sd.py 20.7 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
import torch
2
import contextlib
comfyanonymous's avatar
comfyanonymous committed
3
4
5

import sd1_clip
import sd2_clip
6
import model_management
comfyanonymous's avatar
comfyanonymous committed
7
8
9
from ldm.util import instantiate_from_config
from ldm.models.autoencoder import AutoencoderKL
from omegaconf import OmegaConf
comfyanonymous's avatar
comfyanonymous committed
10
11
12
from .cldm import cldm

from . import utils
comfyanonymous's avatar
comfyanonymous committed
13

14
def load_torch_file(ckpt):
comfyanonymous's avatar
comfyanonymous committed
15
16
17
18
19
20
21
    if ckpt.lower().endswith(".safetensors"):
        import safetensors.torch
        sd = safetensors.torch.load_file(ckpt, device="cpu")
    else:
        pl_sd = torch.load(ckpt, map_location="cpu")
        if "global_step" in pl_sd:
            print(f"Global Step: {pl_sd['global_step']}")
22
23
24
25
        if "state_dict" in pl_sd:
            sd = pl_sd["state_dict"]
        else:
            sd = pl_sd
26
27
28
29
30
31
    return sd

def load_model_from_config(config, ckpt, verbose=False, load_state_dict_to=[]):
    print(f"Loading model from {ckpt}")

    sd = load_torch_file(ckpt)
comfyanonymous's avatar
comfyanonymous committed
32
33
34
35
36
37
38
39
40
41
42
    model = instantiate_from_config(config.model)

    m, u = model.load_state_dict(sd, strict=False)

    k = list(sd.keys())
    for x in k:
        # print(x)
        if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
            y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
            sd[y] = sd.pop(x)

comfyanonymous's avatar
comfyanonymous committed
43
44
45
46
    if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in sd:
        ids = sd['cond_stage_model.transformer.text_model.embeddings.position_ids']
        if ids.dtype == torch.float32:
            sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
47

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
    keys_to_replace = {
        "cond_stage_model.model.positional_embedding": "cond_stage_model.transformer.text_model.embeddings.position_embedding.weight",
        "cond_stage_model.model.token_embedding.weight": "cond_stage_model.transformer.text_model.embeddings.token_embedding.weight",
        "cond_stage_model.model.ln_final.weight": "cond_stage_model.transformer.text_model.final_layer_norm.weight",
        "cond_stage_model.model.ln_final.bias": "cond_stage_model.transformer.text_model.final_layer_norm.bias",
    }

    for x in keys_to_replace:
        if x in sd:
            sd[keys_to_replace[x]] = sd.pop(x)

    resblock_to_replace = {
        "ln_1": "layer_norm1",
        "ln_2": "layer_norm2",
        "mlp.c_fc": "mlp.fc1",
        "mlp.c_proj": "mlp.fc2",
        "attn.out_proj": "self_attn.out_proj",
    }

    for resblock in range(24):
        for x in resblock_to_replace:
            for y in ["weight", "bias"]:
                k = "cond_stage_model.model.transformer.resblocks.{}.{}.{}".format(resblock, x, y)
                k_to = "cond_stage_model.transformer.text_model.encoder.layers.{}.{}.{}".format(resblock, resblock_to_replace[x], y)
                if k in sd:
                    sd[k_to] = sd.pop(k)

        for y in ["weight", "bias"]:
            k_from = "cond_stage_model.model.transformer.resblocks.{}.attn.in_proj_{}".format(resblock, y)
            if k_from in sd:
                weights = sd.pop(k_from)
                for x in range(3):
                    p = ["self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj"]
                    k_to = "cond_stage_model.transformer.text_model.encoder.layers.{}.{}.{}".format(resblock, p[x], y)
                    sd[k_to] = weights[1024*x:1024*(x + 1)]

comfyanonymous's avatar
comfyanonymous committed
84
85
86
87
88
89
90
91
92
93
94
95
96
    for x in load_state_dict_to:
        x.load_state_dict(sd, strict=False)

    if len(m) > 0 and verbose:
        print("missing keys:")
        print(m)
    if len(u) > 0 and verbose:
        print("unexpected keys:")
        print(u)

    model.eval()
    return model

97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
LORA_CLIP_MAP = {
    "mlp.fc1": "mlp_fc1",
    "mlp.fc2": "mlp_fc2",
    "self_attn.k_proj": "self_attn_k_proj",
    "self_attn.q_proj": "self_attn_q_proj",
    "self_attn.v_proj": "self_attn_v_proj",
    "self_attn.out_proj": "self_attn_out_proj",
}

LORA_UNET_MAP = {
    "proj_in": "proj_in",
    "proj_out": "proj_out",
    "transformer_blocks.0.attn1.to_q": "transformer_blocks_0_attn1_to_q",
    "transformer_blocks.0.attn1.to_k": "transformer_blocks_0_attn1_to_k",
    "transformer_blocks.0.attn1.to_v": "transformer_blocks_0_attn1_to_v",
    "transformer_blocks.0.attn1.to_out.0": "transformer_blocks_0_attn1_to_out_0",
    "transformer_blocks.0.attn2.to_q": "transformer_blocks_0_attn2_to_q",
    "transformer_blocks.0.attn2.to_k": "transformer_blocks_0_attn2_to_k",
    "transformer_blocks.0.attn2.to_v": "transformer_blocks_0_attn2_to_v",
    "transformer_blocks.0.attn2.to_out.0": "transformer_blocks_0_attn2_to_out_0",
    "transformer_blocks.0.ff.net.0.proj": "transformer_blocks_0_ff_net_0_proj",
    "transformer_blocks.0.ff.net.2": "transformer_blocks_0_ff_net_2",
}


def load_lora(path, to_load):
    lora = load_torch_file(path)
    patch_dict = {}
    loaded_keys = set()
    for x in to_load:
        A_name = "{}.lora_up.weight".format(x)
        B_name = "{}.lora_down.weight".format(x)
        alpha_name = "{}.alpha".format(x)
        if A_name in lora.keys():
            alpha = None
            if alpha_name in lora.keys():
                alpha = lora[alpha_name].item()
                loaded_keys.add(alpha_name)
            patch_dict[to_load[x]] = (lora[A_name], lora[B_name], alpha)
            loaded_keys.add(A_name)
            loaded_keys.add(B_name)
    for x in lora.keys():
        if x not in loaded_keys:
            print("lora key not loaded", x)
    return patch_dict

def model_lora_keys(model, key_map={}):
    sdk = model.state_dict().keys()

    counter = 0
    for b in range(12):
        tk = "model.diffusion_model.input_blocks.{}.1".format(b)
        up_counter = 0
        for c in LORA_UNET_MAP:
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
                lora_key = "lora_unet_down_blocks_{}_attentions_{}_{}".format(counter // 2, counter % 2, LORA_UNET_MAP[c])
154
                key_map[lora_key] = k
155
156
157
158
159
160
161
                up_counter += 1
        if up_counter >= 4:
            counter += 1
    for c in LORA_UNET_MAP:
        k = "model.diffusion_model.middle_block.1.{}.weight".format(c)
        if k in sdk:
            lora_key = "lora_unet_mid_block_attentions_0_{}".format(LORA_UNET_MAP[c])
162
            key_map[lora_key] = k
163
164
165
166
167
168
169
170
    counter = 3
    for b in range(12):
        tk = "model.diffusion_model.output_blocks.{}.1".format(b)
        up_counter = 0
        for c in LORA_UNET_MAP:
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
                lora_key = "lora_unet_up_blocks_{}_attentions_{}_{}".format(counter // 3, counter % 3, LORA_UNET_MAP[c])
171
                key_map[lora_key] = k
172
173
174
175
                up_counter += 1
        if up_counter >= 4:
            counter += 1
    counter = 0
comfyanonymous's avatar
comfyanonymous committed
176
    text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
177
    for b in range(24):
178
179
180
        for c in LORA_CLIP_MAP:
            k = "transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
181
                lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
182
                key_map[lora_key] = k
comfyanonymous's avatar
comfyanonymous committed
183

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    return key_map

class ModelPatcher:
    def __init__(self, model):
        self.model = model
        self.patches = []
        self.backup = {}

    def clone(self):
        n = ModelPatcher(self.model)
        n.patches = self.patches[:]
        return n

    def add_patches(self, patches, strength=1.0):
        p = {}
        model_sd = self.model.state_dict()
        for k in patches:
201
            if k in model_sd:
202
203
204
205
206
207
208
209
210
                p[k] = patches[k]
        self.patches += [(strength, p)]
        return p.keys()

    def patch_model(self):
        model_sd = self.model.state_dict()
        for p in self.patches:
            for k in p[1]:
                v = p[1][k]
211
                key = k
comfyanonymous's avatar
comfyanonymous committed
212
                if key not in model_sd:
213
214
215
                    print("could not patch. key doesn't exist in model:", k)
                    continue

comfyanonymous's avatar
comfyanonymous committed
216
217
218
                weight = model_sd[key]
                if key not in self.backup:
                    self.backup[key] = weight.clone()
219
220
221
222
223
224

                alpha = p[0]
                mat1 = v[0]
                mat2 = v[1]
                if v[2] is not None:
                    alpha *= v[2] / mat2.shape[0]
225
                weight += (alpha * torch.mm(mat1.flatten(start_dim=1).float(), mat2.flatten(start_dim=1).float())).reshape(weight.shape).type(weight.dtype).to(weight.device)
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
        return self.model
    def unpatch_model(self):
        model_sd = self.model.state_dict()
        for k in self.backup:
            model_sd[k][:] = self.backup[k]
        self.backup = {}

def load_lora_for_models(model, clip, lora_path, strength_model, strength_clip):
    key_map = model_lora_keys(model.model)
    key_map = model_lora_keys(clip.cond_stage_model, key_map)
    loaded = load_lora(lora_path, key_map)
    new_modelpatcher = model.clone()
    k = new_modelpatcher.add_patches(loaded, strength_model)
    new_clip = clip.clone()
    k1 = new_clip.add_patches(loaded, strength_clip)
    k = set(k)
    k1 = set(k1)
    for x in loaded:
        if (x not in k) and (x not in k1):
            print("NOT LOADED", x)

    return (new_modelpatcher, new_clip)
comfyanonymous's avatar
comfyanonymous committed
248
249
250


class CLIP:
251
252
253
    def __init__(self, config={}, embedding_directory=None, no_init=False):
        if no_init:
            return
comfyanonymous's avatar
comfyanonymous committed
254
        self.target_clip = config["target"]
255
256
257
258
259
        if "params" in config:
            params = config["params"]
        else:
            params = {}

comfyanonymous's avatar
comfyanonymous committed
260
261
262
263
264
265
        if self.target_clip == "ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder":
            clip = sd2_clip.SD2ClipModel
            tokenizer = sd2_clip.SD2Tokenizer
        elif self.target_clip == "ldm.modules.encoders.modules.FrozenCLIPEmbedder":
            clip = sd1_clip.SD1ClipModel
            tokenizer = sd1_clip.SD1Tokenizer
266
267

        self.cond_stage_model = clip(**(params))
268
        self.tokenizer = tokenizer(embedding_directory=embedding_directory)
269
270
271
272
273
274
275
276
277
278
        self.patcher = ModelPatcher(self.cond_stage_model)

    def clone(self):
        n = CLIP(no_init=True)
        n.target_clip = self.target_clip
        n.patcher = self.patcher.clone()
        n.cond_stage_model = self.cond_stage_model
        n.tokenizer = self.tokenizer
        return n

279
280
281
    def load_from_state_dict(self, sd):
        self.cond_stage_model.transformer.load_state_dict(sd, strict=False)

282
283
    def add_patches(self, patches, strength=1.0):
        return self.patcher.add_patches(patches, strength)
comfyanonymous's avatar
comfyanonymous committed
284

285
286
287
    def clip_layer(self, layer_idx):
        return self.cond_stage_model.clip_layer(layer_idx)

comfyanonymous's avatar
comfyanonymous committed
288
289
    def encode(self, text):
        tokens = self.tokenizer.tokenize_with_weights(text)
290
291
292
293
294
295
296
        try:
            self.patcher.patch_model()
            cond = self.cond_stage_model.encode_token_weights(tokens)
            self.patcher.unpatch_model()
        except Exception as e:
            self.patcher.unpatch_model()
            raise e
comfyanonymous's avatar
comfyanonymous committed
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
        return cond

class VAE:
    def __init__(self, ckpt_path=None, scale_factor=0.18215, device="cuda", config=None):
        if config is None:
            #default SD1.x/SD2.x VAE parameters
            ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
            self.first_stage_model = AutoencoderKL(ddconfig, {'target': 'torch.nn.Identity'}, 4, monitor="val/rec_loss", ckpt_path=ckpt_path)
        else:
            self.first_stage_model = AutoencoderKL(**(config['params']), ckpt_path=ckpt_path)
        self.first_stage_model = self.first_stage_model.eval()
        self.scale_factor = scale_factor
        self.device = device

    def decode(self, samples):
312
        model_management.unload_model()
comfyanonymous's avatar
comfyanonymous committed
313
314
315
316
317
318
319
320
        self.first_stage_model = self.first_stage_model.to(self.device)
        samples = samples.to(self.device)
        pixel_samples = self.first_stage_model.decode(1. / self.scale_factor * samples)
        pixel_samples = torch.clamp((pixel_samples + 1.0) / 2.0, min=0.0, max=1.0)
        self.first_stage_model = self.first_stage_model.cpu()
        pixel_samples = pixel_samples.cpu().movedim(1,-1)
        return pixel_samples

321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
    def decode_tiled(self, samples):
        tile_x = tile_y = 64
        overlap = 8
        model_management.unload_model()
        output = torch.empty((samples.shape[0], 3, samples.shape[2] * 8, samples.shape[3] * 8), device="cpu")
        self.first_stage_model = self.first_stage_model.to(self.device)
        for b in range(samples.shape[0]):
            s = samples[b:b+1]
            out = torch.zeros((s.shape[0], 3, s.shape[2] * 8, s.shape[3] * 8), device="cpu")
            out_div = torch.zeros((s.shape[0], 3, s.shape[2] * 8, s.shape[3] * 8), device="cpu")
            for y in range(0, s.shape[2], tile_y - overlap):
                for x in range(0, s.shape[3], tile_x - overlap):
                    s_in = s[:,:,y:y+tile_y,x:x+tile_x]

                    pixel_samples = self.first_stage_model.decode(1. / self.scale_factor * s_in.to(self.device))
                    pixel_samples = torch.clamp((pixel_samples + 1.0) / 2.0, min=0.0, max=1.0)
                    ps = pixel_samples.cpu()
                    mask = torch.ones_like(ps)
                    feather = overlap * 8
                    for t in range(feather):
                            mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))
                            mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                            mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                            mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
                    out[:,:,y*8:(y+tile_y)*8,x*8:(x+tile_x)*8] += ps * mask
                    out_div[:,:,y*8:(y+tile_y)*8,x*8:(x+tile_x)*8] += mask

            output[b:b+1] = out/out_div
        self.first_stage_model = self.first_stage_model.cpu()
        return output.movedim(1,-1)

comfyanonymous's avatar
comfyanonymous committed
352
    def encode(self, pixel_samples):
353
        model_management.unload_model()
comfyanonymous's avatar
comfyanonymous committed
354
355
356
357
358
359
360
        self.first_stage_model = self.first_stage_model.to(self.device)
        pixel_samples = pixel_samples.movedim(-1,1).to(self.device)
        samples = self.first_stage_model.encode(2. * pixel_samples - 1.).sample() * self.scale_factor
        self.first_stage_model = self.first_stage_model.cpu()
        samples = samples.cpu()
        return samples

comfyanonymous's avatar
comfyanonymous committed
361
class ControlNet:
362
    def __init__(self, control_model, device="cuda"):
comfyanonymous's avatar
comfyanonymous committed
363
364
365
        self.control_model = control_model
        self.cond_hint_original = None
        self.cond_hint = None
366
        self.strength = 1.0
367
        self.device = device
comfyanonymous's avatar
comfyanonymous committed
368
        self.previous_controlnet = None
comfyanonymous's avatar
comfyanonymous committed
369
370

    def get_control(self, x_noisy, t, cond_txt):
comfyanonymous's avatar
comfyanonymous committed
371
372
373
374
        control_prev = None
        if self.previous_controlnet is not None:
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond_txt)

375
        output_dtype = x_noisy.dtype
comfyanonymous's avatar
comfyanonymous committed
376
377
378
379
        if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
            self.cond_hint = None
380
381
382
383
384
385
386
387
            self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(self.control_model.dtype).to(self.device)

        if self.control_model.dtype == torch.float16:
            precision_scope = torch.autocast
        else:
            precision_scope = contextlib.nullcontext

        with precision_scope(self.device):
388
            self.control_model = model_management.load_if_low_vram(self.control_model)
389
            control = self.control_model(x=x_noisy, hint=self.cond_hint, timesteps=t, context=cond_txt)
390
            self.control_model = model_management.unload_if_low_vram(self.control_model)
391
392
        out = []
        autocast_enabled = torch.is_autocast_enabled()
comfyanonymous's avatar
comfyanonymous committed
393
394
395

        for i in range(len(control)):
            x = control[i]
396
            x *= self.strength
397
398
            if x.dtype != output_dtype and not autocast_enabled:
                x = x.to(output_dtype)
comfyanonymous's avatar
comfyanonymous committed
399
400
401

            if control_prev is not None:
                x += control_prev[i]
402
403
            out.append(x)
        return out
comfyanonymous's avatar
comfyanonymous committed
404

405
    def set_cond_hint(self, cond_hint, strength=1.0):
comfyanonymous's avatar
comfyanonymous committed
406
        self.cond_hint_original = cond_hint
407
        self.strength = strength
comfyanonymous's avatar
comfyanonymous committed
408
409
        return self

comfyanonymous's avatar
comfyanonymous committed
410
411
412
413
    def set_previous_controlnet(self, controlnet):
        self.previous_controlnet = controlnet
        return self

comfyanonymous's avatar
comfyanonymous committed
414
    def cleanup(self):
comfyanonymous's avatar
comfyanonymous committed
415
416
        if self.previous_controlnet is not None:
            self.previous_controlnet.cleanup()
comfyanonymous's avatar
comfyanonymous committed
417
418
419
420
421
422
423
        if self.cond_hint is not None:
            del self.cond_hint
            self.cond_hint = None

    def copy(self):
        c = ControlNet(self.control_model)
        c.cond_hint_original = self.cond_hint_original
424
        c.strength = self.strength
comfyanonymous's avatar
comfyanonymous committed
425
426
        return c

comfyanonymous's avatar
comfyanonymous committed
427
428
429
430
431
432
433
    def get_control_models(self):
        out = []
        if self.previous_controlnet is not None:
            out += self.previous_controlnet.get_control_models()
        out.append(self.control_model)
        return out

434
def load_controlnet(ckpt_path, model=None):
comfyanonymous's avatar
comfyanonymous committed
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
    controlnet_data = load_torch_file(ckpt_path)
    pth_key = 'control_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight'
    pth = False
    sd2 = False
    key = 'input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight'
    if pth_key in controlnet_data:
        pth = True
        key = pth_key
    elif key in controlnet_data:
        pass
    else:
        print("error checkpoint does not contain controlnet data", ckpt_path)
        return None

    context_dim = controlnet_data[key].shape[1]
450
451
452
453
454

    use_fp16 = False
    if controlnet_data[key].dtype == torch.float16:
        use_fp16 = True

comfyanonymous's avatar
comfyanonymous committed
455
456
457
458
459
460
461
462
463
464
465
466
    control_model = cldm.ControlNet(image_size=32,
                                    in_channels=4,
                                    hint_channels=3,
                                    model_channels=320,
                                    attention_resolutions=[ 4, 2, 1 ],
                                    num_res_blocks=2,
                                    channel_mult=[ 1, 2, 4, 4 ],
                                    num_heads=8,
                                    use_spatial_transformer=True,
                                    transformer_depth=1,
                                    context_dim=context_dim,
                                    use_checkpoint=True,
467
468
                                    legacy=False,
                                    use_fp16=use_fp16)
comfyanonymous's avatar
comfyanonymous committed
469
470

    if pth:
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
        if 'difference' in controlnet_data:
            if model is not None:
                m = model.patch_model()
                model_sd = m.state_dict()
                for x in controlnet_data:
                    c_m = "control_model."
                    if x.startswith(c_m):
                        sd_key = "model.diffusion_model.{}".format(x[len(c_m):])
                        if sd_key in model_sd:
                            cd = controlnet_data[x]
                            cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
                model.unpatch_model()
            else:
                print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")

comfyanonymous's avatar
comfyanonymous committed
486
487
488
489
490
491
492
493
494
495
496
497
        class WeightsLoader(torch.nn.Module):
            pass
        w = WeightsLoader()
        w.control_model = control_model
        w.load_state_dict(controlnet_data, strict=False)
    else:
        control_model.load_state_dict(controlnet_data, strict=False)

    control = ControlNet(control_model)
    return control


498
499
500
501
502
503
504
505
506
507
def load_clip(ckpt_path, embedding_directory=None):
    clip_data = load_torch_file(ckpt_path)
    config = {}
    if "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data:
        config['target'] = 'ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder'
    else:
        config['target'] = 'ldm.modules.encoders.modules.FrozenCLIPEmbedder'
    clip = CLIP(config=config, embedding_directory=embedding_directory)
    clip.load_from_state_dict(clip_data)
    return clip
comfyanonymous's avatar
comfyanonymous committed
508

509
def load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=None):
comfyanonymous's avatar
comfyanonymous committed
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
    config = OmegaConf.load(config_path)
    model_config_params = config['model']['params']
    clip_config = model_config_params['cond_stage_config']
    scale_factor = model_config_params['scale_factor']
    vae_config = model_config_params['first_stage_config']

    clip = None
    vae = None

    class WeightsLoader(torch.nn.Module):
        pass

    w = WeightsLoader()
    load_state_dict_to = []
    if output_vae:
        vae = VAE(scale_factor=scale_factor, config=vae_config)
        w.first_stage_model = vae.first_stage_model
        load_state_dict_to = [w]

    if output_clip:
530
        clip = CLIP(config=clip_config, embedding_directory=embedding_directory)
comfyanonymous's avatar
comfyanonymous committed
531
532
533
534
        w.cond_stage_model = clip.cond_stage_model
        load_state_dict_to = [w]

    model = load_model_from_config(config, ckpt_path, verbose=False, load_state_dict_to=load_state_dict_to)
535
    return (ModelPatcher(model), clip, vae)