samplers.py 26.8 KB
Newer Older
1
from .k_diffusion import sampling as k_diffusion_sampling
2
from .extra_samplers import uni_pc
comfyanonymous's avatar
comfyanonymous committed
3
import torch
4
import enum
5
from comfy import model_management
comfyanonymous's avatar
comfyanonymous committed
6
import math
7
from comfy import model_base
8
import comfy.utils
9
import comfy.conds
10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
def get_area_and_mult(conds, x_in, timestep_in):
    area = (x_in.shape[2], x_in.shape[3], 0, 0)
    strength = 1.0

    if 'timestep_start' in conds:
        timestep_start = conds['timestep_start']
        if timestep_in[0] > timestep_start:
            return None
    if 'timestep_end' in conds:
        timestep_end = conds['timestep_end']
        if timestep_in[0] < timestep_end:
            return None
    if 'area' in conds:
        area = conds['area']
    if 'strength' in conds:
        strength = conds['strength']

    input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
    if 'mask' in conds:
        # Scale the mask to the size of the input
        # The mask should have been resized as we began the sampling process
        mask_strength = 1.0
        if "mask_strength" in conds:
            mask_strength = conds["mask_strength"]
        mask = conds['mask']
        assert(mask.shape[1] == x_in.shape[2])
        assert(mask.shape[2] == x_in.shape[3])
        mask = mask[:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] * mask_strength
        mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
    else:
        mask = torch.ones_like(input_x)
    mult = mask * strength

    if 'mask' not in conds:
        rr = 8
        if area[2] != 0:
            for t in range(rr):
                mult[:,:,t:1+t,:] *= ((1.0/rr) * (t + 1))
        if (area[0] + area[2]) < x_in.shape[2]:
            for t in range(rr):
                mult[:,:,area[0] - 1 - t:area[0] - t,:] *= ((1.0/rr) * (t + 1))
        if area[3] != 0:
            for t in range(rr):
                mult[:,:,:,t:1+t] *= ((1.0/rr) * (t + 1))
        if (area[1] + area[3]) < x_in.shape[3]:
            for t in range(rr):
                mult[:,:,:,area[1] - 1 - t:area[1] - t] *= ((1.0/rr) * (t + 1))

    conditioning = {}
    model_conds = conds["model_conds"]
    for c in model_conds:
        conditioning[c] = model_conds[c].process_cond(batch_size=x_in.shape[0], device=x_in.device, area=area)

    control = None
    if 'control' in conds:
        control = conds['control']

    patches = None
    if 'gligen' in conds:
        gligen = conds['gligen']
        patches = {}
        gligen_type = gligen[0]
        gligen_model = gligen[1]
        if gligen_type == "position":
            gligen_patch = gligen_model.model.set_position(input_x.shape, gligen[2], input_x.device)
        else:
            gligen_patch = gligen_model.model.set_empty(input_x.shape, input_x.device)

        patches['middle_patch'] = [gligen_patch]

    return (input_x, mult, conditioning, area, control, patches)

def cond_equal_size(c1, c2):
    if c1 is c2:
        return True
    if c1.keys() != c2.keys():
        return False
    for k in c1:
        if not c1[k].can_concat(c2[k]):
            return False
    return True

def can_concat_cond(c1, c2):
    if c1[0].shape != c2[0].shape:
        return False

    #control
    if (c1[4] is None) != (c2[4] is None):
        return False
    if c1[4] is not None:
        if c1[4] is not c2[4]:
            return False

    #patches
    if (c1[5] is None) != (c2[5] is None):
        return False
    if (c1[5] is not None):
        if c1[5] is not c2[5]:
            return False

    return cond_equal_size(c1[2], c2[2])

def cond_cat(c_list):
    c_crossattn = []
    c_concat = []
    c_adm = []
    crossattn_max_len = 0

    temp = {}
    for x in c_list:
        for k in x:
            cur = temp.get(k, [])
            cur.append(x[k])
            temp[k] = cur

    out = {}
    for k in temp:
        conds = temp[k]
        out[k] = conds[0].concat(conds[1:])

    return out

def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options):
    out_cond = torch.zeros_like(x_in)
    out_count = torch.ones_like(x_in) * 1e-37

    out_uncond = torch.zeros_like(x_in)
    out_uncond_count = torch.ones_like(x_in) * 1e-37

    COND = 0
    UNCOND = 1

    to_run = []
    for x in cond:
        p = get_area_and_mult(x, x_in, timestep)
        if p is None:
            continue

        to_run += [(p, COND)]
    if uncond is not None:
        for x in uncond:
            p = get_area_and_mult(x, x_in, timestep)
            if p is None:
                continue

            to_run += [(p, UNCOND)]

    while len(to_run) > 0:
        first = to_run[0]
        first_shape = first[0][0].shape
        to_batch_temp = []
        for x in range(len(to_run)):
            if can_concat_cond(to_run[x][0], first[0]):
                to_batch_temp += [x]

        to_batch_temp.reverse()
        to_batch = to_batch_temp[:1]

        free_memory = model_management.get_free_memory(x_in.device)
        for i in range(1, len(to_batch_temp) + 1):
            batch_amount = to_batch_temp[:len(to_batch_temp)//i]
            input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:]
            if model.memory_required(input_shape) < free_memory:
                to_batch = batch_amount
                break

        input_x = []
        mult = []
        c = []
        cond_or_uncond = []
        area = []
        control = None
        patches = None
        for x in to_batch:
            o = to_run.pop(x)
            p = o[0]
            input_x += [p[0]]
            mult += [p[1]]
            c += [p[2]]
            area += [p[3]]
            cond_or_uncond += [o[1]]
            control = p[4]
            patches = p[5]

        batch_chunks = len(cond_or_uncond)
        input_x = torch.cat(input_x)
        c = cond_cat(c)
        timestep_ = torch.cat([timestep] * batch_chunks)

        if control is not None:
            c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond))

        transformer_options = {}
        if 'transformer_options' in model_options:
            transformer_options = model_options['transformer_options'].copy()

        if patches is not None:
            if "patches" in transformer_options:
                cur_patches = transformer_options["patches"].copy()
                for p in patches:
                    if p in cur_patches:
                        cur_patches[p] = cur_patches[p] + patches[p]
213
                    else:
214
215
216
                        cur_patches[p] = patches[p]
            else:
                transformer_options["patches"] = patches
217

218
219
        transformer_options["cond_or_uncond"] = cond_or_uncond[:]
        transformer_options["sigmas"] = timestep
220

221
        c['transformer_options'] = transformer_options
222

223
224
225
226
227
        if 'model_function_wrapper' in model_options:
            output = model_options['model_function_wrapper'](model.apply_model, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks)
        else:
            output = model.apply_model(input_x, timestep_, **c).chunk(batch_chunks)
        del input_x
comfyanonymous's avatar
comfyanonymous committed
228

229
230
231
232
233
234
235
236
        for o in range(batch_chunks):
            if cond_or_uncond[o] == COND:
                out_cond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                out_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
            else:
                out_uncond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                out_uncond_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
        del mult
comfyanonymous's avatar
comfyanonymous committed
237

238
239
240
241
242
    out_cond /= out_count
    del out_count
    out_uncond /= out_uncond_count
    del out_uncond_count
    return out_cond, out_uncond
comfyanonymous's avatar
comfyanonymous committed
243

244
245
246
247
248
249
250
#The main sampling function shared by all the samplers
#Returns denoised
def sampling_function(model, x, timestep, uncond, cond, cond_scale, model_options={}, seed=None):
        if math.isclose(cond_scale, 1.0):
            uncond_ = None
        else:
            uncond_ = uncond
251

252
        cond_pred, uncond_pred = calc_cond_uncond_batch(model, cond, uncond_, x, timestep, model_options)
253
        cfg_result = uncond_pred + (cond_pred - uncond_pred) * cond_scale
254
        if "sampler_cfg_function" in model_options:
255
256
257
            args = {"cond": x - cond_pred, "uncond": x - uncond_pred, "cond_scale": cond_scale, "timestep": timestep, "input": x, "sigma": timestep}
            cfg_result = x - model_options["sampler_cfg_function"](args)

258
259
260
261
        for fn in model_options.get("sampler_post_cfg_function", []):
            args = {"denoised": cfg_result, "cond": cond, "uncond": uncond, "model": model, "uncond_denoised": uncond_pred, "cond_denoised": cond_pred,
                    "sigma": timestep, "model_options": model_options, "input": x}
            cfg_result = fn(args)
262

263
        return cfg_result
comfyanonymous's avatar
comfyanonymous committed
264

comfyanonymous's avatar
comfyanonymous committed
265
266
267
268
class CFGNoisePredictor(torch.nn.Module):
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
269
    def apply_model(self, x, timestep, cond, uncond, cond_scale, model_options={}, seed=None):
270
        out = sampling_function(self.inner_model, x, timestep, uncond, cond, cond_scale, model_options=model_options, seed=seed)
comfyanonymous's avatar
comfyanonymous committed
271
        return out
comfyanonymous's avatar
comfyanonymous committed
272
273
    def forward(self, *args, **kwargs):
        return self.apply_model(*args, **kwargs)
comfyanonymous's avatar
comfyanonymous committed
274
275

class KSamplerX0Inpaint(torch.nn.Module):
276
277
278
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
279
    def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, model_options={}, seed=None):
280
281
        if denoise_mask is not None:
            latent_mask = 1. - denoise_mask
282
            x = x * denoise_mask + (self.latent_image + self.noise * sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1))) * latent_mask
283
        out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, model_options=model_options, seed=seed)
284
        if denoise_mask is not None:
comfyanonymous's avatar
comfyanonymous committed
285
            out = out * denoise_mask + self.latent_image * latent_mask
286
        return out
287

comfyanonymous's avatar
comfyanonymous committed
288
def simple_scheduler(model, steps):
comfyanonymous's avatar
comfyanonymous committed
289
    s = model.model_sampling
comfyanonymous's avatar
comfyanonymous committed
290
    sigs = []
comfyanonymous's avatar
comfyanonymous committed
291
    ss = len(s.sigmas) / steps
comfyanonymous's avatar
comfyanonymous committed
292
    for x in range(steps):
comfyanonymous's avatar
comfyanonymous committed
293
        sigs += [float(s.sigmas[-(1 + int(x * ss))])]
comfyanonymous's avatar
comfyanonymous committed
294
295
296
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
297
def ddim_scheduler(model, steps):
comfyanonymous's avatar
comfyanonymous committed
298
    s = model.model_sampling
comfyanonymous's avatar
comfyanonymous committed
299
    sigs = []
comfyanonymous's avatar
comfyanonymous committed
300
301
302
303
304
305
    ss = len(s.sigmas) // steps
    x = 1
    while x < len(s.sigmas):
        sigs += [float(s.sigmas[x])]
        x += ss
    sigs = sigs[::-1]
comfyanonymous's avatar
comfyanonymous committed
306
307
308
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
309
310
311
312
313
314
315
316
317
318
def normal_scheduler(model, steps, sgm=False, floor=False):
    s = model.model_sampling
    start = s.timestep(s.sigma_max)
    end = s.timestep(s.sigma_min)

    if sgm:
        timesteps = torch.linspace(start, end, steps + 1)[:-1]
    else:
        timesteps = torch.linspace(start, end, steps)

319
320
321
    sigs = []
    for x in range(len(timesteps)):
        ts = timesteps[x]
comfyanonymous's avatar
comfyanonymous committed
322
        sigs.append(s.sigma(ts))
323
324
325
    sigs += [0.0]
    return torch.FloatTensor(sigs)

Jacob Segal's avatar
Jacob Segal committed
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
def get_mask_aabb(masks):
    if masks.numel() == 0:
        return torch.zeros((0, 4), device=masks.device, dtype=torch.int)

    b = masks.shape[0]

    bounding_boxes = torch.zeros((b, 4), device=masks.device, dtype=torch.int)
    is_empty = torch.zeros((b), device=masks.device, dtype=torch.bool)
    for i in range(b):
        mask = masks[i]
        if mask.numel() == 0:
            continue
        if torch.max(mask != 0) == False:
            is_empty[i] = True
            continue
        y, x = torch.where(mask)
        bounding_boxes[i, 0] = torch.min(x)
        bounding_boxes[i, 1] = torch.min(y)
        bounding_boxes[i, 2] = torch.max(x)
        bounding_boxes[i, 3] = torch.max(y)

    return bounding_boxes, is_empty

349
def resolve_areas_and_cond_masks(conditions, h, w, device):
Jacob Segal's avatar
Jacob Segal committed
350
351
352
353
    # We need to decide on an area outside the sampling loop in order to properly generate opposite areas of equal sizes.
    # While we're doing this, we can also resolve the mask device and scaling for performance reasons
    for i in range(len(conditions)):
        c = conditions[i]
354
355
        if 'area' in c:
            area = c['area']
356
            if area[0] == "percentage":
357
                modified = c.copy()
358
359
                area = (max(1, round(area[1] * h)), max(1, round(area[2] * w)), round(area[3] * h), round(area[4] * w))
                modified['area'] = area
360
                c = modified
361
362
                conditions[i] = c

363
364
        if 'mask' in c:
            mask = c['mask']
Jacob Segal's avatar
Jacob Segal committed
365
            mask = mask.to(device=device)
366
            modified = c.copy()
Jacob Segal's avatar
Jacob Segal committed
367
368
            if len(mask.shape) == 2:
                mask = mask.unsqueeze(0)
mara's avatar
mara committed
369
            if mask.shape[1] != h or mask.shape[2] != w:
Jacob Segal's avatar
Jacob Segal committed
370
371
                mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=(h, w), mode='bilinear', align_corners=False).squeeze(1)

Jacob Segal's avatar
Jacob Segal committed
372
            if modified.get("set_area_to_bounds", False):
Jacob Segal's avatar
Jacob Segal committed
373
                bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0)
Jacob Segal's avatar
Jacob Segal committed
374
375
376
377
                boxes, is_empty = get_mask_aabb(bounds)
                if is_empty[0]:
                    # Use the minimum possible size for efficiency reasons. (Since the mask is all-0, this becomes a noop anyway)
                    modified['area'] = (8, 8, 0, 0)
Jacob Segal's avatar
Jacob Segal committed
378
                else:
Jacob Segal's avatar
Jacob Segal committed
379
                    box = boxes[0]
Jacob Segal's avatar
Jacob Segal committed
380
                    H, W, Y, X = (box[3] - box[1] + 1, box[2] - box[0] + 1, box[1], box[0])
381
382
                    H = max(8, H)
                    W = max(8, W)
Jacob Segal's avatar
Jacob Segal committed
383
384
                    area = (int(H), int(W), int(Y), int(X))
                    modified['area'] = area
Jacob Segal's avatar
Jacob Segal committed
385
386

            modified['mask'] = mask
387
            conditions[i] = modified
Jacob Segal's avatar
Jacob Segal committed
388

comfyanonymous's avatar
comfyanonymous committed
389
def create_cond_with_same_area_if_none(conds, c):
390
    if 'area' not in c:
comfyanonymous's avatar
comfyanonymous committed
391
392
        return

393
    c_area = c['area']
comfyanonymous's avatar
comfyanonymous committed
394
395
    smallest = None
    for x in conds:
396
397
        if 'area' in x:
            a = x['area']
comfyanonymous's avatar
comfyanonymous committed
398
399
400
401
402
            if c_area[2] >= a[2] and c_area[3] >= a[3]:
                if a[0] + a[2] >= c_area[0] + c_area[2]:
                    if a[1] + a[3] >= c_area[1] + c_area[3]:
                        if smallest is None:
                            smallest = x
403
                        elif 'area' not in smallest:
comfyanonymous's avatar
comfyanonymous committed
404
405
                            smallest = x
                        else:
406
                            if smallest['area'][0] * smallest['area'][1] > a[0] * a[1]:
comfyanonymous's avatar
comfyanonymous committed
407
408
409
410
411
412
                                smallest = x
        else:
            if smallest is None:
                smallest = x
    if smallest is None:
        return
413
414
    if 'area' in smallest:
        if smallest['area'] == c_area:
comfyanonymous's avatar
comfyanonymous committed
415
            return
416
417
418
419

    out = c.copy()
    out['model_conds'] = smallest['model_conds'].copy() #TODO: which fields should be copied?
    conds += [out]
comfyanonymous's avatar
comfyanonymous committed
420

421
def calculate_start_end_timesteps(model, conds):
422
    s = model.model_sampling
423
424
425
426
427
    for t in range(len(conds)):
        x = conds[t]

        timestep_start = None
        timestep_end = None
428
        if 'start_percent' in x:
429
            timestep_start = s.percent_to_sigma(x['start_percent'])
430
        if 'end_percent' in x:
431
            timestep_end = s.percent_to_sigma(x['end_percent'])
432
433

        if (timestep_start is not None) or (timestep_end is not None):
434
            n = x.copy()
435
436
437
438
            if (timestep_start is not None):
                n['timestep_start'] = timestep_start
            if (timestep_end is not None):
                n['timestep_end'] = timestep_end
439
            conds[t] = n
440

441
def pre_run_control(model, conds):
442
    s = model.model_sampling
443
444
445
446
447
    for t in range(len(conds)):
        x = conds[t]

        timestep_start = None
        timestep_end = None
448
        percent_to_timestep_function = lambda a: s.percent_to_sigma(a)
449
        if 'control' in x:
450
            x['control'].pre_run(model, percent_to_timestep_function)
451

452
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
comfyanonymous's avatar
comfyanonymous committed
453
454
455
456
457
458
    cond_cnets = []
    cond_other = []
    uncond_cnets = []
    uncond_other = []
    for t in range(len(conds)):
        x = conds[t]
459
460
461
        if 'area' not in x:
            if name in x and x[name] is not None:
                cond_cnets.append(x[name])
comfyanonymous's avatar
comfyanonymous committed
462
463
464
465
            else:
                cond_other.append((x, t))
    for t in range(len(uncond)):
        x = uncond[t]
466
467
468
        if 'area' not in x:
            if name in x and x[name] is not None:
                uncond_cnets.append(x[name])
comfyanonymous's avatar
comfyanonymous committed
469
470
471
472
473
474
475
476
477
            else:
                uncond_other.append((x, t))

    if len(uncond_cnets) > 0:
        return

    for x in range(len(cond_cnets)):
        temp = uncond_other[x % len(uncond_other)]
        o = temp[0]
478
479
        if name in o and o[name] is not None:
            n = o.copy()
480
            n[name] = uncond_fill_func(cond_cnets, x)
481
            uncond += [n]
comfyanonymous's avatar
comfyanonymous committed
482
        else:
483
            n = o.copy()
484
            n[name] = uncond_fill_func(cond_cnets, x)
485
            uncond[temp[1]] = n
486

487
def encode_model_conds(model_function, conds, noise, device, prompt_type, **kwargs):
488
489
    for t in range(len(conds)):
        x = conds[t]
490
        params = x.copy()
491
        params["device"] = device
492
493
494
495
        params["noise"] = noise
        params["width"] = params.get("width", noise.shape[3] * 8)
        params["height"] = params.get("height", noise.shape[2] * 8)
        params["prompt_type"] = params.get("prompt_type", prompt_type)
496
497
498
499
500
        for k in kwargs:
            if k not in params:
                params[k] = kwargs[k]

        out = model_function(**params)
501
502
503
504
505
506
        x = x.copy()
        model_conds = x['model_conds'].copy()
        for k in out:
            model_conds[k] = out[k]
        x['model_conds'] = model_conds
        conds[t] = x
507
    return conds
508

comfyanonymous's avatar
comfyanonymous committed
509
510
511
512
513
class Sampler:
    def sample(self):
        pass

    def max_denoise(self, model_wrap, sigmas):
comfyanonymous's avatar
comfyanonymous committed
514
515
516
        max_sigma = float(model_wrap.inner_model.model_sampling.sigma_max)
        sigma = float(sigmas[0])
        return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma
comfyanonymous's avatar
comfyanonymous committed
517
518
519

class UNIPC(Sampler):
    def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
520
        return uni_pc.sample_unipc(model_wrap, noise, latent_image, sigmas, max_denoise=self.max_denoise(model_wrap, sigmas), extra_args=extra_args, noise_mask=denoise_mask, callback=callback, disable=disable_pbar)
comfyanonymous's avatar
comfyanonymous committed
521
522
523

class UNIPCBH2(Sampler):
    def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
524
        return uni_pc.sample_unipc(model_wrap, noise, latent_image, sigmas, max_denoise=self.max_denoise(model_wrap, sigmas), extra_args=extra_args, noise_mask=denoise_mask, callback=callback, variant='bh2', disable=disable_pbar)
comfyanonymous's avatar
comfyanonymous committed
525

comfyanonymous's avatar
comfyanonymous committed
526
KSAMPLER_NAMES = ["euler", "euler_ancestral", "heun", "heunpp2","dpm_2", "dpm_2_ancestral",
comfyanonymous's avatar
comfyanonymous committed
527
                  "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
comfyanonymous's avatar
comfyanonymous committed
528
                  "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm"]
comfyanonymous's avatar
comfyanonymous committed
529

530
531
532
533
534
class KSAMPLER(Sampler):
    def __init__(self, sampler_function, extra_options={}, inpaint_options={}):
        self.sampler_function = sampler_function
        self.extra_options = extra_options
        self.inpaint_options = inpaint_options
comfyanonymous's avatar
comfyanonymous committed
535

536
537
538
539
540
541
542
543
544
    def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
        extra_args["denoise_mask"] = denoise_mask
        model_k = KSamplerX0Inpaint(model_wrap)
        model_k.latent_image = latent_image
        if self.inpaint_options.get("random", False): #TODO: Should this be the default?
            generator = torch.manual_seed(extra_args.get("seed", 41) + 1)
            model_k.noise = torch.randn(noise.shape, generator=generator, device="cpu").to(noise.dtype).to(noise.device)
        else:
            model_k.noise = noise
comfyanonymous's avatar
comfyanonymous committed
545

546
547
548
549
550
551
552
553
554
555
556
557
        if self.max_denoise(model_wrap, sigmas):
            noise = noise * torch.sqrt(1.0 + sigmas[0] ** 2.0)
        else:
            noise = noise * sigmas[0]

        k_callback = None
        total_steps = len(sigmas) - 1
        if callback is not None:
            k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps)

        if latent_image is not None:
            noise += latent_image
comfyanonymous's avatar
comfyanonymous committed
558

559
560
561
562
563
564
565
        samples = self.sampler_function(model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar, **self.extra_options)
        return samples


def ksampler(sampler_name, extra_options={}, inpaint_options={}):
    if sampler_name == "dpm_fast":
        def dpm_fast_function(model, noise, sigmas, extra_args, callback, disable):
comfyanonymous's avatar
comfyanonymous committed
566
567
568
            sigma_min = sigmas[-1]
            if sigma_min == 0:
                sigma_min = sigmas[-2]
569
570
571
572
573
574
575
576
577
578
579
580
            total_steps = len(sigmas) - 1
            return k_diffusion_sampling.sample_dpm_fast(model, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=callback, disable=disable)
        sampler_function = dpm_fast_function
    elif sampler_name == "dpm_adaptive":
        def dpm_adaptive_function(model, noise, sigmas, extra_args, callback, disable):
            sigma_min = sigmas[-1]
            if sigma_min == 0:
                sigma_min = sigmas[-2]
            return k_diffusion_sampling.sample_dpm_adaptive(model, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=callback, disable=disable)
        sampler_function = dpm_adaptive_function
    else:
        sampler_function = getattr(k_diffusion_sampling, "sample_{}".format(sampler_name))
comfyanonymous's avatar
comfyanonymous committed
581

582
    return KSAMPLER(sampler_function, extra_options, inpaint_options)
comfyanonymous's avatar
comfyanonymous committed
583

comfyanonymous's avatar
comfyanonymous committed
584
585
def wrap_model(model):
    model_denoise = CFGNoisePredictor(model)
comfyanonymous's avatar
comfyanonymous committed
586
    return model_denoise
comfyanonymous's avatar
comfyanonymous committed
587
588
589
590
591
592
593
594

def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={}, latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
    positive = positive[:]
    negative = negative[:]

    resolve_areas_and_cond_masks(positive, noise.shape[2], noise.shape[3], device)
    resolve_areas_and_cond_masks(negative, noise.shape[2], noise.shape[3], device)

comfyanonymous's avatar
comfyanonymous committed
595
    model_wrap = wrap_model(model)
comfyanonymous's avatar
comfyanonymous committed
596

597
598
    calculate_start_end_timesteps(model, negative)
    calculate_start_end_timesteps(model, positive)
comfyanonymous's avatar
comfyanonymous committed
599
600
601
602
603
604
605

    #make sure each cond area has an opposite one with the same area
    for c in positive:
        create_cond_with_same_area_if_none(negative, c)
    for c in negative:
        create_cond_with_same_area_if_none(positive, c)

606
    pre_run_control(model, negative + positive)
comfyanonymous's avatar
comfyanonymous committed
607

608
    apply_empty_x_to_equal_area(list(filter(lambda c: c.get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x])
comfyanonymous's avatar
comfyanonymous committed
609
610
    apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])

611
612
613
    if latent_image is not None:
        latent_image = model.process_latent_in(latent_image)

614
615
616
    if hasattr(model, 'extra_conds'):
        positive = encode_model_conds(model.extra_conds, positive, noise, device, "positive", latent_image=latent_image, denoise_mask=denoise_mask)
        negative = encode_model_conds(model.extra_conds, negative, noise, device, "negative", latent_image=latent_image, denoise_mask=denoise_mask)
comfyanonymous's avatar
comfyanonymous committed
617
618
619
620
621
622

    extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": model_options, "seed":seed}

    samples = sampler.sample(model_wrap, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar)
    return model.process_latent_out(samples.to(torch.float32))

comfyanonymous's avatar
comfyanonymous committed
623
624
625
626
627
SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform"]
SAMPLER_NAMES = KSAMPLER_NAMES + ["ddim", "uni_pc", "uni_pc_bh2"]

def calculate_sigmas_scheduler(model, scheduler_name, steps):
    if scheduler_name == "karras":
comfyanonymous's avatar
comfyanonymous committed
628
        sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=float(model.model_sampling.sigma_min), sigma_max=float(model.model_sampling.sigma_max))
comfyanonymous's avatar
comfyanonymous committed
629
    elif scheduler_name == "exponential":
comfyanonymous's avatar
comfyanonymous committed
630
        sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=float(model.model_sampling.sigma_min), sigma_max=float(model.model_sampling.sigma_max))
comfyanonymous's avatar
comfyanonymous committed
631
    elif scheduler_name == "normal":
comfyanonymous's avatar
comfyanonymous committed
632
        sigmas = normal_scheduler(model, steps)
comfyanonymous's avatar
comfyanonymous committed
633
    elif scheduler_name == "simple":
comfyanonymous's avatar
comfyanonymous committed
634
        sigmas = simple_scheduler(model, steps)
comfyanonymous's avatar
comfyanonymous committed
635
    elif scheduler_name == "ddim_uniform":
comfyanonymous's avatar
comfyanonymous committed
636
        sigmas = ddim_scheduler(model, steps)
comfyanonymous's avatar
comfyanonymous committed
637
    elif scheduler_name == "sgm_uniform":
comfyanonymous's avatar
comfyanonymous committed
638
        sigmas = normal_scheduler(model, steps, sgm=True)
comfyanonymous's avatar
comfyanonymous committed
639
640
641
642
    else:
        print("error invalid scheduler", self.scheduler)
    return sigmas

643
def sampler_object(name):
644
    if name == "uni_pc":
645
        sampler = UNIPC()
646
    elif name == "uni_pc_bh2":
647
        sampler = UNIPCBH2()
648
    elif name == "ddim":
649
        sampler = ksampler("euler", inpaint_options={"random": True})
650
651
652
653
    else:
        sampler = ksampler(name)
    return sampler

comfyanonymous's avatar
comfyanonymous committed
654
class KSampler:
comfyanonymous's avatar
comfyanonymous committed
655
656
    SCHEDULERS = SCHEDULER_NAMES
    SAMPLERS = SAMPLER_NAMES
comfyanonymous's avatar
comfyanonymous committed
657

658
    def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
comfyanonymous's avatar
comfyanonymous committed
659
660
661
662
663
664
665
666
667
        self.model = model
        self.device = device
        if scheduler not in self.SCHEDULERS:
            scheduler = self.SCHEDULERS[0]
        if sampler not in self.SAMPLERS:
            sampler = self.SAMPLERS[0]
        self.scheduler = scheduler
        self.sampler = sampler
        self.set_steps(steps, denoise)
668
        self.denoise = denoise
669
        self.model_options = model_options
comfyanonymous's avatar
comfyanonymous committed
670

comfyanonymous's avatar
comfyanonymous committed
671
672
673
674
    def calculate_sigmas(self, steps):
        sigmas = None

        discard_penultimate_sigma = False
675
        if self.sampler in ['dpm_2', 'dpm_2_ancestral', 'uni_pc', 'uni_pc_bh2']:
comfyanonymous's avatar
comfyanonymous committed
676
677
678
            steps += 1
            discard_penultimate_sigma = True

comfyanonymous's avatar
comfyanonymous committed
679
        sigmas = calculate_sigmas_scheduler(self.model, self.scheduler, steps)
comfyanonymous's avatar
comfyanonymous committed
680
681
682
683
684

        if discard_penultimate_sigma:
            sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
        return sigmas

comfyanonymous's avatar
comfyanonymous committed
685
686
    def set_steps(self, steps, denoise=None):
        self.steps = steps
687
        if denoise is None or denoise > 0.9999:
comfyanonymous's avatar
comfyanonymous committed
688
            self.sigmas = self.calculate_sigmas(steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
689
690
        else:
            new_steps = int(steps/denoise)
comfyanonymous's avatar
comfyanonymous committed
691
            sigmas = self.calculate_sigmas(new_steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
692
693
            self.sigmas = sigmas[-(steps + 1):]

694
    def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
695
696
        if sigmas is None:
            sigmas = self.sigmas
comfyanonymous's avatar
comfyanonymous committed
697

comfyanonymous's avatar
comfyanonymous committed
698
        if last_step is not None and last_step < (len(sigmas) - 1):
comfyanonymous's avatar
comfyanonymous committed
699
            sigmas = sigmas[:last_step + 1]
comfyanonymous's avatar
comfyanonymous committed
700
701
702
            if force_full_denoise:
                sigmas[-1] = 0

comfyanonymous's avatar
comfyanonymous committed
703
        if start_step is not None:
comfyanonymous's avatar
comfyanonymous committed
704
705
706
707
708
709
710
            if start_step < (len(sigmas) - 1):
                sigmas = sigmas[start_step:]
            else:
                if latent_image is not None:
                    return latent_image
                else:
                    return torch.zeros_like(noise)
comfyanonymous's avatar
comfyanonymous committed
711

712
        sampler = sampler_object(self.sampler)
713

714
        return sample(self.model, noise, positive, negative, cfg, self.device, sampler, sigmas, self.model_options, latent_image=latent_image, denoise_mask=denoise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)