]
        first_shape = first[0][0].shape
        to_batch_temp = []
        for x in range(len(to_run)):
            if can_concat_cond(to_run[x][0], first[0]):
                to_batch_temp += [x]

        to_batch_temp.reverse()
        to_batch = to_batch_temp[:1]

        free_memory = model_management.get_free_memory(x_in.device)
        for i in range(1, len(to_batch_temp) + 1):
            batch_amount = to_batch_temp[:len(to_batch_temp)//i]
            input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:]
            if model.memory_required(input_shape) < free_memory:
                to_batch = batch_amount
                break

        input_x = []
        mult = []
        c = []
        cond_or_uncond = []
        area = []
        control = None
        patches = None
        for x in to_batch:
            o = to_run.pop(x)
            p = o[0]
comfyanonymous's avatar
comfyanonymous committed
177
178
179
180
181
182
183
            input_x.append(p.input_x)
            mult.append(p.mult)
            c.append(p.conditioning)
            area.append(p.area)
            cond_or_uncond.append(o[1])
            control = p.control
            patches = p.patches
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

        batch_chunks = len(cond_or_uncond)
        input_x = torch.cat(input_x)
        c = cond_cat(c)
        timestep_ = torch.cat([timestep] * batch_chunks)

        if control is not None:
            c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond))

        transformer_options = {}
        if 'transformer_options' in model_options:
            transformer_options = model_options['transformer_options'].copy()

        if patches is not None:
            if "patches" in transformer_options:
                cur_patches = transformer_options["patches"].copy()
                for p in patches:
                    if p in cur_patches:
                        cur_patches[p] = cur_patches[p] + patches[p]
203
                    else:
204
                        cur_patches[p] = patches[p]
205
                transformer_options["patches"] = cur_patches
206
207
            else:
                transformer_options["patches"] = patches
208

209
210
        transformer_options["cond_or_uncond"] = cond_or_uncond[:]
        transformer_options["sigmas"] = timestep
211

212
        c['transformer_options'] = transformer_options
213

214
215
216
217
        if 'model_function_wrapper' in model_options:
            output = model_options['model_function_wrapper'](model.apply_model, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks)
        else:
            output = model.apply_model(input_x, timestep_, **c).chunk(batch_chunks)
comfyanonymous's avatar
comfyanonymous committed
218

219
        for o in range(batch_chunks):
220
221
222
            cond_index = cond_or_uncond[o]
            out_conds[cond_index][:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
            out_counts[cond_index][:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
comfyanonymous's avatar
comfyanonymous committed
223

224
225
226
227
228
229
230
231
    for i in range(len(out_conds)):
        out_conds[i] /= out_counts[i]

    return out_conds

def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options): #TODO: remove
    logging.warning("WARNING: The comfy.samplers.calc_cond_uncond_batch function is deprecated please use the calc_cond_batch one instead.")
    return tuple(calc_cond_batch(model, [cond, uncond], x_in, timestep, model_options))
comfyanonymous's avatar
comfyanonymous committed
232

233
234
235
#The main sampling function shared by all the samplers
#Returns denoised
def sampling_function(model, x, timestep, uncond, cond, cond_scale, model_options={}, seed=None):
236
        if math.isclose(cond_scale, 1.0) and model_options.get("disable_cfg1_optimization", False) == False:
237
238
239
            uncond_ = None
        else:
            uncond_ = uncond
240

241
242
243
244
245
246
247

        conds = [cond, uncond_]

        out = calc_cond_batch(model, conds, x, timestep, model_options)
        cond_pred = out[0]
        uncond_pred = out[1]

248
        if "sampler_cfg_function" in model_options:
Hari's avatar
Hari committed
249
250
            args = {"cond": x - cond_pred, "uncond": x - uncond_pred, "cond_scale": cond_scale, "timestep": timestep, "input": x, "sigma": timestep,
                    "cond_denoised": cond_pred, "uncond_denoised": uncond_pred, "model": model, "model_options": model_options}
251
            cfg_result = x - model_options["sampler_cfg_function"](args)
252
253
        else:
            cfg_result = uncond_pred + (cond_pred - uncond_pred) * cond_scale
254

255
256
257
258
        for fn in model_options.get("sampler_post_cfg_function", []):
            args = {"denoised": cfg_result, "cond": cond, "uncond": uncond, "model": model, "uncond_denoised": uncond_pred, "cond_denoised": cond_pred,
                    "sigma": timestep, "model_options": model_options, "input": x}
            cfg_result = fn(args)
259

260
        return cfg_result
comfyanonymous's avatar
comfyanonymous committed
261

comfyanonymous's avatar
comfyanonymous committed
262
263
264
265
class CFGNoisePredictor(torch.nn.Module):
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
266
    def apply_model(self, x, timestep, cond, uncond, cond_scale, model_options={}, seed=None):
267
        out = sampling_function(self.inner_model, x, timestep, uncond, cond, cond_scale, model_options=model_options, seed=seed)
comfyanonymous's avatar
comfyanonymous committed
268
        return out
comfyanonymous's avatar
comfyanonymous committed
269
270
    def forward(self, *args, **kwargs):
        return self.apply_model(*args, **kwargs)
comfyanonymous's avatar
comfyanonymous committed
271
272

class KSamplerX0Inpaint(torch.nn.Module):
273
    def __init__(self, model, sigmas):
274
275
        super().__init__()
        self.inner_model = model
276
        self.sigmas = sigmas
277
    def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, model_options={}, seed=None):
278
        if denoise_mask is not None:
279
            if "denoise_mask_function" in model_options:
280
                denoise_mask = model_options["denoise_mask_function"](sigma, denoise_mask, extra_options={"model": self.inner_model, "sigmas": self.sigmas})
281
            latent_mask = 1. - denoise_mask
282
            x = x * denoise_mask + self.inner_model.inner_model.model_sampling.noise_scaling(sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1)), self.noise, self.latent_image) * latent_mask
283
        out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, model_options=model_options, seed=seed)
284
        if denoise_mask is not None:
comfyanonymous's avatar
comfyanonymous committed
285
            out = out * denoise_mask + self.latent_image * latent_mask
286
        return out
287

comfyanonymous's avatar
comfyanonymous committed
288
def simple_scheduler(model, steps):
comfyanonymous's avatar
comfyanonymous committed
289
    s = model.model_sampling
comfyanonymous's avatar
comfyanonymous committed
290
    sigs = []
comfyanonymous's avatar
comfyanonymous committed
291
    ss = len(s.sigmas) / steps
comfyanonymous's avatar
comfyanonymous committed
292
    for x in range(steps):
comfyanonymous's avatar
comfyanonymous committed
293
        sigs += [float(s.sigmas[-(1 + int(x * ss))])]
comfyanonymous's avatar
comfyanonymous committed
294
295
296
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
297
def ddim_scheduler(model, steps):
comfyanonymous's avatar
comfyanonymous committed
298
    s = model.model_sampling
comfyanonymous's avatar
comfyanonymous committed
299
    sigs = []
300
    ss = max(len(s.sigmas) // steps, 1)
comfyanonymous's avatar
comfyanonymous committed
301
302
303
304
305
    x = 1
    while x < len(s.sigmas):
        sigs += [float(s.sigmas[x])]
        x += ss
    sigs = sigs[::-1]
comfyanonymous's avatar
comfyanonymous committed
306
307
308
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
309
310
311
312
313
314
315
316
317
318
def normal_scheduler(model, steps, sgm=False, floor=False):
    s = model.model_sampling
    start = s.timestep(s.sigma_max)
    end = s.timestep(s.sigma_min)

    if sgm:
        timesteps = torch.linspace(start, end, steps + 1)[:-1]
    else:
        timesteps = torch.linspace(start, end, steps)

319
320
321
    sigs = []
    for x in range(len(timesteps)):
        ts = timesteps[x]
comfyanonymous's avatar
comfyanonymous committed
322
        sigs.append(s.sigma(ts))
323
324
325
    sigs += [0.0]
    return torch.FloatTensor(sigs)

Jacob Segal's avatar
Jacob Segal committed
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
def get_mask_aabb(masks):
    if masks.numel() == 0:
        return torch.zeros((0, 4), device=masks.device, dtype=torch.int)

    b = masks.shape[0]

    bounding_boxes = torch.zeros((b, 4), device=masks.device, dtype=torch.int)
    is_empty = torch.zeros((b), device=masks.device, dtype=torch.bool)
    for i in range(b):
        mask = masks[i]
        if mask.numel() == 0:
            continue
        if torch.max(mask != 0) == False:
            is_empty[i] = True
            continue
        y, x = torch.where(mask)
        bounding_boxes[i, 0] = torch.min(x)
        bounding_boxes[i, 1] = torch.min(y)
        bounding_boxes[i, 2] = torch.max(x)
        bounding_boxes[i, 3] = torch.max(y)

    return bounding_boxes, is_empty

349
def resolve_areas_and_cond_masks(conditions, h, w, device):
Jacob Segal's avatar
Jacob Segal committed
350
351
352
353
    # We need to decide on an area outside the sampling loop in order to properly generate opposite areas of equal sizes.
    # While we're doing this, we can also resolve the mask device and scaling for performance reasons
    for i in range(len(conditions)):
        c = conditions[i]
354
355
        if 'area' in c:
            area = c['area']
356
            if area[0] == "percentage":
357
                modified = c.copy()
358
359
                area = (max(1, round(area[1] * h)), max(1, round(area[2] * w)), round(area[3] * h), round(area[4] * w))
                modified['area'] = area
360
                c = modified
361
362
                conditions[i] = c

363
364
        if 'mask' in c:
            mask = c['mask']
Jacob Segal's avatar
Jacob Segal committed
365
            mask = mask.to(device=device)
366
            modified = c.copy()
Jacob Segal's avatar
Jacob Segal committed
367
368
            if len(mask.shape) == 2:
                mask = mask.unsqueeze(0)
mara's avatar
mara committed
369
            if mask.shape[1] != h or mask.shape[2] != w:
Jacob Segal's avatar
Jacob Segal committed
370
371
                mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=(h, w), mode='bilinear', align_corners=False).squeeze(1)

Jacob Segal's avatar
Jacob Segal committed
372
            if modified.get("set_area_to_bounds", False):
Jacob Segal's avatar
Jacob Segal committed
373
                bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0)
Jacob Segal's avatar
Jacob Segal committed
374
375
376
377
                boxes, is_empty = get_mask_aabb(bounds)
                if is_empty[0]:
                    # Use the minimum possible size for efficiency reasons. (Since the mask is all-0, this becomes a noop anyway)
                    modified['area'] = (8, 8, 0, 0)
Jacob Segal's avatar
Jacob Segal committed
378
                else:
Jacob Segal's avatar
Jacob Segal committed
379
                    box = boxes[0]
Jacob Segal's avatar
Jacob Segal committed
380
                    H, W, Y, X = (box[3] - box[1] + 1, box[2] - box[0] + 1, box[1], box[0])
381
382
                    H = max(8, H)
                    W = max(8, W)
Jacob Segal's avatar
Jacob Segal committed
383
384
                    area = (int(H), int(W), int(Y), int(X))
                    modified['area'] = area
Jacob Segal's avatar
Jacob Segal committed
385
386

            modified['mask'] = mask
387
            conditions[i] = modified
Jacob Segal's avatar
Jacob Segal committed
388

comfyanonymous's avatar
comfyanonymous committed
389
def create_cond_with_same_area_if_none(conds, c):
390
    if 'area' not in c:
comfyanonymous's avatar
comfyanonymous committed
391
392
        return

393
    c_area = c['area']
comfyanonymous's avatar
comfyanonymous committed
394
395
    smallest = None
    for x in conds:
396
397
        if 'area' in x:
            a = x['area']
comfyanonymous's avatar
comfyanonymous committed
398
399
400
401
402
            if c_area[2] >= a[2] and c_area[3] >= a[3]:
                if a[0] + a[2] >= c_area[0] + c_area[2]:
                    if a[1] + a[3] >= c_area[1] + c_area[3]:
                        if smallest is None:
                            smallest = x
403
                        elif 'area' not in smallest:
comfyanonymous's avatar
comfyanonymous committed
404
405
                            smallest = x
                        else:
406
                            if smallest['area'][0] * smallest['area'][1] > a[0] * a[1]:
comfyanonymous's avatar
comfyanonymous committed
407
408
409
410
411
412
                                smallest = x
        else:
            if smallest is None:
                smallest = x
    if smallest is None:
        return
413
414
    if 'area' in smallest:
        if smallest['area'] == c_area:
comfyanonymous's avatar
comfyanonymous committed
415
            return
416
417
418
419

    out = c.copy()
    out['model_conds'] = smallest['model_conds'].copy() #TODO: which fields should be copied?
    conds += [out]
comfyanonymous's avatar
comfyanonymous committed
420

421
def calculate_start_end_timesteps(model, conds):
422
    s = model.model_sampling
423
424
425
426
427
    for t in range(len(conds)):
        x = conds[t]

        timestep_start = None
        timestep_end = None
428
        if 'start_percent' in x:
429
            timestep_start = s.percent_to_sigma(x['start_percent'])
430
        if 'end_percent' in x:
431
            timestep_end = s.percent_to_sigma(x['end_percent'])
432
433

        if (timestep_start is not None) or (timestep_end is not None):
434
            n = x.copy()
435
436
437
438
            if (timestep_start is not None):
                n['timestep_start'] = timestep_start
            if (timestep_end is not None):
                n['timestep_end'] = timestep_end
439
            conds[t] = n
440

441
def pre_run_control(model, conds):
442
    s = model.model_sampling
443
444
445
446
447
    for t in range(len(conds)):
        x = conds[t]

        timestep_start = None
        timestep_end = None
448
        percent_to_timestep_function = lambda a: s.percent_to_sigma(a)
449
        if 'control' in x:
450
            x['control'].pre_run(model, percent_to_timestep_function)
451

452
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
comfyanonymous's avatar
comfyanonymous committed
453
454
455
456
457
458
    cond_cnets = []
    cond_other = []
    uncond_cnets = []
    uncond_other = []
    for t in range(len(conds)):
        x = conds[t]
459
460
461
        if 'area' not in x:
            if name in x and x[name] is not None:
                cond_cnets.append(x[name])
comfyanonymous's avatar
comfyanonymous committed
462
463
464
465
            else:
                cond_other.append((x, t))
    for t in range(len(uncond)):
        x = uncond[t]
466
467
468
        if 'area' not in x:
            if name in x and x[name] is not None:
                uncond_cnets.append(x[name])
comfyanonymous's avatar
comfyanonymous committed
469
470
471
472
473
474
475
476
477
            else:
                uncond_other.append((x, t))

    if len(uncond_cnets) > 0:
        return

    for x in range(len(cond_cnets)):
        temp = uncond_other[x % len(uncond_other)]
        o = temp[0]
478
479
        if name in o and o[name] is not None:
            n = o.copy()
480
            n[name] = uncond_fill_func(cond_cnets, x)
481
            uncond += [n]
comfyanonymous's avatar
comfyanonymous committed
482
        else:
483
            n = o.copy()
484
            n[name] = uncond_fill_func(cond_cnets, x)
485
            uncond[temp[1]] = n
486

487
def encode_model_conds(model_function, conds, noise, device, prompt_type, **kwargs):
488
489
    for t in range(len(conds)):
        x = conds[t]
490
        params = x.copy()
491
        params["device"] = device
492
493
494
495
        params["noise"] = noise
        params["width"] = params.get("width", noise.shape[3] * 8)
        params["height"] = params.get("height", noise.shape[2] * 8)
        params["prompt_type"] = params.get("prompt_type", prompt_type)
496
497
498
499
500
        for k in kwargs:
            if k not in params:
                params[k] = kwargs[k]

        out = model_function(**params)
501
502
503
504
505
506
        x = x.copy()
        model_conds = x['model_conds'].copy()
        for k in out:
            model_conds[k] = out[k]
        x['model_conds'] = model_conds
        conds[t] = x
507
    return conds
508

comfyanonymous's avatar
comfyanonymous committed
509
510
511
512
513
class Sampler:
    def sample(self):
        pass

    def max_denoise(self, model_wrap, sigmas):
comfyanonymous's avatar
comfyanonymous committed
514
515
516
        max_sigma = float(model_wrap.inner_model.model_sampling.sigma_max)
        sigma = float(sigmas[0])
        return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma
comfyanonymous's avatar
comfyanonymous committed
517

comfyanonymous's avatar
comfyanonymous committed
518
KSAMPLER_NAMES = ["euler", "euler_ancestral", "heun", "heunpp2","dpm_2", "dpm_2_ancestral",
comfyanonymous's avatar
comfyanonymous committed
519
                  "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
comfyanonymous's avatar
comfyanonymous committed
520
                  "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm"]
comfyanonymous's avatar
comfyanonymous committed
521

522
523
524
525
526
class KSAMPLER(Sampler):
    def __init__(self, sampler_function, extra_options={}, inpaint_options={}):
        self.sampler_function = sampler_function
        self.extra_options = extra_options
        self.inpaint_options = inpaint_options
comfyanonymous's avatar
comfyanonymous committed
527

528
529
    def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
        extra_args["denoise_mask"] = denoise_mask
530
        model_k = KSamplerX0Inpaint(model_wrap, sigmas)
531
532
533
534
535
536
        model_k.latent_image = latent_image
        if self.inpaint_options.get("random", False): #TODO: Should this be the default?
            generator = torch.manual_seed(extra_args.get("seed", 41) + 1)
            model_k.noise = torch.randn(noise.shape, generator=generator, device="cpu").to(noise.dtype).to(noise.device)
        else:
            model_k.noise = noise
comfyanonymous's avatar
comfyanonymous committed
537

538
        noise = model_wrap.inner_model.model_sampling.noise_scaling(sigmas[0], noise, latent_image, self.max_denoise(model_wrap, sigmas))
539
540
541
542
543
544
545

        k_callback = None
        total_steps = len(sigmas) - 1
        if callback is not None:
            k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps)

        samples = self.sampler_function(model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar, **self.extra_options)
546
        samples = model_wrap.inner_model.model_sampling.inverse_noise_scaling(sigmas[-1], samples)
547
548
549
550
551
552
        return samples


def ksampler(sampler_name, extra_options={}, inpaint_options={}):
    if sampler_name == "dpm_fast":
        def dpm_fast_function(model, noise, sigmas, extra_args, callback, disable):
comfyanonymous's avatar
comfyanonymous committed
553
554
555
            sigma_min = sigmas[-1]
            if sigma_min == 0:
                sigma_min = sigmas[-2]
556
557
558
559
            total_steps = len(sigmas) - 1
            return k_diffusion_sampling.sample_dpm_fast(model, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=callback, disable=disable)
        sampler_function = dpm_fast_function
    elif sampler_name == "dpm_adaptive":
560
        def dpm_adaptive_function(model, noise, sigmas, extra_args, callback, disable, **extra_options):
561
562
563
            sigma_min = sigmas[-1]
            if sigma_min == 0:
                sigma_min = sigmas[-2]
564
            return k_diffusion_sampling.sample_dpm_adaptive(model, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=callback, disable=disable, **extra_options)
565
566
567
        sampler_function = dpm_adaptive_function
    else:
        sampler_function = getattr(k_diffusion_sampling, "sample_{}".format(sampler_name))
comfyanonymous's avatar
comfyanonymous committed
568

569
    return KSAMPLER(sampler_function, extra_options, inpaint_options)
comfyanonymous's avatar
comfyanonymous committed
570

comfyanonymous's avatar
comfyanonymous committed
571
572
def wrap_model(model):
    model_denoise = CFGNoisePredictor(model)
comfyanonymous's avatar
comfyanonymous committed
573
    return model_denoise
comfyanonymous's avatar
comfyanonymous committed
574
575
576
577
578
579
580
581

def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={}, latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
    positive = positive[:]
    negative = negative[:]

    resolve_areas_and_cond_masks(positive, noise.shape[2], noise.shape[3], device)
    resolve_areas_and_cond_masks(negative, noise.shape[2], noise.shape[3], device)

comfyanonymous's avatar
comfyanonymous committed
582
    model_wrap = wrap_model(model)
comfyanonymous's avatar
comfyanonymous committed
583

584
585
    calculate_start_end_timesteps(model, negative)
    calculate_start_end_timesteps(model, positive)
comfyanonymous's avatar
comfyanonymous committed
586

587
    if latent_image is not None and torch.count_nonzero(latent_image) > 0: #Don't shift the empty latent image.
588
589
        latent_image = model.process_latent_in(latent_image)

590
    if hasattr(model, 'extra_conds'):
591
592
        positive = encode_model_conds(model.extra_conds, positive, noise, device, "positive", latent_image=latent_image, denoise_mask=denoise_mask, seed=seed)
        negative = encode_model_conds(model.extra_conds, negative, noise, device, "negative", latent_image=latent_image, denoise_mask=denoise_mask, seed=seed)
593

comfyanonymous's avatar
comfyanonymous committed
594
595
596
597
598
599
    #make sure each cond area has an opposite one with the same area
    for c in positive:
        create_cond_with_same_area_if_none(negative, c)
    for c in negative:
        create_cond_with_same_area_if_none(positive, c)

600
    pre_run_control(model, negative + positive)
comfyanonymous's avatar
comfyanonymous committed
601

602
    apply_empty_x_to_equal_area(list(filter(lambda c: c.get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x])
comfyanonymous's avatar
comfyanonymous committed
603
604
605
606
607
608
609
    apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])

    extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": model_options, "seed":seed}

    samples = sampler.sample(model_wrap, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar)
    return model.process_latent_out(samples.to(torch.float32))

comfyanonymous's avatar
comfyanonymous committed
610
611
612
613
614
SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform"]
SAMPLER_NAMES = KSAMPLER_NAMES + ["ddim", "uni_pc", "uni_pc_bh2"]

def calculate_sigmas_scheduler(model, scheduler_name, steps):
    if scheduler_name == "karras":
comfyanonymous's avatar
comfyanonymous committed
615
        sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=float(model.model_sampling.sigma_min), sigma_max=float(model.model_sampling.sigma_max))
comfyanonymous's avatar
comfyanonymous committed
616
    elif scheduler_name == "exponential":
comfyanonymous's avatar
comfyanonymous committed
617
        sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=float(model.model_sampling.sigma_min), sigma_max=float(model.model_sampling.sigma_max))
comfyanonymous's avatar
comfyanonymous committed
618
    elif scheduler_name == "normal":
comfyanonymous's avatar
comfyanonymous committed
619
        sigmas = normal_scheduler(model, steps)
comfyanonymous's avatar
comfyanonymous committed
620
    elif scheduler_name == "simple":
comfyanonymous's avatar
comfyanonymous committed
621
        sigmas = simple_scheduler(model, steps)
comfyanonymous's avatar
comfyanonymous committed
622
    elif scheduler_name == "ddim_uniform":
comfyanonymous's avatar
comfyanonymous committed
623
        sigmas = ddim_scheduler(model, steps)
comfyanonymous's avatar
comfyanonymous committed
624
    elif scheduler_name == "sgm_uniform":
comfyanonymous's avatar
comfyanonymous committed
625
        sigmas = normal_scheduler(model, steps, sgm=True)
comfyanonymous's avatar
comfyanonymous committed
626
    else:
627
        logging.error("error invalid scheduler {}".format(scheduler_name))
comfyanonymous's avatar
comfyanonymous committed
628
629
    return sigmas

630
def sampler_object(name):
631
    if name == "uni_pc":
comfyanonymous's avatar
comfyanonymous committed
632
        sampler = KSAMPLER(uni_pc.sample_unipc)
633
    elif name == "uni_pc_bh2":
comfyanonymous's avatar
comfyanonymous committed
634
        sampler = KSAMPLER(uni_pc.sample_unipc_bh2)
635
    elif name == "ddim":
636
        sampler = ksampler("euler", inpaint_options={"random": True})
637
638
639
640
    else:
        sampler = ksampler(name)
    return sampler

comfyanonymous's avatar
comfyanonymous committed
641
class KSampler:
comfyanonymous's avatar
comfyanonymous committed
642
643
    SCHEDULERS = SCHEDULER_NAMES
    SAMPLERS = SAMPLER_NAMES
644
    DISCARD_PENULTIMATE_SIGMA_SAMPLERS = set(('dpm_2', 'dpm_2_ancestral', 'uni_pc', 'uni_pc_bh2'))
comfyanonymous's avatar
comfyanonymous committed
645

646
    def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
comfyanonymous's avatar
comfyanonymous committed
647
648
649
650
651
652
653
654
655
        self.model = model
        self.device = device
        if scheduler not in self.SCHEDULERS:
            scheduler = self.SCHEDULERS[0]
        if sampler not in self.SAMPLERS:
            sampler = self.SAMPLERS[0]
        self.scheduler = scheduler
        self.sampler = sampler
        self.set_steps(steps, denoise)
656
        self.denoise = denoise
657
        self.model_options = model_options
comfyanonymous's avatar
comfyanonymous committed
658

comfyanonymous's avatar
comfyanonymous committed
659
660
661
662
    def calculate_sigmas(self, steps):
        sigmas = None

        discard_penultimate_sigma = False
663
        if self.sampler in self.DISCARD_PENULTIMATE_SIGMA_SAMPLERS:
comfyanonymous's avatar
comfyanonymous committed
664
665
666
            steps += 1
            discard_penultimate_sigma = True

comfyanonymous's avatar
comfyanonymous committed
667
        sigmas = calculate_sigmas_scheduler(self.model, self.scheduler, steps)
comfyanonymous's avatar
comfyanonymous committed
668
669
670
671
672

        if discard_penultimate_sigma:
            sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
        return sigmas

comfyanonymous's avatar
comfyanonymous committed
673
674
    def set_steps(self, steps, denoise=None):
        self.steps = steps
675
        if denoise is None or denoise > 0.9999:
comfyanonymous's avatar
comfyanonymous committed
676
            self.sigmas = self.calculate_sigmas(steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
677
678
        else:
            new_steps = int(steps/denoise)
comfyanonymous's avatar
comfyanonymous committed
679
            sigmas = self.calculate_sigmas(new_steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
680
681
            self.sigmas = sigmas[-(steps + 1):]

682
    def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
683
684
        if sigmas is None:
            sigmas = self.sigmas
comfyanonymous's avatar
comfyanonymous committed
685

comfyanonymous's avatar
comfyanonymous committed
686
        if last_step is not None and last_step < (len(sigmas) - 1):
comfyanonymous's avatar
comfyanonymous committed
687
            sigmas = sigmas[:last_step + 1]
comfyanonymous's avatar
comfyanonymous committed
688
689
690
            if force_full_denoise:
                sigmas[-1] = 0

comfyanonymous's avatar
comfyanonymous committed
691
        if start_step is not None:
comfyanonymous's avatar
comfyanonymous committed
692
693
694
695
696
697
698
            if start_step < (len(sigmas) - 1):
                sigmas = sigmas[start_step:]
            else:
                if latent_image is not None:
                    return latent_image
                else:
                    return torch.zeros_like(noise)
comfyanonymous's avatar
comfyanonymous committed
699

700
        sampler = sampler_object(self.sampler)
701

702
        return sample(self.model, noise, positive, negative, cfg, self.device, sampler, sigmas, self.model_options, latent_image=latent_image, denoise_mask=denoise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)