sd.py 49.8 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
import torch
2
import contextlib
3
import copy
4
import inspect
comfyanonymous's avatar
comfyanonymous committed
5

6
from comfy import model_management
7
8
from .ldm.util import instantiate_from_config
from .ldm.models.autoencoder import AutoencoderKL
9
import yaml
comfyanonymous's avatar
comfyanonymous committed
10
from .cldm import cldm
11
from .t2i_adapter import adapter
comfyanonymous's avatar
comfyanonymous committed
12
13

from . import utils
14
from . import clip_vision
15
from . import gligen
16
from . import diffusers_convert
comfyanonymous's avatar
comfyanonymous committed
17
from . import model_base
18
from . import model_detection
19

20
21
from . import sd1_clip
from . import sd2_clip
22
from . import sdxl_clip
comfyanonymous's avatar
comfyanonymous committed
23

24
def load_model_weights(model, sd):
comfyanonymous's avatar
comfyanonymous committed
25
    m, u = model.load_state_dict(sd, strict=False)
26
27
    m = set(m)
    unexpected_keys = set(u)
comfyanonymous's avatar
comfyanonymous committed
28
29
30

    k = list(sd.keys())
    for x in k:
31
32
33
34
35
36
37
38
39
40
        if x not in unexpected_keys:
            w = sd.pop(x)
            del w
    if len(m) > 0:
        print("missing", m)
    return model

def load_clip_weights(model, sd):
    k = list(sd.keys())
    for x in k:
comfyanonymous's avatar
comfyanonymous committed
41
42
43
44
        if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
            y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
            sd[y] = sd.pop(x)

comfyanonymous's avatar
comfyanonymous committed
45
46
47
48
    if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in sd:
        ids = sd['cond_stage_model.transformer.text_model.embeddings.position_ids']
        if ids.dtype == torch.float32:
            sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
49

50
51
    sd = utils.transformers_convert(sd, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24)
    return load_model_weights(model, sd)
comfyanonymous's avatar
comfyanonymous committed
52

53
54
55
56
57
58
59
60
61
62
LORA_CLIP_MAP = {
    "mlp.fc1": "mlp_fc1",
    "mlp.fc2": "mlp_fc2",
    "self_attn.k_proj": "self_attn_k_proj",
    "self_attn.q_proj": "self_attn_q_proj",
    "self_attn.v_proj": "self_attn_v_proj",
    "self_attn.out_proj": "self_attn_out_proj",
}


63
def load_lora(lora, to_load):
64
65
66
    patch_dict = {}
    loaded_keys = set()
    for x in to_load:
comfyanonymous's avatar
comfyanonymous committed
67
68
69
70
71
72
        alpha_name = "{}.alpha".format(x)
        alpha = None
        if alpha_name in lora.keys():
            alpha = lora[alpha_name].item()
            loaded_keys.add(alpha_name)

73
74
        A_name = "{}.lora_up.weight".format(x)
        B_name = "{}.lora_down.weight".format(x)
75
        mid_name = "{}.lora_mid.weight".format(x)
comfyanonymous's avatar
comfyanonymous committed
76

77
        if A_name in lora.keys():
78
79
80
81
82
            mid = None
            if mid_name in lora.keys():
                mid = lora[mid_name]
                loaded_keys.add(mid_name)
            patch_dict[to_load[x]] = (lora[A_name], lora[B_name], alpha, mid)
83
84
            loaded_keys.add(A_name)
            loaded_keys.add(B_name)
comfyanonymous's avatar
comfyanonymous committed
85

comfyanonymous's avatar
comfyanonymous committed
86
87

        ######## loha
comfyanonymous's avatar
comfyanonymous committed
88
89
90
91
        hada_w1_a_name = "{}.hada_w1_a".format(x)
        hada_w1_b_name = "{}.hada_w1_b".format(x)
        hada_w2_a_name = "{}.hada_w2_a".format(x)
        hada_w2_b_name = "{}.hada_w2_b".format(x)
92
93
        hada_t1_name = "{}.hada_t1".format(x)
        hada_t2_name = "{}.hada_t2".format(x)
comfyanonymous's avatar
comfyanonymous committed
94
        if hada_w1_a_name in lora.keys():
95
96
97
98
99
100
101
102
103
            hada_t1 = None
            hada_t2 = None
            if hada_t1_name in lora.keys():
                hada_t1 = lora[hada_t1_name]
                hada_t2 = lora[hada_t2_name]
                loaded_keys.add(hada_t1_name)
                loaded_keys.add(hada_t2_name)

            patch_dict[to_load[x]] = (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2)
comfyanonymous's avatar
comfyanonymous committed
104
105
106
107
108
            loaded_keys.add(hada_w1_a_name)
            loaded_keys.add(hada_w1_b_name)
            loaded_keys.add(hada_w2_a_name)
            loaded_keys.add(hada_w2_b_name)

comfyanonymous's avatar
comfyanonymous committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

        ######## lokr
        lokr_w1_name = "{}.lokr_w1".format(x)
        lokr_w2_name = "{}.lokr_w2".format(x)
        lokr_w1_a_name = "{}.lokr_w1_a".format(x)
        lokr_w1_b_name = "{}.lokr_w1_b".format(x)
        lokr_t2_name = "{}.lokr_t2".format(x)
        lokr_w2_a_name = "{}.lokr_w2_a".format(x)
        lokr_w2_b_name = "{}.lokr_w2_b".format(x)

        lokr_w1 = None
        if lokr_w1_name in lora.keys():
            lokr_w1 = lora[lokr_w1_name]
            loaded_keys.add(lokr_w1_name)

        lokr_w2 = None
        if lokr_w2_name in lora.keys():
            lokr_w2 = lora[lokr_w2_name]
            loaded_keys.add(lokr_w2_name)

        lokr_w1_a = None
        if lokr_w1_a_name in lora.keys():
            lokr_w1_a = lora[lokr_w1_a_name]
            loaded_keys.add(lokr_w1_a_name)

        lokr_w1_b = None
        if lokr_w1_b_name in lora.keys():
            lokr_w1_b = lora[lokr_w1_b_name]
            loaded_keys.add(lokr_w1_b_name)

        lokr_w2_a = None
        if lokr_w2_a_name in lora.keys():
            lokr_w2_a = lora[lokr_w2_a_name]
            loaded_keys.add(lokr_w2_a_name)

        lokr_w2_b = None
        if lokr_w2_b_name in lora.keys():
            lokr_w2_b = lora[lokr_w2_b_name]
            loaded_keys.add(lokr_w2_b_name)

        lokr_t2 = None
        if lokr_t2_name in lora.keys():
            lokr_t2 = lora[lokr_t2_name]
            loaded_keys.add(lokr_t2_name)

        if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
            patch_dict[to_load[x]] = (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2)

157
158
159
160
161
    for x in lora.keys():
        if x not in loaded_keys:
            print("lora key not loaded", x)
    return patch_dict

162
def model_lora_keys_clip(model, key_map={}):
163
164
    sdk = model.state_dict().keys()

comfyanonymous's avatar
comfyanonymous committed
165
    text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
166
167
    clip_l_present = False
    for b in range(32):
168
169
170
        for c in LORA_CLIP_MAP:
            k = "transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
171
                lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
172
                key_map[lora_key] = k
comfyanonymous's avatar
comfyanonymous committed
173

174
175
176
177
178
179
180
181
182
183
184
185
186
187
            k = "clip_l.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
                lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
                key_map[lora_key] = k
                clip_l_present = True

            k = "clip_g.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
                if clip_l_present:
                    lora_key = "lora_te2_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
                else:
                    lora_key = "lora_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #TODO: test if this is correct for SDXL-Refiner
                key_map[lora_key] = k

188
    return key_map
comfyanonymous's avatar
comfyanonymous committed
189

190
191
def model_lora_keys_unet(model, key_map={}):
    sdk = model.state_dict().keys()
comfyanonymous's avatar
comfyanonymous committed
192

193
194
195
196
197
    for k in sdk:
        if k.startswith("diffusion_model.") and k.endswith(".weight"):
            key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
            key_map["lora_unet_{}".format(key_lora)] = k

198
199
200
201
202
    diffusers_keys = utils.unet_to_diffusers(model.model_config.unet_config)
    for k in diffusers_keys:
        if k.endswith(".weight"):
            key_lora = k[:-len(".weight")].replace(".", "_")
            key_map["lora_unet_{}".format(key_lora)] = "diffusion_model.{}".format(diffusers_keys[k])
203
204
205
    return key_map

class ModelPatcher:
206
    def __init__(self, model, load_device, offload_device, size=0):
207
        self.size = size
208
        self.model = model
209
        self.patches = {}
210
        self.backup = {}
211
        self.model_options = {"transformer_options":{}}
212
        self.model_size()
213
214
        self.load_device = load_device
        self.offload_device = offload_device
215
216
217
218
219
220
221
222
223
224

    def model_size(self):
        if self.size > 0:
            return self.size
        model_sd = self.model.state_dict()
        size = 0
        for k in model_sd:
            t = model_sd[k]
            size += t.nelement() * t.element_size()
        self.size = size
225
        self.model_keys = set(model_sd.keys())
226
        return size
227
228

    def clone(self):
229
        n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size)
230
231
232
233
        n.patches = {}
        for k in self.patches:
            n.patches[k] = self.patches[k][:]

234
        n.model_options = copy.deepcopy(self.model_options)
235
        n.model_keys = self.model_keys
236
237
        return n

238
    def set_model_sampler_cfg_function(self, sampler_cfg_function):
239
240
241
242
        if len(inspect.signature(sampler_cfg_function).parameters) == 3:
            self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way
        else:
            self.model_options["sampler_cfg_function"] = sampler_cfg_function
243

244
245
246
    def set_model_unet_function_wrapper(self, unet_wrapper_function):
        self.model_options["model_function_wrapper"] = unet_wrapper_function

247
248
249
250
251
252
    def set_model_patch(self, patch, name):
        to = self.model_options["transformer_options"]
        if "patches" not in to:
            to["patches"] = {}
        to["patches"][name] = to["patches"].get(name, []) + [patch]

253
254
255
256
257
258
259
260
    def set_model_patch_replace(self, patch, name, block_name, number):
        to = self.model_options["transformer_options"]
        if "patches_replace" not in to:
            to["patches_replace"] = {}
        if name not in to["patches_replace"]:
            to["patches_replace"][name] = {}
        to["patches_replace"][name][(block_name, number)] = patch

261
262
263
264
265
266
    def set_model_attn1_patch(self, patch):
        self.set_model_patch(patch, "attn1_patch")

    def set_model_attn2_patch(self, patch):
        self.set_model_patch(patch, "attn2_patch")

267
268
269
270
271
272
273
274
275
    def set_model_attn1_replace(self, patch, block_name, number):
        self.set_model_patch_replace(patch, "attn1", block_name, number)

    def set_model_attn2_replace(self, patch, block_name, number):
        self.set_model_patch_replace(patch, "attn2", block_name, number)

    def set_model_attn1_output_patch(self, patch):
        self.set_model_patch(patch, "attn1_output_patch")

276
277
278
    def set_model_attn2_output_patch(self, patch):
        self.set_model_patch(patch, "attn2_output_patch")

279
280
281
282
283
284
285
286
287
    def model_patches_to(self, device):
        to = self.model_options["transformer_options"]
        if "patches" in to:
            patches = to["patches"]
            for name in patches:
                patch_list = patches[name]
                for i in range(len(patch_list)):
                    if hasattr(patch_list[i], "to"):
                        patch_list[i] = patch_list[i].to(device)
288
289
290
291
292
293
294
        if "patches_replace" in to:
            patches = to["patches_replace"]
            for name in patches:
                patch_list = patches[name]
                for k in patch_list:
                    if hasattr(patch_list[k], "to"):
                        patch_list[k] = patch_list[k].to(device)
295

296
    def model_dtype(self):
297
298
        if hasattr(self.model, "get_dtype"):
            return self.model.get_dtype()
299

300
    def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
301
        p = set()
302
        for k in patches:
303
            if k in self.model_keys:
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
                p.add(k)
                current_patches = self.patches.get(k, [])
                current_patches.append((strength_patch, patches[k], strength_model))
                self.patches[k] = current_patches

        return list(p)

    def get_key_patches(self, filter_prefix=None):
        model_sd = self.model_state_dict()
        p = {}
        for k in model_sd:
            if filter_prefix is not None:
                if not k.startswith(filter_prefix):
                    continue
            if k in self.patches:
                p[k] = [model_sd[k]] + self.patches[k]
            else:
                p[k] = (model_sd[k],)
        return p
323

324
    def model_state_dict(self, filter_prefix=None):
325
326
        sd = self.model.state_dict()
        keys = list(sd.keys())
327
328
329
330
        if filter_prefix is not None:
            for k in keys:
                if not k.startswith(filter_prefix):
                    sd.pop(k)
331
332
        return sd

333
    def patch_model(self):
334
        model_sd = self.model_state_dict()
335
336
337
338
        for key in self.patches:
            if key not in model_sd:
                print("could not patch. key doesn't exist in model:", k)
                continue
339

340
            weight = model_sd[key]
341

342
            if key not in self.backup:
comfyanonymous's avatar
comfyanonymous committed
343
                self.backup[key] = weight.to(self.offload_device, copy=True)
344

345
346
347
            temp_weight = weight.to(torch.float32, copy=True)
            weight[:] = self.calculate_weight(self.patches[key], temp_weight, key).to(weight.dtype)
            del temp_weight
348
        return self.model
comfyanonymous's avatar
comfyanonymous committed
349

350
351
352
353
354
355
356
357
358
359
360
361
362
363
    def calculate_weight(self, patches, weight, key):
        for p in patches:
            alpha = p[0]
            v = p[1]
            strength_model = p[2]

            if strength_model != 1.0:
                weight *= strength_model

            if isinstance(v, list):
                v = (self.calculate_weight(v[1:], v[0].clone(), key), )

            if len(v) == 1:
                w1 = v[0]
364
365
366
367
368
                if alpha != 0.0:
                    if w1.shape != weight.shape:
                        print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
                    else:
                        weight += alpha * w1.type(weight.dtype).to(weight.device)
369
            elif len(v) == 4: #lora/locon
comfyanonymous's avatar
comfyanonymous committed
370
371
                mat1 = v[0].float().to(weight.device)
                mat2 = v[1].float().to(weight.device)
372
373
374
375
                if v[2] is not None:
                    alpha *= v[2] / mat2.shape[0]
                if v[3] is not None:
                    #locon mid weights, hopefully the math is fine because I didn't properly test it
comfyanonymous's avatar
comfyanonymous committed
376
377
378
                    mat3 = v[3].float().to(weight.device)
                    final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
                    mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
379
380
381
382
                try:
                    weight += (alpha * torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1))).reshape(weight.shape).type(weight.dtype)
                except Exception as e:
                    print("ERROR", key, e)
383
384
385
386
387
388
389
390
391
392
393
394
395
            elif len(v) == 8: #lokr
                w1 = v[0]
                w2 = v[1]
                w1_a = v[3]
                w1_b = v[4]
                w2_a = v[5]
                w2_b = v[6]
                t2 = v[7]
                dim = None

                if w1 is None:
                    dim = w1_b.shape[0]
                    w1 = torch.mm(w1_a.float(), w1_b.float())
comfyanonymous's avatar
comfyanonymous committed
396
397
                else:
                    w1 = w1.float().to(weight.device)
398
399
400
401

                if w2 is None:
                    dim = w2_b.shape[0]
                    if t2 is None:
comfyanonymous's avatar
comfyanonymous committed
402
                        w2 = torch.mm(w2_a.float().to(weight.device), w2_b.float().to(weight.device))
403
                    else:
comfyanonymous's avatar
comfyanonymous committed
404
405
406
                        w2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float().to(weight.device), w2_b.float().to(weight.device), w2_a.float().to(weight.device))
                else:
                    w2 = w2.float().to(weight.device)
407
408
409
410
411
412

                if len(w2.shape) == 4:
                    w1 = w1.unsqueeze(2).unsqueeze(2)
                if v[2] is not None and dim is not None:
                    alpha *= v[2] / dim

413
414
415
416
                try:
                    weight += alpha * torch.kron(w1, w2).reshape(weight.shape).type(weight.dtype)
                except Exception as e:
                    print("ERROR", key, e)
417
418
419
420
421
422
423
424
425
426
            else: #loha
                w1a = v[0]
                w1b = v[1]
                if v[2] is not None:
                    alpha *= v[2] / w1b.shape[0]
                w2a = v[3]
                w2b = v[4]
                if v[5] is not None: #cp decomposition
                    t1 = v[5]
                    t2 = v[6]
comfyanonymous's avatar
comfyanonymous committed
427
428
                    m1 = torch.einsum('i j k l, j r, i p -> p r k l', t1.float().to(weight.device), w1b.float().to(weight.device), w1a.float().to(weight.device))
                    m2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float().to(weight.device), w2b.float().to(weight.device), w2a.float().to(weight.device))
429
                else:
comfyanonymous's avatar
comfyanonymous committed
430
431
                    m1 = torch.mm(w1a.float().to(weight.device), w1b.float().to(weight.device))
                    m2 = torch.mm(w2a.float().to(weight.device), w2b.float().to(weight.device))
432

433
434
435
436
437
                try:
                    weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype)
                except Exception as e:
                    print("ERROR", key, e)

438
        return weight
439

440
    def unpatch_model(self):
441
        keys = list(self.backup.keys())
442
443
444
445
446
447
448
449
        def set_attr(obj, attr, value):
            attrs = attr.split(".")
            for name in attrs[:-1]:
                obj = getattr(obj, name)
            prev = getattr(obj, attrs[-1])
            setattr(obj, attrs[-1], torch.nn.Parameter(value))
            del prev

450
        for k in keys:
451
            set_attr(self.model, k, self.backup[k])
452

453
454
        self.backup = {}

455
def load_lora_for_models(model, clip, lora, strength_model, strength_clip):
456
457
    key_map = model_lora_keys_unet(model.model)
    key_map = model_lora_keys_clip(clip.cond_stage_model, key_map)
458
    loaded = load_lora(lora, key_map)
459
460
461
462
463
464
465
466
467
468
469
    new_modelpatcher = model.clone()
    k = new_modelpatcher.add_patches(loaded, strength_model)
    new_clip = clip.clone()
    k1 = new_clip.add_patches(loaded, strength_clip)
    k = set(k)
    k1 = set(k1)
    for x in loaded:
        if (x not in k) and (x not in k1):
            print("NOT LOADED", x)

    return (new_modelpatcher, new_clip)
comfyanonymous's avatar
comfyanonymous committed
470
471
472


class CLIP:
473
    def __init__(self, target=None, embedding_directory=None, no_init=False):
474
475
        if no_init:
            return
comfyanonymous's avatar
comfyanonymous committed
476
        params = target.params.copy()
477
478
        clip = target.clip
        tokenizer = target.tokenizer
479

480
481
        load_device = model_management.text_encoder_device()
        offload_device = model_management.text_encoder_offload_device()
comfyanonymous's avatar
comfyanonymous committed
482
        params['device'] = load_device
483
        self.cond_stage_model = clip(**(params))
484
485
486
        #TODO: make sure this doesn't have a quality loss before enabling.
        # if model_management.should_use_fp16(load_device):
        #     self.cond_stage_model.half()
487
488

        self.cond_stage_model = self.cond_stage_model.to()
489

490
        self.tokenizer = tokenizer(embedding_directory=embedding_directory)
491
        self.patcher = ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device)
492
        self.layer_idx = None
493
494
495
496
497
498

    def clone(self):
        n = CLIP(no_init=True)
        n.patcher = self.patcher.clone()
        n.cond_stage_model = self.cond_stage_model
        n.tokenizer = self.tokenizer
comfyanonymous's avatar
comfyanonymous committed
499
        n.layer_idx = self.layer_idx
500
501
        return n

502
    def load_from_state_dict(self, sd):
503
        self.cond_stage_model.load_sd(sd)
504

505
506
    def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
        return self.patcher.add_patches(patches, strength_patch, strength_model)
comfyanonymous's avatar
comfyanonymous committed
507

508
    def clip_layer(self, layer_idx):
comfyanonymous's avatar
comfyanonymous committed
509
        self.layer_idx = layer_idx
510

511
512
    def tokenize(self, text, return_word_ids=False):
        return self.tokenizer.tokenize_with_weights(text, return_word_ids)
BlenderNeko's avatar
BlenderNeko committed
513

514
    def encode_from_tokens(self, tokens, return_pooled=False):
515
516
        if self.layer_idx is not None:
            self.cond_stage_model.clip_layer(self.layer_idx)
517
518
        else:
            self.cond_stage_model.reset_clip_layer()
519
520
521

        model_management.load_model_gpu(self.patcher)
        cond, pooled = self.cond_stage_model.encode_token_weights(tokens)
522
        if return_pooled:
523
524
            return cond, pooled
        return cond
comfyanonymous's avatar
comfyanonymous committed
525

526
    def encode(self, text):
527
        tokens = self.tokenize(text)
528
529
        return self.encode_from_tokens(tokens)

530
531
    def load_sd(self, sd):
        return self.cond_stage_model.load_sd(sd)
532

533
534
535
536
537
538
539
540
541
    def get_sd(self):
        return self.cond_stage_model.state_dict()

    def patch_model(self):
        self.patcher.patch_model()

    def unpatch_model(self):
        self.patcher.unpatch_model()

542
543
544
    def get_key_patches(self):
        return self.patcher.get_key_patches()

comfyanonymous's avatar
comfyanonymous committed
545
class VAE:
546
    def __init__(self, ckpt_path=None, device=None, config=None):
comfyanonymous's avatar
comfyanonymous committed
547
548
549
        if config is None:
            #default SD1.x/SD2.x VAE parameters
            ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
550
            self.first_stage_model = AutoencoderKL(ddconfig, {'target': 'torch.nn.Identity'}, 4, monitor="val/rec_loss")
comfyanonymous's avatar
comfyanonymous committed
551
        else:
552
            self.first_stage_model = AutoencoderKL(**(config['params']))
comfyanonymous's avatar
comfyanonymous committed
553
        self.first_stage_model = self.first_stage_model.eval()
554
555
556
557
558
559
        if ckpt_path is not None:
            sd = utils.load_torch_file(ckpt_path)
            if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format
                sd = diffusers_convert.convert_vae_state_dict(sd)
            self.first_stage_model.load_state_dict(sd, strict=False)

560
        if device is None:
561
            device = model_management.vae_device()
comfyanonymous's avatar
comfyanonymous committed
562
        self.device = device
563
        self.offload_device = model_management.vae_offload_device()
564
565
        self.vae_dtype = model_management.vae_dtype()
        self.first_stage_model.to(self.vae_dtype)
comfyanonymous's avatar
comfyanonymous committed
566

567
    def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
pythongosssss's avatar
pythongosssss committed
568
        steps = samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
comfyanonymous's avatar
comfyanonymous committed
569
570
        steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
        steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
pythongosssss's avatar
pythongosssss committed
571
        pbar = utils.ProgressBar(steps)
572

573
        decode_fn = lambda a: (self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)) + 1.0).float()
574
        output = torch.clamp((
575
576
577
            (utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8, pbar = pbar) +
            utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8, pbar = pbar) +
             utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8, pbar = pbar))
578
579
580
            / 3.0) / 2.0, min=0.0, max=1.0)
        return output

581
582
583
584
585
586
    def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
        steps = pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
        steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
        steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
        pbar = utils.ProgressBar(steps)

587
        encode_fn = lambda a: self.first_stage_model.encode(2. * a.to(self.vae_dtype).to(self.device) - 1.).sample().float()
588
589
590
591
592
593
        samples = utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
        samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
        samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
        samples /= 3.0
        return samples

594
    def decode(self, samples_in):
595
        model_management.unload_model()
comfyanonymous's avatar
comfyanonymous committed
596
        self.first_stage_model = self.first_stage_model.to(self.device)
597
        try:
598
599
600
601
602
603
            free_memory = model_management.get_free_memory(self.device)
            batch_number = int((free_memory * 0.7) / (2562 * samples_in.shape[2] * samples_in.shape[3] * 64))
            batch_number = max(1, batch_number)

            pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * 8), round(samples_in.shape[3] * 8)), device="cpu")
            for x in range(0, samples_in.shape[0], batch_number):
604
605
                samples = samples_in[x:x+batch_number].to(self.vae_dtype).to(self.device)
                pixel_samples[x:x+batch_number] = torch.clamp((self.first_stage_model.decode(samples) + 1.0) / 2.0, min=0.0, max=1.0).cpu().float()
606
607
608
609
        except model_management.OOM_EXCEPTION as e:
            print("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
            pixel_samples = self.decode_tiled_(samples_in)

610
        self.first_stage_model = self.first_stage_model.to(self.offload_device)
comfyanonymous's avatar
comfyanonymous committed
611
612
613
        pixel_samples = pixel_samples.cpu().movedim(1,-1)
        return pixel_samples

614
    def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16):
615
616
        model_management.unload_model()
        self.first_stage_model = self.first_stage_model.to(self.device)
617
        output = self.decode_tiled_(samples, tile_x, tile_y, overlap)
618
        self.first_stage_model = self.first_stage_model.to(self.offload_device)
619
620
        return output.movedim(1,-1)

comfyanonymous's avatar
comfyanonymous committed
621
    def encode(self, pixel_samples):
622
        model_management.unload_model()
comfyanonymous's avatar
comfyanonymous committed
623
        self.first_stage_model = self.first_stage_model.to(self.device)
624
625
        pixel_samples = pixel_samples.movedim(-1,1)
        try:
626
627
628
            free_memory = model_management.get_free_memory(self.device)
            batch_number = int((free_memory * 0.7) / (2078 * pixel_samples.shape[2] * pixel_samples.shape[3])) #NOTE: this constant along with the one in the decode above are estimated from the mem usage for the VAE and could change.
            batch_number = max(1, batch_number)
629
630
            samples = torch.empty((pixel_samples.shape[0], 4, round(pixel_samples.shape[2] // 8), round(pixel_samples.shape[3] // 8)), device="cpu")
            for x in range(0, pixel_samples.shape[0], batch_number):
631
632
                pixels_in = (2. * pixel_samples[x:x+batch_number] - 1.).to(self.vae_dtype).to(self.device)
                samples[x:x+batch_number] = self.first_stage_model.encode(pixels_in).sample().cpu().float()
633

634
635
636
637
        except model_management.OOM_EXCEPTION as e:
            print("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.")
            samples = self.encode_tiled_(pixel_samples)

638
        self.first_stage_model = self.first_stage_model.to(self.offload_device)
comfyanonymous's avatar
comfyanonymous committed
639
640
        return samples

comfyanonymous's avatar
comfyanonymous committed
641
642
643
    def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
        model_management.unload_model()
        self.first_stage_model = self.first_stage_model.to(self.device)
644
645
        pixel_samples = pixel_samples.movedim(-1,1)
        samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap)
646
        self.first_stage_model = self.first_stage_model.to(self.offload_device)
comfyanonymous's avatar
comfyanonymous committed
647
        return samples
648

649
650
651
652
    def get_sd(self):
        return self.first_stage_model.state_dict()


BlenderNeko's avatar
BlenderNeko committed
653
def broadcast_image_to(tensor, target_batch_size, batched_number):
654
    current_batch_size = tensor.shape[0]
655
    #print(current_batch_size, target_batch_size)
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
    if current_batch_size == 1:
        return tensor

    per_batch = target_batch_size // batched_number
    tensor = tensor[:per_batch]

    if per_batch > tensor.shape[0]:
        tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)

    current_batch_size = tensor.shape[0]
    if current_batch_size == target_batch_size:
        return tensor
    else:
        return torch.cat([tensor] * batched_number, dim=0)

comfyanonymous's avatar
comfyanonymous committed
671
class ControlNet:
672
    def __init__(self, control_model, global_average_pooling=False, device=None):
comfyanonymous's avatar
comfyanonymous committed
673
674
675
        self.control_model = control_model
        self.cond_hint_original = None
        self.cond_hint = None
676
        self.strength = 1.0
677
678
        if device is None:
            device = model_management.get_torch_device()
679
        self.device = device
comfyanonymous's avatar
comfyanonymous committed
680
        self.previous_controlnet = None
681
        self.global_average_pooling = global_average_pooling
comfyanonymous's avatar
comfyanonymous committed
682

683
    def get_control(self, x_noisy, t, cond, batched_number):
comfyanonymous's avatar
comfyanonymous committed
684
685
        control_prev = None
        if self.previous_controlnet is not None:
686
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
comfyanonymous's avatar
comfyanonymous committed
687

688
        output_dtype = x_noisy.dtype
comfyanonymous's avatar
comfyanonymous committed
689
690
691
692
        if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
            self.cond_hint = None
BlenderNeko's avatar
BlenderNeko committed
693
694
695
            self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(self.control_model.dtype).to(self.device)
        if x_noisy.shape[0] != self.cond_hint.shape[0]:
            self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
696
697
698
699
700
701

        if self.control_model.dtype == torch.float16:
            precision_scope = torch.autocast
        else:
            precision_scope = contextlib.nullcontext

702
        with precision_scope(model_management.get_autocast_device(self.device)):
703
            self.control_model = model_management.load_if_low_vram(self.control_model)
704
705
706
            context = torch.cat(cond['c_crossattn'], 1)
            y = cond.get('c_adm', None)
            control = self.control_model(x=x_noisy, hint=self.cond_hint, timesteps=t, context=context, y=y)
707
            self.control_model = model_management.unload_if_low_vram(self.control_model)
708
        out = {'middle':[], 'output': []}
709
        autocast_enabled = torch.is_autocast_enabled()
comfyanonymous's avatar
comfyanonymous committed
710
711

        for i in range(len(control)):
comfyanonymous's avatar
comfyanonymous committed
712
713
714
715
716
717
            if i == (len(control) - 1):
                key = 'middle'
                index = 0
            else:
                key = 'output'
                index = i
comfyanonymous's avatar
comfyanonymous committed
718
            x = control[i]
719
720
721
            if self.global_average_pooling:
                x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])

722
            x *= self.strength
723
724
            if x.dtype != output_dtype and not autocast_enabled:
                x = x.to(output_dtype)
comfyanonymous's avatar
comfyanonymous committed
725

comfyanonymous's avatar
comfyanonymous committed
726
727
728
729
730
731
732
            if control_prev is not None and key in control_prev:
                prev = control_prev[key][index]
                if prev is not None:
                    x += prev
            out[key].append(x)
        if control_prev is not None and 'input' in control_prev:
            out['input'] = control_prev['input']
733
        return out
comfyanonymous's avatar
comfyanonymous committed
734

735
    def set_cond_hint(self, cond_hint, strength=1.0):
comfyanonymous's avatar
comfyanonymous committed
736
        self.cond_hint_original = cond_hint
737
        self.strength = strength
comfyanonymous's avatar
comfyanonymous committed
738
739
        return self

comfyanonymous's avatar
comfyanonymous committed
740
741
742
743
    def set_previous_controlnet(self, controlnet):
        self.previous_controlnet = controlnet
        return self

comfyanonymous's avatar
comfyanonymous committed
744
    def cleanup(self):
comfyanonymous's avatar
comfyanonymous committed
745
746
        if self.previous_controlnet is not None:
            self.previous_controlnet.cleanup()
comfyanonymous's avatar
comfyanonymous committed
747
748
749
750
751
        if self.cond_hint is not None:
            del self.cond_hint
            self.cond_hint = None

    def copy(self):
752
        c = ControlNet(self.control_model, global_average_pooling=self.global_average_pooling)
comfyanonymous's avatar
comfyanonymous committed
753
        c.cond_hint_original = self.cond_hint_original
754
        c.strength = self.strength
comfyanonymous's avatar
comfyanonymous committed
755
756
        return c

757
    def get_models(self):
comfyanonymous's avatar
comfyanonymous committed
758
759
        out = []
        if self.previous_controlnet is not None:
760
            out += self.previous_controlnet.get_models()
comfyanonymous's avatar
comfyanonymous committed
761
762
763
        out.append(self.control_model)
        return out

764
def load_controlnet(ckpt_path, model=None):
765
    controlnet_data = utils.load_torch_file(ckpt_path, safe_load=True)
766
    pth_key = 'control_model.zero_convs.0.0.weight'
comfyanonymous's avatar
comfyanonymous committed
767
    pth = False
768
    key = 'zero_convs.0.0.weight'
comfyanonymous's avatar
comfyanonymous committed
769
770
771
    if pth_key in controlnet_data:
        pth = True
        key = pth_key
772
        prefix = "control_model."
comfyanonymous's avatar
comfyanonymous committed
773
    elif key in controlnet_data:
774
        prefix = ""
comfyanonymous's avatar
comfyanonymous committed
775
    else:
776
777
778
779
        net = load_t2i_adapter(controlnet_data)
        if net is None:
            print("error checkpoint does not contain controlnet or t2i adapter data", ckpt_path)
        return net
comfyanonymous's avatar
comfyanonymous committed
780

781
782
783
784
785
786
787
    use_fp16 = model_management.should_use_fp16()

    controlnet_config = model_detection.model_config_from_unet(controlnet_data, prefix, use_fp16).unet_config
    controlnet_config.pop("out_channels")
    controlnet_config["hint_channels"] = 3
    control_model = cldm.ControlNet(**controlnet_config)

comfyanonymous's avatar
comfyanonymous committed
788
    if pth:
789
790
791
792
793
794
795
        if 'difference' in controlnet_data:
            if model is not None:
                m = model.patch_model()
                model_sd = m.state_dict()
                for x in controlnet_data:
                    c_m = "control_model."
                    if x.startswith(c_m):
comfyanonymous's avatar
comfyanonymous committed
796
                        sd_key = "diffusion_model.{}".format(x[len(c_m):])
797
798
799
800
801
802
803
                        if sd_key in model_sd:
                            cd = controlnet_data[x]
                            cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
                model.unpatch_model()
            else:
                print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")

comfyanonymous's avatar
comfyanonymous committed
804
805
806
807
        class WeightsLoader(torch.nn.Module):
            pass
        w = WeightsLoader()
        w.control_model = control_model
808
        missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
comfyanonymous's avatar
comfyanonymous committed
809
    else:
810
811
        missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
    print(missing, unexpected)
comfyanonymous's avatar
comfyanonymous committed
812

813
814
815
    if use_fp16:
        control_model = control_model.half()

816
817
818
819
820
    global_average_pooling = False
    if ckpt_path.endswith("_shuffle.pth") or ckpt_path.endswith("_shuffle.safetensors") or ckpt_path.endswith("_shuffle_fp16.safetensors"): #TODO: smarter way of enabling global_average_pooling
        global_average_pooling = True

    control = ControlNet(control_model, global_average_pooling=global_average_pooling)
comfyanonymous's avatar
comfyanonymous committed
821
822
    return control

823
class T2IAdapter:
824
    def __init__(self, t2i_model, channels_in, device=None):
825
826
827
        self.t2i_model = t2i_model
        self.channels_in = channels_in
        self.strength = 1.0
828
829
        if device is None:
            device = model_management.get_torch_device()
830
831
832
833
834
835
        self.device = device
        self.previous_controlnet = None
        self.control_input = None
        self.cond_hint_original = None
        self.cond_hint = None

836
    def get_control(self, x_noisy, t, cond, batched_number):
837
838
        control_prev = None
        if self.previous_controlnet is not None:
839
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
840
841
842
843

        if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
BlenderNeko's avatar
BlenderNeko committed
844
            self.control_input = None
845
            self.cond_hint = None
BlenderNeko's avatar
BlenderNeko committed
846
            self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").float().to(self.device)
847
848
            if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
                self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
BlenderNeko's avatar
BlenderNeko committed
849
850
851
        if x_noisy.shape[0] != self.cond_hint.shape[0]:
            self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
        if self.control_input is None:
852
853
854
855
856
857
858
            self.t2i_model.to(self.device)
            self.control_input = self.t2i_model(self.cond_hint)
            self.t2i_model.cpu()

        output_dtype = x_noisy.dtype
        out = {'input':[]}

comfyanonymous's avatar
comfyanonymous committed
859
        autocast_enabled = torch.is_autocast_enabled()
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
        for i in range(len(self.control_input)):
            key = 'input'
            x = self.control_input[i] * self.strength
            if x.dtype != output_dtype and not autocast_enabled:
                x = x.to(output_dtype)

            if control_prev is not None and key in control_prev:
                index = len(control_prev[key]) - i * 3 - 3
                prev = control_prev[key][index]
                if prev is not None:
                    x += prev
            out[key].insert(0, None)
            out[key].insert(0, None)
            out[key].insert(0, x)

        if control_prev is not None and 'input' in control_prev:
            for i in range(len(out['input'])):
                if out['input'][i] is None:
                    out['input'][i] = control_prev['input'][i]
        if control_prev is not None and 'middle' in control_prev:
            out['middle'] = control_prev['middle']
        if control_prev is not None and 'output' in control_prev:
            out['output'] = control_prev['output']
        return out

    def set_cond_hint(self, cond_hint, strength=1.0):
        self.cond_hint_original = cond_hint
        self.strength = strength
        return self

    def set_previous_controlnet(self, controlnet):
        self.previous_controlnet = controlnet
        return self

    def copy(self):
        c = T2IAdapter(self.t2i_model, self.channels_in)
        c.cond_hint_original = self.cond_hint_original
        c.strength = self.strength
        return c

    def cleanup(self):
        if self.previous_controlnet is not None:
            self.previous_controlnet.cleanup()
        if self.cond_hint is not None:
            del self.cond_hint
            self.cond_hint = None

907
    def get_models(self):
908
909
        out = []
        if self.previous_controlnet is not None:
910
            out += self.previous_controlnet.get_models()
911
912
        return out

913
def load_t2i_adapter(t2i_data):
914
    keys = t2i_data.keys()
915
916
917
    if 'adapter' in keys:
        t2i_data = t2i_data['adapter']
        keys = t2i_data.keys()
918
    if "body.0.in_conv.weight" in keys:
919
920
        cin = t2i_data['body.0.in_conv.weight'].shape[1]
        model_ad = adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
921
    elif 'conv_in.weight' in keys:
922
        cin = t2i_data['conv_in.weight'].shape[1]
923
924
925
926
927
928
929
        channel = t2i_data['conv_in.weight'].shape[0]
        ksize = t2i_data['body.0.block2.weight'].shape[2]
        use_conv = False
        down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys))
        if len(down_opts) > 0:
            use_conv = True
        model_ad = adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv)
930
931
    else:
        return None
932
933
    model_ad.load_state_dict(t2i_data)
    return T2IAdapter(model_ad, cin // 64)
comfyanonymous's avatar
comfyanonymous committed
934

935
936
937
938
939
940
941
942
943
944

class StyleModel:
    def __init__(self, model, device="cpu"):
        self.model = model

    def get_cond(self, input):
        return self.model(input.last_hidden_state)


def load_style_model(ckpt_path):
945
    model_data = utils.load_torch_file(ckpt_path, safe_load=True)
946
947
948
949
950
951
952
953
954
    keys = model_data.keys()
    if "style_embedding" in keys:
        model = adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
    else:
        raise Exception("invalid style model {}".format(ckpt_path))
    model.load_state_dict(model_data)
    return StyleModel(model)


955
956
957
958
959
def load_clip(ckpt_paths, embedding_directory=None):
    clip_data = []
    for p in ckpt_paths:
        clip_data.append(utils.load_torch_file(p, safe_load=True))

comfyanonymous's avatar
comfyanonymous committed
960
961
962
    class EmptyClass:
        pass

963
964
965
966
    for i in range(len(clip_data)):
        if "transformer.resblocks.0.ln_1.weight" in clip_data[i]:
            clip_data[i] = utils.transformers_convert(clip_data[i], "", "text_model.", 32)

comfyanonymous's avatar
comfyanonymous committed
967
968
    clip_target = EmptyClass()
    clip_target.params = {}
969
970
971
972
973
974
975
976
977
978
    if len(clip_data) == 1:
        if "text_model.encoder.layers.30.mlp.fc1.weight" in clip_data[0]:
            clip_target.clip = sdxl_clip.SDXLRefinerClipModel
            clip_target.tokenizer = sdxl_clip.SDXLTokenizer
        elif "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data[0]:
            clip_target.clip = sd2_clip.SD2ClipModel
            clip_target.tokenizer = sd2_clip.SD2Tokenizer
        else:
            clip_target.clip = sd1_clip.SD1ClipModel
            clip_target.tokenizer = sd1_clip.SD1Tokenizer
979
    else:
980
981
        clip_target.clip = sdxl_clip.SDXLClipModel
        clip_target.tokenizer = sdxl_clip.SDXLTokenizer
comfyanonymous's avatar
comfyanonymous committed
982
983

    clip = CLIP(clip_target, embedding_directory=embedding_directory)
984
985
986
987
988
989
990
    for c in clip_data:
        m, u = clip.load_sd(c)
        if len(m) > 0:
            print("clip missing:", m)

        if len(u) > 0:
            print("clip unexpected:", u)
991
    return clip
comfyanonymous's avatar
comfyanonymous committed
992

993
def load_gligen(ckpt_path):
994
    data = utils.load_torch_file(ckpt_path, safe_load=True)
995
996
997
998
999
    model = gligen.load_gligen(data)
    if model_management.should_use_fp16():
        model = model.half()
    return model

comfyanonymous's avatar
comfyanonymous committed
1000
def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None):
1001
    #TODO: this function is a mess and should be removed eventually
comfyanonymous's avatar
comfyanonymous committed
1002
1003
1004
    if config is None:
        with open(config_path, 'r') as stream:
            config = yaml.safe_load(stream)
comfyanonymous's avatar
comfyanonymous committed
1005
1006
1007
1008
1009
    model_config_params = config['model']['params']
    clip_config = model_config_params['cond_stage_config']
    scale_factor = model_config_params['scale_factor']
    vae_config = model_config_params['first_stage_config']

1010
1011
1012
    fp16 = False
    if "unet_config" in model_config_params:
        if "params" in model_config_params["unet_config"]:
comfyanonymous's avatar
comfyanonymous committed
1013
1014
1015
1016
1017
1018
1019
1020
            unet_config = model_config_params["unet_config"]["params"]
            if "use_fp16" in unet_config:
                fp16 = unet_config["use_fp16"]

    noise_aug_config = None
    if "noise_aug_config" in model_config_params:
        noise_aug_config = model_config_params["noise_aug_config"]

1021
    model_type = model_base.ModelType.EPS
comfyanonymous's avatar
comfyanonymous committed
1022
1023
1024

    if "parameterization" in model_config_params:
        if model_config_params["parameterization"] == "v":
1025
            model_type = model_base.ModelType.V_PREDICTION
1026

comfyanonymous's avatar
comfyanonymous committed
1027
1028
1029
1030
1031
1032
    clip = None
    vae = None

    class WeightsLoader(torch.nn.Module):
        pass

1033
1034
    if state_dict is None:
        state_dict = utils.load_torch_file(ckpt_path)
comfyanonymous's avatar
comfyanonymous committed
1035

1036
1037
1038
1039
1040
1041
1042
1043
    class EmptyClass:
        pass

    model_config = EmptyClass()
    model_config.unet_config = unet_config
    from . import latent_formats
    model_config.latent_format = latent_formats.SD15(scale_factor=scale_factor)

comfyanonymous's avatar
comfyanonymous committed
1044
    if config['model']["target"].endswith("LatentInpaintDiffusion"):
1045
        model = model_base.SDInpaint(model_config, model_type=model_type)
comfyanonymous's avatar
comfyanonymous committed
1046
    elif config['model']["target"].endswith("ImageEmbeddingConditionedLatentDiffusion"):
1047
        model = model_base.SD21UNCLIP(model_config, noise_aug_config["params"], model_type=model_type)
comfyanonymous's avatar
comfyanonymous committed
1048
    else:
1049
        model = model_base.BaseModel(model_config, model_type=model_type)
comfyanonymous's avatar
comfyanonymous committed
1050

1051
1052
1053
    if fp16:
        model = model.half()

1054
1055
    offload_device = model_management.unet_offload_device()
    model = model.to(offload_device)
1056
1057
1058
1059
    model.load_model_weights(state_dict, "model.diffusion_model.")

    if output_vae:
        w = WeightsLoader()
1060
        vae = VAE(config=vae_config)
1061
1062
1063
1064
1065
1066
        w.first_stage_model = vae.first_stage_model
        load_model_weights(w, state_dict)

    if output_clip:
        w = WeightsLoader()
        clip_target = EmptyClass()
1067
        clip_target.params = clip_config.get("params", {})
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
        if clip_config["target"].endswith("FrozenOpenCLIPEmbedder"):
            clip_target.clip = sd2_clip.SD2ClipModel
            clip_target.tokenizer = sd2_clip.SD2Tokenizer
        elif clip_config["target"].endswith("FrozenCLIPEmbedder"):
            clip_target.clip = sd1_clip.SD1ClipModel
            clip_target.tokenizer = sd1_clip.SD1Tokenizer
        clip = CLIP(clip_target, embedding_directory=embedding_directory)
        w.cond_stage_model = clip.cond_stage_model
        load_clip_weights(w, state_dict)

1078
    return (ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device), clip, vae)
1079

1080
1081
1082
1083
1084
1085
def calculate_parameters(sd, prefix):
    params = 0
    for k in sd.keys():
        if k.startswith(prefix):
            params += sd[k].nelement()
    return params
1086

1087
1088
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None):
    sd = utils.load_torch_file(ckpt_path)
1089
1090
    sd_keys = sd.keys()
    clip = None
1091
    clipvision = None
1092
    vae = None
1093
1094
    model = None
    clip_target = None
1095

1096
1097
    parameters = calculate_parameters(sd, "model.diffusion_model.")
    fp16 = model_management.should_use_fp16(model_params=parameters)
1098

1099
1100
1101
    class WeightsLoader(torch.nn.Module):
        pass

1102
1103
1104
    model_config = model_detection.model_config_from_unet(sd, "model.diffusion_model.", fp16)
    if model_config is None:
        raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path))
1105

1106
    if model_config.clip_vision_prefix is not None:
1107
        if output_clipvision:
1108
            clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True)
1109

1110
    offload_device = model_management.unet_offload_device()
1111
    model = model_config.get_model(sd, "model.diffusion_model.")
1112
    model = model.to(offload_device)
1113
    model.load_model_weights(sd, "model.diffusion_model.")
1114

1115
    if output_vae:
1116
        vae = VAE()
1117
1118
1119
        w = WeightsLoader()
        w.first_stage_model = vae.first_stage_model
        load_model_weights(w, sd)
1120

1121
1122
1123
1124
1125
1126
1127
    if output_clip:
        w = WeightsLoader()
        clip_target = model_config.clip_target()
        clip = CLIP(clip_target, embedding_directory=embedding_directory)
        w.cond_stage_model = clip.cond_stage_model
        sd = model_config.process_clip_state_dict(sd)
        load_model_weights(w, sd)
comfyanonymous's avatar
comfyanonymous committed
1128

1129
1130
1131
    left_over = sd.keys()
    if len(left_over) > 0:
        print("left over keys:", left_over)
1132

1133
    return (ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device), clip, vae, clipvision)
1134

1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201

def load_unet(unet_path): #load unet in diffusers format
    sd = utils.load_torch_file(unet_path)
    parameters = calculate_parameters(sd, "")
    fp16 = model_management.should_use_fp16(model_params=parameters)

    match = {}
    match["context_dim"] = sd["down_blocks.0.attentions.1.transformer_blocks.0.attn2.to_k.weight"].shape[1]
    match["model_channels"] = sd["conv_in.weight"].shape[0]
    match["in_channels"] = sd["conv_in.weight"].shape[1]
    match["adm_in_channels"] = None
    if "class_embedding.linear_1.weight" in sd:
        match["adm_in_channels"] = sd["class_embedding.linear_1.weight"].shape[1]

    SDXL = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
            'num_classes': 'sequential', 'adm_in_channels': 2816, 'use_fp16': fp16, 'in_channels': 4, 'model_channels': 320,
            'num_res_blocks': 2, 'attention_resolutions': [2, 4], 'transformer_depth': [0, 2, 10], 'channel_mult': [1, 2, 4],
            'transformer_depth_middle': 10, 'use_linear_in_transformer': True, 'context_dim': 2048}

    SDXL_refiner = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
                    'num_classes': 'sequential', 'adm_in_channels': 2560, 'use_fp16': fp16, 'in_channels': 4, 'model_channels': 384,
                    'num_res_blocks': 2, 'attention_resolutions': [2, 4], 'transformer_depth': [0, 4, 4, 0], 'channel_mult': [1, 2, 4, 4],
                    'transformer_depth_middle': 4, 'use_linear_in_transformer': True, 'context_dim': 1280}

    SD21 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
            'adm_in_channels': None, 'use_fp16': fp16, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': 2,
            'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4],
            'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024}

    SD21_uncliph = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
                    'num_classes': 'sequential', 'adm_in_channels': 2048, 'use_fp16': True, 'in_channels': 4, 'model_channels': 320,
                    'num_res_blocks': 2, 'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4],
                    'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024}

    SD21_unclipl = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
                    'num_classes': 'sequential', 'adm_in_channels': 1536, 'use_fp16': True, 'in_channels': 4, 'model_channels': 320,
                    'num_res_blocks': 2, 'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4],
                    'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024}

    SD15 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
            'adm_in_channels': None, 'use_fp16': True, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': 2,
            'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4],
            'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768}

    supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl]
    print("match", match)
    for unet_config in supported_models:
        matches = True
        for k in match:
            if match[k] != unet_config[k]:
                matches = False
                break
        if matches:
            diffusers_keys = utils.unet_to_diffusers(unet_config)
            new_sd = {}
            for k in diffusers_keys:
                if k in sd:
                    new_sd[diffusers_keys[k]] = sd.pop(k)
                else:
                    print(diffusers_keys[k], k)
            offload_device = model_management.unet_offload_device()
            model_config = model_detection.model_config_from_unet_config(unet_config)
            model = model_config.get_model(new_sd, "")
            model = model.to(offload_device)
            model.load_model_weights(new_sd, "")
            return ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device)

1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
def save_checkpoint(output_path, model, clip, vae, metadata=None):
    try:
        model.patch_model()
        clip.patch_model()
        sd = model.model.state_dict_for_saving(clip.get_sd(), vae.get_sd())
        utils.save_torch_file(sd, output_path, metadata=metadata)
        model.unpatch_model()
        clip.unpatch_model()
    except Exception as e:
        model.unpatch_model()
        clip.unpatch_model()
        raise e