transforms.py 63.6 KB
Newer Older
1
import math
vfdev's avatar
vfdev committed
2
import numbers
3
import random
vfdev's avatar
vfdev committed
4
import warnings
vfdev's avatar
vfdev committed
5
from collections.abc import Sequence
6
from typing import Tuple, List, Optional
vfdev's avatar
vfdev committed
7
8

import torch
9
from PIL import Image
vfdev's avatar
vfdev committed
10
11
from torch import Tensor

12
13
14
15
16
17
18
try:
    import accimage
except ImportError:
    accimage = None

from . import functional as F

19
20
21
22
__all__ = ["Compose", "ToTensor", "PILToTensor", "ConvertImageDtype", "ToPILImage", "Normalize", "Resize", "Scale",
           "CenterCrop", "Pad", "Lambda", "RandomApply", "RandomChoice", "RandomOrder", "RandomCrop",
           "RandomHorizontalFlip", "RandomVerticalFlip", "RandomResizedCrop", "RandomSizedCrop", "FiveCrop", "TenCrop",
           "LinearTransformation", "ColorJitter", "RandomRotation", "RandomAffine", "Grayscale", "RandomGrayscale",
23
           "RandomPerspective", "RandomErasing", "GaussianBlur"]
24

25
26
27
28
29
_pil_interpolation_to_str = {
    Image.NEAREST: 'PIL.Image.NEAREST',
    Image.BILINEAR: 'PIL.Image.BILINEAR',
    Image.BICUBIC: 'PIL.Image.BICUBIC',
    Image.LANCZOS: 'PIL.Image.LANCZOS',
surgan12's avatar
surgan12 committed
30
31
    Image.HAMMING: 'PIL.Image.HAMMING',
    Image.BOX: 'PIL.Image.BOX',
32
33
}

34

35
class Compose:
36
37
    """Composes several transforms together. This transform does not support torchscript.
    Please, see the note below.
38
39
40
41
42
43
44
45
46

    Args:
        transforms (list of ``Transform`` objects): list of transforms to compose.

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
        >>>     transforms.ToTensor(),
        >>> ])
47
48
49
50
51
52
53
54
55
56
57
58
59

    .. note::
        In order to script the transformations, please use ``torch.nn.Sequential`` as below.

        >>> transforms = torch.nn.Sequential(
        >>>     transforms.CenterCrop(10),
        >>>     transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>> )
        >>> scripted_transforms = torch.jit.script(transforms)

        Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
        `lambda` functions or ``PIL.Image``.

60
61
62
63
64
65
66
67
68
69
    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img

70
71
72
73
74
75
76
77
    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string

78

79
class ToTensor:
80
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor. This transform does not support torchscript.
81
82

    Converts a PIL Image or numpy.ndarray (H x W x C) in the range
surgan12's avatar
surgan12 committed
83
84
85
86
87
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
    if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
    or if the numpy.ndarray has dtype = np.uint8

    In the other cases, tensors are returned without scaling.
88
89
90
91
92
93

    .. note::
        Because the input image is scaled to [0.0, 1.0], this transformation should not be used when
        transforming target image masks. See the `references`_ for implementing the transforms for image masks.

    .. _references: https://github.com/pytorch/vision/tree/master/references/segmentation
94
95
96
97
98
99
100
101
102
103
104
105
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(pic)

106
107
108
    def __repr__(self):
        return self.__class__.__name__ + '()'

109

110
class PILToTensor:
111
    """Convert a ``PIL Image`` to a tensor of the same type. This transform does not support torchscript.
112

vfdev's avatar
vfdev committed
113
    Converts a PIL Image (H x W x C) to a Tensor of shape (C x H x W).
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.pil_to_tensor(pic)

    def __repr__(self):
        return self.__class__.__name__ + '()'


130
class ConvertImageDtype(torch.nn.Module):
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly

    Args:
        dtype (torch.dtype): Desired data type of the output

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """

    def __init__(self, dtype: torch.dtype) -> None:
149
        super().__init__()
150
151
        self.dtype = dtype

152
    def forward(self, image: torch.Tensor) -> torch.Tensor:
153
154
155
        return F.convert_image_dtype(image, self.dtype)


156
class ToPILImage:
157
    """Convert a tensor or an ndarray to PIL Image. This transform does not support torchscript.
158
159
160
161
162
163
164

    Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape
    H x W x C to a PIL Image while preserving the value range.

    Args:
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).
            If ``mode`` is ``None`` (default) there are some assumptions made about the input data:
vfdev's avatar
vfdev committed
165
166
167
168
169
            - If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``.
            - If the input has 3 channels, the ``mode`` is assumed to be ``RGB``.
            - If the input has 2 channels, the ``mode`` is assumed to be ``LA``.
            - If the input has 1 channel, the ``mode`` is determined by the data type (i.e ``int``, ``float``,
            ``short``).
170

csukuangfj's avatar
csukuangfj committed
171
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
    """
    def __init__(self, mode=None):
        self.mode = mode

    def __call__(self, pic):
        """
        Args:
            pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.

        Returns:
            PIL Image: Image converted to PIL Image.

        """
        return F.to_pil_image(pic, self.mode)

187
    def __repr__(self):
188
189
190
191
192
        format_string = self.__class__.__name__ + '('
        if self.mode is not None:
            format_string += 'mode={0}'.format(self.mode)
        format_string += ')'
        return format_string
193

194

195
class Normalize(torch.nn.Module):
Fang Gao's avatar
Fang Gao committed
196
    """Normalize a tensor image with mean and standard deviation.
197
198
199
    Given mean: ``(mean[1],...,mean[n])`` and std: ``(std[1],..,std[n])`` for ``n``
    channels, this transform will normalize each channel of the input
    ``torch.*Tensor`` i.e.,
abdjava's avatar
abdjava committed
200
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``
201

202
    .. note::
203
        This transform acts out of place, i.e., it does not mutate the input tensor.
204

205
206
207
    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.
208
209
        inplace(bool,optional): Bool to make this operation in-place.

210
211
    """

surgan12's avatar
surgan12 committed
212
    def __init__(self, mean, std, inplace=False):
213
        super().__init__()
214
215
        self.mean = mean
        self.std = std
surgan12's avatar
surgan12 committed
216
        self.inplace = inplace
217

218
    def forward(self, tensor: Tensor) -> Tensor:
219
220
221
222
223
224
225
        """
        Args:
            tensor (Tensor): Tensor image of size (C, H, W) to be normalized.

        Returns:
            Tensor: Normalized Tensor image.
        """
surgan12's avatar
surgan12 committed
226
        return F.normalize(tensor, self.mean, self.std, self.inplace)
227

228
229
230
    def __repr__(self):
        return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)

231

vfdev's avatar
vfdev committed
232
233
234
235
class Resize(torch.nn.Module):
    """Resize the input image to the given size.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
236
237
238
239
240
241

    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
242
243
244
            (size * height / width, size).
            In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[size, ]``.
vfdev's avatar
vfdev committed
245
246
247
        interpolation (int, optional): Desired interpolation enum defined by `filters`_.
            Default is ``PIL.Image.BILINEAR``. If input is Tensor, only ``PIL.Image.NEAREST``, ``PIL.Image.BILINEAR``
            and ``PIL.Image.BICUBIC`` are supported.
248
249
250
    """

    def __init__(self, size, interpolation=Image.BILINEAR):
vfdev's avatar
vfdev committed
251
        super().__init__()
252
        self.size = _setup_size(size, error_msg="If size is a sequence, it should have 2 values")
253
254
        self.interpolation = interpolation

vfdev's avatar
vfdev committed
255
    def forward(self, img):
256
257
        """
        Args:
vfdev's avatar
vfdev committed
258
            img (PIL Image or Tensor): Image to be scaled.
259
260

        Returns:
vfdev's avatar
vfdev committed
261
            PIL Image or Tensor: Rescaled image.
262
263
264
        """
        return F.resize(img, self.size, self.interpolation)

265
    def __repr__(self):
266
267
        interpolate_str = _pil_interpolation_to_str[self.interpolation]
        return self.__class__.__name__ + '(size={0}, interpolation={1})'.format(self.size, interpolate_str)
268

269
270
271
272
273
274
275
276
277
278
279

class Scale(Resize):
    """
    Note: This transform is deprecated in favor of Resize.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                      "please use transforms.Resize instead.")
        super(Scale, self).__init__(*args, **kwargs)


vfdev's avatar
vfdev committed
280
281
282
283
class CenterCrop(torch.nn.Module):
    """Crops the given image at the center.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
284
285
286
287

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
vfdev's avatar
vfdev committed
288
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
289
290
291
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
292
        super().__init__()
293
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
294

vfdev's avatar
vfdev committed
295
    def forward(self, img):
296
297
        """
        Args:
vfdev's avatar
vfdev committed
298
            img (PIL Image or Tensor): Image to be cropped.
299
300

        Returns:
vfdev's avatar
vfdev committed
301
            PIL Image or Tensor: Cropped image.
302
303
304
        """
        return F.center_crop(img, self.size)

305
306
307
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

308

309
310
311
312
class Pad(torch.nn.Module):
    """Pad the given image on all sides with the given "pad" value.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
313
314

    Args:
315
        padding (int or tuple or list): Padding on each border. If a single int is provided this
316
317
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
318
319
320
            this is the padding for the left, top, right and bottom borders respectively.
            In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[padding, ]``.
321
        fill (int or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
322
            length 3, it is used to fill R, G, B channels respectively.
323
            This value is only used when the padding_mode is constant
324
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
vfdev's avatar
vfdev committed
325
            Default is constant. Mode symmetric is not yet supported for Tensor inputs.
326
327
328
329
330
331
332
333

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value at the edge of the image

            - reflect: pads with reflection of image without repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
334
                will result in [3, 2, 1, 2, 3, 4, 3, 2]
335
336
337
338

            - symmetric: pads with reflection of image repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
339
                will result in [2, 1, 1, 2, 3, 4, 4, 3]
340
341
    """

342
343
344
345
346
347
348
349
350
351
352
353
354
    def __init__(self, padding, fill=0, padding_mode="constant"):
        super().__init__()
        if not isinstance(padding, (numbers.Number, tuple, list)):
            raise TypeError("Got inappropriate padding arg")

        if not isinstance(fill, (numbers.Number, str, tuple)):
            raise TypeError("Got inappropriate fill arg")

        if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
            raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")

        if isinstance(padding, Sequence) and len(padding) not in [1, 2, 4]:
            raise ValueError("Padding must be an int or a 1, 2, or 4 element tuple, not a " +
355
356
357
358
                             "{} element tuple".format(len(padding)))

        self.padding = padding
        self.fill = fill
359
        self.padding_mode = padding_mode
360

361
    def forward(self, img):
362
363
        """
        Args:
364
            img (PIL Image or Tensor): Image to be padded.
365
366

        Returns:
367
            PIL Image or Tensor: Padded image.
368
        """
369
        return F.pad(img, self.padding, self.fill, self.padding_mode)
370

371
    def __repr__(self):
372
373
        return self.__class__.__name__ + '(padding={0}, fill={1}, padding_mode={2})'.\
            format(self.padding, self.fill, self.padding_mode)
374

375

376
class Lambda:
377
    """Apply a user-defined lambda as a transform. This transform does not support torchscript.
378
379
380
381
382
383

    Args:
        lambd (function): Lambda/function to be used for transform.
    """

    def __init__(self, lambd):
384
385
        if not callable(lambd):
            raise TypeError("Argument lambd should be callable, got {}".format(repr(type(lambd).__name__)))
386
387
388
389
390
        self.lambd = lambd

    def __call__(self, img):
        return self.lambd(img)

391
392
393
    def __repr__(self):
        return self.__class__.__name__ + '()'

394

395
class RandomTransforms:
396
397
398
399
400
401
402
    """Base class for a list of transformations with randomness

    Args:
        transforms (list or tuple): list of transformations
    """

    def __init__(self, transforms):
403
404
        if not isinstance(transforms, Sequence):
            raise TypeError("Argument transforms should be a sequence")
405
406
407
408
409
410
411
412
413
414
415
416
417
418
        self.transforms = transforms

    def __call__(self, *args, **kwargs):
        raise NotImplementedError()

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


419
class RandomApply(torch.nn.Module):
420
    """Apply randomly a list of transformations with a given probability.
421
422
423
424
425
426
427
428
429
430
431
432

    .. note::
        In order to script the transformation, please use ``torch.nn.ModuleList`` as input instead of list/tuple of
        transforms as shown below:

        >>> transforms = transforms.RandomApply(torch.nn.ModuleList([
        >>>     transforms.ColorJitter(),
        >>> ]), p=0.3)
        >>> scripted_transforms = torch.jit.script(transforms)

        Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
        `lambda` functions or ``PIL.Image``.
433
434

    Args:
435
        transforms (list or tuple or torch.nn.Module): list of transformations
436
437
438
439
        p (float): probability
    """

    def __init__(self, transforms, p=0.5):
440
441
        super().__init__()
        self.transforms = transforms
442
443
        self.p = p

444
445
    def forward(self, img):
        if self.p < torch.rand(1):
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
            return img
        for t in self.transforms:
            img = t(img)
        return img

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        format_string += '\n    p={}'.format(self.p)
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomOrder(RandomTransforms):
462
    """Apply a list of transformations in a random order. This transform does not support torchscript.
463
464
465
466
467
468
469
470
471
472
    """
    def __call__(self, img):
        order = list(range(len(self.transforms)))
        random.shuffle(order)
        for i in order:
            img = self.transforms[i](img)
        return img


class RandomChoice(RandomTransforms):
473
    """Apply single transformation randomly picked from a list. This transform does not support torchscript.
474
475
476
477
478
479
    """
    def __call__(self, img):
        t = random.choice(self.transforms)
        return t(img)


vfdev's avatar
vfdev committed
480
481
482
483
484
class RandomCrop(torch.nn.Module):
    """Crop the given image at a random location.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
485
486
487
488

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
vfdev's avatar
vfdev committed
489
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
490
        padding (int or sequence, optional): Optional padding on each border
vfdev's avatar
vfdev committed
491
492
493
494
495
496
            of the image. Default is None. If a single int is provided this
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
            this is the padding for the left, top, right and bottom borders respectively.
            In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[padding, ]``.
497
        pad_if_needed (boolean): It will pad the image if smaller than the
ekka's avatar
ekka committed
498
            desired size to avoid raising an exception. Since cropping is done
499
            after padding, the padding seems to be done at a random offset.
vfdev's avatar
vfdev committed
500
        fill (int or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
501
502
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant
vfdev's avatar
vfdev committed
503
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
vfdev's avatar
vfdev committed
504
            Mode symmetric is not yet supported for Tensor inputs.
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519

             - constant: pads with a constant value, this value is specified with fill

             - edge: pads with the last value on the edge of the image

             - reflect: pads with reflection of image (without repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                will result in [3, 2, 1, 2, 3, 4, 3, 2]

             - symmetric: pads with reflection of image (repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                will result in [2, 1, 1, 2, 3, 4, 4, 3]

520
521
522
    """

    @staticmethod
vfdev's avatar
vfdev committed
523
    def get_params(img: Tensor, output_size: Tuple[int, int]) -> Tuple[int, int, int, int]:
524
525
526
        """Get parameters for ``crop`` for a random crop.

        Args:
vfdev's avatar
vfdev committed
527
            img (PIL Image or Tensor): Image to be cropped.
528
529
530
531
532
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
vfdev's avatar
vfdev committed
533
        w, h = F._get_image_size(img)
534
535
536
537
        th, tw = output_size
        if w == tw and h == th:
            return 0, 0, h, w

538
539
        i = torch.randint(0, h - th + 1, size=(1, )).item()
        j = torch.randint(0, w - tw + 1, size=(1, )).item()
540
541
        return i, j, th, tw

vfdev's avatar
vfdev committed
542
543
544
    def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode="constant"):
        super().__init__()

545
546
547
548
        self.size = tuple(_setup_size(
            size, error_msg="Please provide only two dimensions (h, w) for size."
        ))

vfdev's avatar
vfdev committed
549
550
551
552
553
554
        self.padding = padding
        self.pad_if_needed = pad_if_needed
        self.fill = fill
        self.padding_mode = padding_mode

    def forward(self, img):
555
556
        """
        Args:
vfdev's avatar
vfdev committed
557
            img (PIL Image or Tensor): Image to be cropped.
558
559

        Returns:
vfdev's avatar
vfdev committed
560
            PIL Image or Tensor: Cropped image.
561
        """
562
563
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)
564

vfdev's avatar
vfdev committed
565
        width, height = F._get_image_size(img)
566
        # pad the width if needed
vfdev's avatar
vfdev committed
567
568
569
        if self.pad_if_needed and width < self.size[1]:
            padding = [self.size[1] - width, 0]
            img = F.pad(img, padding, self.fill, self.padding_mode)
570
        # pad the height if needed
vfdev's avatar
vfdev committed
571
572
573
        if self.pad_if_needed and height < self.size[0]:
            padding = [0, self.size[0] - height]
            img = F.pad(img, padding, self.fill, self.padding_mode)
574

575
576
577
578
        i, j, h, w = self.get_params(img, self.size)

        return F.crop(img, i, j, h, w)

579
    def __repr__(self):
vfdev's avatar
vfdev committed
580
        return self.__class__.__name__ + "(size={0}, padding={1})".format(self.size, self.padding)
581

582

583
584
585
586
587
class RandomHorizontalFlip(torch.nn.Module):
    """Horizontally flip the given image randomly with a given probability.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
588
589
590
591
592
593

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
594
        super().__init__()
595
        self.p = p
596

597
    def forward(self, img):
598
599
        """
        Args:
600
            img (PIL Image or Tensor): Image to be flipped.
601
602

        Returns:
603
            PIL Image or Tensor: Randomly flipped image.
604
        """
605
        if torch.rand(1) < self.p:
606
607
608
            return F.hflip(img)
        return img

609
    def __repr__(self):
610
        return self.__class__.__name__ + '(p={})'.format(self.p)
611

612

613
class RandomVerticalFlip(torch.nn.Module):
vfdev's avatar
vfdev committed
614
    """Vertically flip the given image randomly with a given probability.
615
616
617
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
618
619
620
621
622
623

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
624
        super().__init__()
625
        self.p = p
626

627
    def forward(self, img):
628
629
        """
        Args:
630
            img (PIL Image or Tensor): Image to be flipped.
631
632

        Returns:
633
            PIL Image or Tensor: Randomly flipped image.
634
        """
635
        if torch.rand(1) < self.p:
636
637
638
            return F.vflip(img)
        return img

639
    def __repr__(self):
640
        return self.__class__.__name__ + '(p={})'.format(self.p)
641

642

643
644
645
646
class RandomPerspective(torch.nn.Module):
    """Performs a random perspective transformation of the given image with a given probability.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
647
648

    Args:
649
650
651
652
653
654
655
656
657
        distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
            Default is 0.5.
        p (float): probability of the image being transformed. Default is 0.5.
        interpolation (int): Interpolation type. If input is Tensor, only ``PIL.Image.NEAREST`` and
            ``PIL.Image.BILINEAR`` are supported. Default, ``PIL.Image.BILINEAR`` for PIL images and Tensors.
        fill (n-tuple or int or float): Pixel fill value for area outside the rotated
            image. If int or float, the value is used for all bands respectively. Default is 0.
            This option is only available for ``pillow>=5.0.0``. This option is not supported for Tensor
            input. Fill value for the area outside the transform in the output image is always 0.
658
659
660

    """

661
662
    def __init__(self, distortion_scale=0.5, p=0.5, interpolation=Image.BILINEAR, fill=0):
        super().__init__()
663
664
665
        self.p = p
        self.interpolation = interpolation
        self.distortion_scale = distortion_scale
666
        self.fill = fill
667

668
    def forward(self, img):
669
670
        """
        Args:
671
            img (PIL Image or Tensor): Image to be Perspectively transformed.
672
673

        Returns:
674
            PIL Image or Tensor: Randomly transformed image.
675
        """
676
677
        if torch.rand(1) < self.p:
            width, height = F._get_image_size(img)
678
            startpoints, endpoints = self.get_params(width, height, self.distortion_scale)
679
            return F.perspective(img, startpoints, endpoints, self.interpolation, self.fill)
680
681
682
        return img

    @staticmethod
683
    def get_params(width: int, height: int, distortion_scale: float) -> Tuple[List[List[int]], List[List[int]]]:
684
685
686
        """Get parameters for ``perspective`` for a random perspective transform.

        Args:
687
688
689
            width (int): width of the image.
            height (int): height of the image.
            distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
690
691

        Returns:
692
            List containing [top-left, top-right, bottom-right, bottom-left] of the original image,
693
694
            List containing [top-left, top-right, bottom-right, bottom-left] of the transformed image.
        """
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
        half_height = height // 2
        half_width = width // 2
        topleft = [
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1, )).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1, )).item())
        ]
        topright = [
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1, )).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1, )).item())
        ]
        botright = [
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1, )).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1, )).item())
        ]
        botleft = [
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1, )).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1, )).item())
        ]
        startpoints = [[0, 0], [width - 1, 0], [width - 1, height - 1], [0, height - 1]]
714
715
716
717
718
719
720
        endpoints = [topleft, topright, botright, botleft]
        return startpoints, endpoints

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


721
722
723
724
class RandomResizedCrop(torch.nn.Module):
    """Crop the given image to random size and aspect ratio.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
725

726
727
    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
728
729
730
731
    is finally resized to given size.
    This is popularly used to train the Inception networks.

    Args:
732
733
734
735
736
        size (int or sequence): expected output size of each edge. If size is an
            int instead of sequence like (h, w), a square output size ``(size, size)`` is
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
        scale (tuple of float): range of size of the origin size cropped
        ratio (tuple of float): range of aspect ratio of the origin aspect ratio cropped.
vfdev's avatar
vfdev committed
737
738
739
        interpolation (int): Desired interpolation enum defined by `filters`_.
            Default is ``PIL.Image.BILINEAR``. If input is Tensor, only ``PIL.Image.NEAREST``, ``PIL.Image.BILINEAR``
            and ``PIL.Image.BICUBIC`` are supported.
740
741
    """

742
    def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=Image.BILINEAR):
743
        super().__init__()
744
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
745

746
        if not isinstance(scale, Sequence):
747
            raise TypeError("Scale should be a sequence")
748
        if not isinstance(ratio, Sequence):
749
            raise TypeError("Ratio should be a sequence")
750
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
751
            warnings.warn("Scale and ratio should be of kind (min, max)")
752

753
        self.interpolation = interpolation
754
755
        self.scale = scale
        self.ratio = ratio
756
757

    @staticmethod
758
    def get_params(
759
            img: Tensor, scale: List[float], ratio: List[float]
760
    ) -> Tuple[int, int, int, int]:
761
762
763
        """Get parameters for ``crop`` for a random sized crop.

        Args:
764
            img (PIL Image or Tensor): Input image.
765
766
            scale (list): range of scale of the origin size cropped
            ratio (list): range of aspect ratio of the origin aspect ratio cropped
767
768
769
770
771

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for a random
                sized crop.
        """
vfdev's avatar
vfdev committed
772
        width, height = F._get_image_size(img)
Zhicheng Yan's avatar
Zhicheng Yan committed
773
        area = height * width
774

775
        for _ in range(10):
776
            target_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
777
778
779
780
            log_ratio = torch.log(torch.tensor(ratio))
            aspect_ratio = torch.exp(
                torch.empty(1).uniform_(log_ratio[0], log_ratio[1])
            ).item()
781
782
783
784

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

Zhicheng Yan's avatar
Zhicheng Yan committed
785
            if 0 < w <= width and 0 < h <= height:
786
787
                i = torch.randint(0, height - h + 1, size=(1,)).item()
                j = torch.randint(0, width - w + 1, size=(1,)).item()
788
789
                return i, j, h, w

790
        # Fallback to central crop
Zhicheng Yan's avatar
Zhicheng Yan committed
791
        in_ratio = float(width) / float(height)
792
        if in_ratio < min(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
793
            w = width
794
            h = int(round(w / min(ratio)))
795
        elif in_ratio > max(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
796
            h = height
797
            w = int(round(h * max(ratio)))
798
        else:  # whole image
Zhicheng Yan's avatar
Zhicheng Yan committed
799
800
801
802
            w = width
            h = height
        i = (height - h) // 2
        j = (width - w) // 2
803
        return i, j, h, w
804

805
    def forward(self, img):
806
807
        """
        Args:
808
            img (PIL Image or Tensor): Image to be cropped and resized.
809
810

        Returns:
811
            PIL Image or Tensor: Randomly cropped and resized image.
812
        """
813
        i, j, h, w = self.get_params(img, self.scale, self.ratio)
814
815
        return F.resized_crop(img, i, j, h, w, self.size, self.interpolation)

816
    def __repr__(self):
817
818
        interpolate_str = _pil_interpolation_to_str[self.interpolation]
        format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
819
820
        format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale))
        format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio))
821
822
        format_string += ', interpolation={0})'.format(interpolate_str)
        return format_string
823

824
825
826
827
828
829
830
831
832
833
834

class RandomSizedCrop(RandomResizedCrop):
    """
    Note: This transform is deprecated in favor of RandomResizedCrop.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.RandomSizedCrop transform is deprecated, " +
                      "please use transforms.RandomResizedCrop instead.")
        super(RandomSizedCrop, self).__init__(*args, **kwargs)


vfdev's avatar
vfdev committed
835
836
837
838
839
class FiveCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
840
841
842
843
844
845
846
847
848

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
         size (sequence or int): Desired output size of the crop. If size is an ``int``
            instead of sequence like (h, w), a square crop of size (size, size) is made.
vfdev's avatar
vfdev committed
849
            If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
850
851
852
853
854
855
856
857
858
859
860
861
862
863

    Example:
         >>> transform = Compose([
         >>>    FiveCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
864
        super().__init__()
865
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
866

vfdev's avatar
vfdev committed
867
868
869
870
871
872
873
874
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 5 images. Image can be PIL Image or Tensor
        """
875
876
        return F.five_crop(img, self.size)

877
878
879
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

880

vfdev's avatar
vfdev committed
881
882
883
884
885
886
class TenCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop plus the flipped version of
    these (horizontal flipping is used by default).
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
887
888
889
890
891
892
893
894
895

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
vfdev's avatar
vfdev committed
896
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
897
        vertical_flip (bool): Use vertical flipping instead of horizontal
898
899
900
901
902
903
904
905
906
907
908
909
910
911

    Example:
         >>> transform = Compose([
         >>>    TenCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size, vertical_flip=False):
vfdev's avatar
vfdev committed
912
        super().__init__()
913
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
914
915
        self.vertical_flip = vertical_flip

vfdev's avatar
vfdev committed
916
917
918
919
920
921
922
923
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 10 images. Image can be PIL Image or Tensor
        """
924
925
        return F.ten_crop(img, self.size, self.vertical_flip)

926
    def __repr__(self):
927
        return self.__class__.__name__ + '(size={0}, vertical_flip={1})'.format(self.size, self.vertical_flip)
928

929

930
class LinearTransformation(torch.nn.Module):
ekka's avatar
ekka committed
931
    """Transform a tensor image with a square transformation matrix and a mean_vector computed
932
    offline.
ekka's avatar
ekka committed
933
934
935
    Given transformation_matrix and mean_vector, will flatten the torch.*Tensor and
    subtract mean_vector from it which is then followed by computing the dot
    product with the transformation matrix and then reshaping the tensor to its
936
    original shape.
937

938
    Applications:
939
        whitening transformation: Suppose X is a column vector zero-centered data.
940
941
942
        Then compute the data covariance matrix [D x D] with torch.mm(X.t(), X),
        perform SVD on this matrix and pass it as transformation_matrix.

943
944
    Args:
        transformation_matrix (Tensor): tensor [D x D], D = C x H x W
ekka's avatar
ekka committed
945
        mean_vector (Tensor): tensor [D], D = C x H x W
946
947
    """

ekka's avatar
ekka committed
948
    def __init__(self, transformation_matrix, mean_vector):
949
        super().__init__()
950
951
952
        if transformation_matrix.size(0) != transformation_matrix.size(1):
            raise ValueError("transformation_matrix should be square. Got " +
                             "[{} x {}] rectangular matrix.".format(*transformation_matrix.size()))
ekka's avatar
ekka committed
953
954
955

        if mean_vector.size(0) != transformation_matrix.size(0):
            raise ValueError("mean_vector should have the same length {}".format(mean_vector.size(0)) +
Francisco Massa's avatar
Francisco Massa committed
956
957
                             " as any one of the dimensions of the transformation_matrix [{}]"
                             .format(tuple(transformation_matrix.size())))
ekka's avatar
ekka committed
958

959
960
961
962
        if transformation_matrix.device != mean_vector.device:
            raise ValueError("Input tensors should be on the same device. Got {} and {}"
                             .format(transformation_matrix.device, mean_vector.device))

963
        self.transformation_matrix = transformation_matrix
ekka's avatar
ekka committed
964
        self.mean_vector = mean_vector
965

966
    def forward(self, tensor: Tensor) -> Tensor:
967
968
969
970
971
972
973
        """
        Args:
            tensor (Tensor): Tensor image of size (C, H, W) to be whitened.

        Returns:
            Tensor: Transformed image.
        """
974
975
976
977
978
979
980
981
982
983
984
985
        shape = tensor.shape
        n = shape[-3] * shape[-2] * shape[-1]
        if n != self.transformation_matrix.shape[0]:
            raise ValueError("Input tensor and transformation matrix have incompatible shape." +
                             "[{} x {} x {}] != ".format(shape[-3], shape[-2], shape[-1]) +
                             "{}".format(self.transformation_matrix.shape[0]))

        if tensor.device.type != self.mean_vector.device.type:
            raise ValueError("Input tensor should be on the same device as transformation matrix and mean vector. "
                             "Got {} vs {}".format(tensor.device, self.mean_vector.device))

        flat_tensor = tensor.view(-1, n) - self.mean_vector
986
        transformed_tensor = torch.mm(flat_tensor, self.transformation_matrix)
987
        tensor = transformed_tensor.view(shape)
988
989
        return tensor

990
    def __repr__(self):
ekka's avatar
ekka committed
991
992
993
        format_string = self.__class__.__name__ + '(transformation_matrix='
        format_string += (str(self.transformation_matrix.tolist()) + ')')
        format_string += (", (mean_vector=" + str(self.mean_vector.tolist()) + ')')
994
995
        return format_string

996

997
class ColorJitter(torch.nn.Module):
998
999
1000
    """Randomly change the brightness, contrast and saturation of an image.

    Args:
yaox12's avatar
yaox12 committed
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
        brightness (float or tuple of float (min, max)): How much to jitter brightness.
            brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
            or the given [min, max]. Should be non negative numbers.
        contrast (float or tuple of float (min, max)): How much to jitter contrast.
            contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
            or the given [min, max]. Should be non negative numbers.
        saturation (float or tuple of float (min, max)): How much to jitter saturation.
            saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
            or the given [min, max]. Should be non negative numbers.
        hue (float or tuple of float (min, max)): How much to jitter hue.
            hue_factor is chosen uniformly from [-hue, hue] or the given [min, max].
            Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
1013
    """
1014

1015
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
1016
        super().__init__()
yaox12's avatar
yaox12 committed
1017
1018
1019
1020
1021
1022
        self.brightness = self._check_input(brightness, 'brightness')
        self.contrast = self._check_input(contrast, 'contrast')
        self.saturation = self._check_input(saturation, 'saturation')
        self.hue = self._check_input(hue, 'hue', center=0, bound=(-0.5, 0.5),
                                     clip_first_on_zero=False)

1023
    @torch.jit.unused
yaox12's avatar
yaox12 committed
1024
1025
1026
1027
    def _check_input(self, value, name, center=1, bound=(0, float('inf')), clip_first_on_zero=True):
        if isinstance(value, numbers.Number):
            if value < 0:
                raise ValueError("If {} is a single number, it must be non negative.".format(name))
1028
            value = [center - float(value), center + float(value)]
yaox12's avatar
yaox12 committed
1029
            if clip_first_on_zero:
1030
                value[0] = max(value[0], 0.0)
yaox12's avatar
yaox12 committed
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
        elif isinstance(value, (tuple, list)) and len(value) == 2:
            if not bound[0] <= value[0] <= value[1] <= bound[1]:
                raise ValueError("{} values should be between {}".format(name, bound))
        else:
            raise TypeError("{} should be a single number or a list/tuple with lenght 2.".format(name))

        # if value is 0 or (1., 1.) for brightness/contrast/saturation
        # or (0., 0.) for hue, do nothing
        if value[0] == value[1] == center:
            value = None
        return value
1042
1043

    @staticmethod
1044
    @torch.jit.unused
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
    def get_params(brightness, contrast, saturation, hue):
        """Get a randomized transform to be applied on image.

        Arguments are same as that of __init__.

        Returns:
            Transform which randomly adjusts brightness, contrast and
            saturation in a random order.
        """
        transforms = []
yaox12's avatar
yaox12 committed
1055
1056
1057

        if brightness is not None:
            brightness_factor = random.uniform(brightness[0], brightness[1])
1058
1059
            transforms.append(Lambda(lambda img: F.adjust_brightness(img, brightness_factor)))

yaox12's avatar
yaox12 committed
1060
1061
        if contrast is not None:
            contrast_factor = random.uniform(contrast[0], contrast[1])
1062
1063
            transforms.append(Lambda(lambda img: F.adjust_contrast(img, contrast_factor)))

yaox12's avatar
yaox12 committed
1064
1065
        if saturation is not None:
            saturation_factor = random.uniform(saturation[0], saturation[1])
1066
1067
            transforms.append(Lambda(lambda img: F.adjust_saturation(img, saturation_factor)))

yaox12's avatar
yaox12 committed
1068
1069
        if hue is not None:
            hue_factor = random.uniform(hue[0], hue[1])
1070
1071
            transforms.append(Lambda(lambda img: F.adjust_hue(img, hue_factor)))

vfdev's avatar
vfdev committed
1072
        random.shuffle(transforms)
1073
1074
1075
1076
        transform = Compose(transforms)

        return transform

1077
    def forward(self, img):
1078
1079
        """
        Args:
1080
            img (PIL Image or Tensor): Input image.
1081
1082

        Returns:
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
            PIL Image or Tensor: Color jittered image.
        """
        fn_idx = torch.randperm(4)
        for fn_id in fn_idx:
            if fn_id == 0 and self.brightness is not None:
                brightness = self.brightness
                brightness_factor = torch.tensor(1.0).uniform_(brightness[0], brightness[1]).item()
                img = F.adjust_brightness(img, brightness_factor)

            if fn_id == 1 and self.contrast is not None:
                contrast = self.contrast
                contrast_factor = torch.tensor(1.0).uniform_(contrast[0], contrast[1]).item()
                img = F.adjust_contrast(img, contrast_factor)

            if fn_id == 2 and self.saturation is not None:
                saturation = self.saturation
                saturation_factor = torch.tensor(1.0).uniform_(saturation[0], saturation[1]).item()
                img = F.adjust_saturation(img, saturation_factor)

            if fn_id == 3 and self.hue is not None:
                hue = self.hue
                hue_factor = torch.tensor(1.0).uniform_(hue[0], hue[1]).item()
                img = F.adjust_hue(img, hue_factor)

        return img
1108

1109
    def __repr__(self):
1110
1111
1112
1113
1114
1115
        format_string = self.__class__.__name__ + '('
        format_string += 'brightness={0}'.format(self.brightness)
        format_string += ', contrast={0}'.format(self.contrast)
        format_string += ', saturation={0}'.format(self.saturation)
        format_string += ', hue={0})'.format(self.hue)
        return format_string
1116

1117

1118
class RandomRotation(torch.nn.Module):
1119
    """Rotate the image by angle.
1120
1121
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1122
1123
1124
1125
1126

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees).
1127
        resample (int, optional): An optional resampling filter. See `filters`_ for more information.
1128
            If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
1129
            If input is Tensor, only ``PIL.Image.NEAREST`` and ``PIL.Image.BILINEAR`` are supported.
1130
1131
1132
1133
        expand (bool, optional): Optional expansion flag.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
1134
        center (list or tuple, optional): Optional center of rotation, (x, y). Origin is the upper left corner.
1135
            Default is the center of the image.
Philip Meier's avatar
Philip Meier committed
1136
1137
        fill (n-tuple or int or float): Pixel fill value for area outside the rotated
            image. If int or float, the value is used for all bands respectively.
1138
1139
1140
            Defaults to 0 for all bands. This option is only available for Pillow>=5.2.0.
            This option is not supported for Tensor input. Fill value for the area outside the transform in the output
            image is always 0.
1141
1142
1143

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1144
1145
    """

Philip Meier's avatar
Philip Meier committed
1146
    def __init__(self, degrees, resample=False, expand=False, center=None, fill=None):
1147
        super().__init__()
1148
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2, ))
1149
1150

        if center is not None:
1151
            _check_sequence_input(center, "center", req_sizes=(2, ))
1152
1153

        self.center = center
1154
1155
1156

        self.resample = resample
        self.expand = expand
1157
        self.fill = fill
1158
1159

    @staticmethod
1160
    def get_params(degrees: List[float]) -> float:
1161
1162
1163
        """Get parameters for ``rotate`` for a random rotation.

        Returns:
1164
            float: angle parameter to be passed to ``rotate`` for random rotation.
1165
        """
1166
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1167
1168
        return angle

1169
    def forward(self, img):
1170
        """
1171
        Args:
1172
            img (PIL Image or Tensor): Image to be rotated.
1173
1174

        Returns:
1175
            PIL Image or Tensor: Rotated image.
1176
1177
        """
        angle = self.get_params(self.degrees)
1178
        return F.rotate(img, angle, self.resample, self.expand, self.center, self.fill)
1179

1180
    def __repr__(self):
1181
1182
1183
1184
1185
        format_string = self.__class__.__name__ + '(degrees={0}'.format(self.degrees)
        format_string += ', resample={0}'.format(self.resample)
        format_string += ', expand={0}'.format(self.expand)
        if self.center is not None:
            format_string += ', center={0}'.format(self.center)
1186
1187
        if self.fill is not None:
            format_string += ', fill={0}'.format(self.fill)
1188
1189
        format_string += ')'
        return format_string
1190

1191

1192
1193
1194
1195
class RandomAffine(torch.nn.Module):
    """Random affine transformation of the image keeping center invariant.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1196
1197
1198
1199

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
1200
            will be (-degrees, +degrees). Set to 0 to deactivate rotations.
1201
1202
1203
1204
1205
1206
1207
        translate (tuple, optional): tuple of maximum absolute fraction for horizontal
            and vertical translations. For example translate=(a, b), then horizontal shift
            is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
            randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
        scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
            randomly sampled from the range a <= scale <= b. Will keep original scale by default.
        shear (sequence or float or int, optional): Range of degrees to select from.
ptrblck's avatar
ptrblck committed
1208
            If shear is a number, a shear parallel to the x axis in the range (-shear, +shear)
1209
            will be applied. Else if shear is a tuple or list of 2 values a shear parallel to the x axis in the
ptrblck's avatar
ptrblck committed
1210
1211
            range (shear[0], shear[1]) will be applied. Else if shear is a tuple or list of 4 values,
            a x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
1212
1213
1214
1215
1216
1217
1218
            Will not apply shear by default.
        resample (int, optional): An optional resampling filter. See `filters`_ for more information.
            If omitted, or if the image has mode "1" or "P", it is set to ``PIL.Image.NEAREST``.
            If input is Tensor, only ``PIL.Image.NEAREST`` and ``PIL.Image.BILINEAR`` are supported.
        fillcolor (tuple or int): Optional fill color (Tuple for RGB Image and int for grayscale) for the area
            outside the transform in the output image (Pillow>=5.0.0). This option is not supported for Tensor
            input. Fill value for the area outside the transform in the output image is always 0.
1219
1220
1221

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1222
1223
    """

1224
1225
    def __init__(self, degrees, translate=None, scale=None, shear=None, resample=0, fillcolor=0):
        super().__init__()
1226
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2, ))
1227
1228

        if translate is not None:
1229
            _check_sequence_input(translate, "translate", req_sizes=(2, ))
1230
1231
1232
1233
1234
1235
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError("translation values should be between 0 and 1")
        self.translate = translate

        if scale is not None:
1236
            _check_sequence_input(scale, "scale", req_sizes=(2, ))
1237
1238
1239
1240
1241
1242
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
1243
            self.shear = _setup_angle(shear, name="shear", req_sizes=(2, 4))
1244
1245
1246
1247
1248
1249
1250
        else:
            self.shear = shear

        self.resample = resample
        self.fillcolor = fillcolor

    @staticmethod
1251
1252
1253
1254
1255
1256
1257
    def get_params(
            degrees: List[float],
            translate: Optional[List[float]],
            scale_ranges: Optional[List[float]],
            shears: Optional[List[float]],
            img_size: List[int]
    ) -> Tuple[float, Tuple[int, int], float, Tuple[float, float]]:
1258
1259
1260
        """Get parameters for affine transformation

        Returns:
1261
            params to be passed to the affine transformation
1262
        """
1263
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1264
        if translate is not None:
1265
1266
1267
1268
1269
            max_dx = float(translate[0] * img_size[0])
            max_dy = float(translate[1] * img_size[1])
            tx = int(round(torch.empty(1).uniform_(-max_dx, max_dx).item()))
            ty = int(round(torch.empty(1).uniform_(-max_dy, max_dy).item()))
            translations = (tx, ty)
1270
1271
1272
1273
        else:
            translations = (0, 0)

        if scale_ranges is not None:
1274
            scale = float(torch.empty(1).uniform_(scale_ranges[0], scale_ranges[1]).item())
1275
1276
1277
        else:
            scale = 1.0

1278
        shear_x = shear_y = 0.0
1279
        if shears is not None:
1280
1281
1282
1283
1284
            shear_x = float(torch.empty(1).uniform_(shears[0], shears[1]).item())
            if len(shears) == 4:
                shear_y = float(torch.empty(1).uniform_(shears[2], shears[3]).item())

        shear = (shear_x, shear_y)
1285
1286
1287

        return angle, translations, scale, shear

1288
    def forward(self, img):
1289
        """
1290
            img (PIL Image or Tensor): Image to be transformed.
1291
1292

        Returns:
1293
            PIL Image or Tensor: Affine transformed image.
1294
        """
1295
1296
1297
1298

        img_size = F._get_image_size(img)

        ret = self.get_params(self.degrees, self.translate, self.scale, self.shear, img_size)
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
        return F.affine(img, *ret, resample=self.resample, fillcolor=self.fillcolor)

    def __repr__(self):
        s = '{name}(degrees={degrees}'
        if self.translate is not None:
            s += ', translate={translate}'
        if self.scale is not None:
            s += ', scale={scale}'
        if self.shear is not None:
            s += ', shear={shear}'
        if self.resample > 0:
            s += ', resample={resample}'
        if self.fillcolor != 0:
            s += ', fillcolor={fillcolor}'
        s += ')'
        d = dict(self.__dict__)
        d['resample'] = _pil_interpolation_to_str[d['resample']]
        return s.format(name=self.__class__.__name__, **d)


1319
class Grayscale(torch.nn.Module):
1320
    """Convert image to grayscale.
1321
1322
1323
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading
    dimensions
1324

1325
1326
1327
1328
    Args:
        num_output_channels (int): (1 or 3) number of channels desired for output image

    Returns:
1329
        PIL Image: Grayscale version of the input.
1330
1331
         - If ``num_output_channels == 1`` : returned image is single channel
         - If ``num_output_channels == 3`` : returned image is 3 channel with r == g == b
1332
1333
1334
1335

    """

    def __init__(self, num_output_channels=1):
1336
        super().__init__()
1337
1338
        self.num_output_channels = num_output_channels

1339
    def forward(self, img: Tensor) -> Tensor:
1340
1341
        """
        Args:
1342
            img (PIL Image or Tensor): Image to be converted to grayscale.
1343
1344

        Returns:
1345
            PIL Image or Tensor: Grayscaled image.
1346
        """
1347
        return F.rgb_to_grayscale(img, num_output_channels=self.num_output_channels)
1348

1349
    def __repr__(self):
1350
        return self.__class__.__name__ + '(num_output_channels={0})'.format(self.num_output_channels)
1351

1352

1353
class RandomGrayscale(torch.nn.Module):
1354
    """Randomly convert image to grayscale with a probability of p (default 0.1).
1355
1356
1357
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading
    dimensions
1358

1359
1360
1361
1362
    Args:
        p (float): probability that image should be converted to grayscale.

    Returns:
1363
        PIL Image or Tensor: Grayscale version of the input image with probability p and unchanged
1364
1365
1366
        with probability (1-p).
        - If input image is 1 channel: grayscale version is 1 channel
        - If input image is 3 channel: grayscale version is 3 channel with r == g == b
1367
1368
1369
1370

    """

    def __init__(self, p=0.1):
1371
        super().__init__()
1372
1373
        self.p = p

1374
    def forward(self, img: Tensor) -> Tensor:
1375
1376
        """
        Args:
1377
            img (PIL Image or Tensor): Image to be converted to grayscale.
1378
1379

        Returns:
1380
            PIL Image or Tensor: Randomly grayscaled image.
1381
        """
1382
1383
1384
        num_output_channels = F._get_image_num_channels(img)
        if torch.rand(1) < self.p:
            return F.rgb_to_grayscale(img, num_output_channels=num_output_channels)
1385
        return img
1386
1387

    def __repr__(self):
1388
        return self.__class__.__name__ + '(p={0})'.format(self.p)
1389
1390


1391
class RandomErasing(torch.nn.Module):
1392
    """ Randomly selects a rectangle region in an image and erases its pixels.
vfdev's avatar
vfdev committed
1393
    'Random Erasing Data Augmentation' by Zhong et al. See https://arxiv.org/abs/1708.04896
1394

1395
1396
1397
1398
1399
1400
1401
1402
    Args:
         p: probability that the random erasing operation will be performed.
         scale: range of proportion of erased area against input image.
         ratio: range of aspect ratio of erased area.
         value: erasing value. Default is 0. If a single int, it is used to
            erase all pixels. If a tuple of length 3, it is used to erase
            R, G, B channels respectively.
            If a str of 'random', erasing each pixel with random values.
Zhun Zhong's avatar
Zhun Zhong committed
1403
         inplace: boolean to make this transform inplace. Default set to False.
1404

1405
1406
    Returns:
        Erased Image.
1407

1408
1409
    # Examples:
        >>> transform = transforms.Compose([
1410
1411
1412
1413
        >>>   transforms.RandomHorizontalFlip(),
        >>>   transforms.ToTensor(),
        >>>   transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>>   transforms.RandomErasing(),
1414
1415
1416
        >>> ])
    """

Zhun Zhong's avatar
Zhun Zhong committed
1417
    def __init__(self, p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False):
1418
1419
1420
1421
1422
1423
1424
1425
1426
        super().__init__()
        if not isinstance(value, (numbers.Number, str, tuple, list)):
            raise TypeError("Argument value should be either a number or str or a sequence")
        if isinstance(value, str) and value != "random":
            raise ValueError("If value is str, it should be 'random'")
        if not isinstance(scale, (tuple, list)):
            raise TypeError("Scale should be a sequence")
        if not isinstance(ratio, (tuple, list)):
            raise TypeError("Ratio should be a sequence")
1427
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
1428
            warnings.warn("Scale and ratio should be of kind (min, max)")
1429
        if scale[0] < 0 or scale[1] > 1:
1430
            raise ValueError("Scale should be between 0 and 1")
1431
        if p < 0 or p > 1:
1432
            raise ValueError("Random erasing probability should be between 0 and 1")
1433
1434
1435
1436
1437

        self.p = p
        self.scale = scale
        self.ratio = ratio
        self.value = value
1438
        self.inplace = inplace
1439
1440

    @staticmethod
1441
1442
1443
    def get_params(
            img: Tensor, scale: Tuple[float, float], ratio: Tuple[float, float], value: Optional[List[float]] = None
    ) -> Tuple[int, int, int, int, Tensor]:
1444
1445
1446
1447
        """Get parameters for ``erase`` for a random erasing.

        Args:
            img (Tensor): Tensor image of size (C, H, W) to be erased.
1448
1449
1450
1451
1452
            scale (tuple or list): range of proportion of erased area against input image.
            ratio (tuple or list): range of aspect ratio of erased area.
            value (list, optional): erasing value. If None, it is interpreted as "random"
                (erasing each pixel with random values). If ``len(value)`` is 1, it is interpreted as a number,
                i.e. ``value[0]``.
1453
1454
1455
1456

        Returns:
            tuple: params (i, j, h, w, v) to be passed to ``erase`` for random erasing.
        """
vfdev's avatar
vfdev committed
1457
        img_c, img_h, img_w = img.shape[-3], img.shape[-2], img.shape[-1]
1458
        area = img_h * img_w
1459

1460
        for _ in range(10):
1461
1462
            erase_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
            aspect_ratio = torch.empty(1).uniform_(ratio[0], ratio[1]).item()
1463
1464
1465

            h = int(round(math.sqrt(erase_area * aspect_ratio)))
            w = int(round(math.sqrt(erase_area / aspect_ratio)))
1466
1467
1468
1469
1470
1471
1472
            if not (h < img_h and w < img_w):
                continue

            if value is None:
                v = torch.empty([img_c, h, w], dtype=torch.float32).normal_()
            else:
                v = torch.tensor(value)[:, None, None]
1473

1474
1475
            i = torch.randint(0, img_h - h + 1, size=(1, )).item()
            j = torch.randint(0, img_w - w + 1, size=(1, )).item()
1476
            return i, j, h, w, v
1477

Zhun Zhong's avatar
Zhun Zhong committed
1478
1479
1480
        # Return original image
        return 0, 0, img_h, img_w, img

1481
    def forward(self, img):
1482
1483
1484
1485
1486
1487
1488
        """
        Args:
            img (Tensor): Tensor image of size (C, H, W) to be erased.

        Returns:
            img (Tensor): Erased Tensor image.
        """
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
        if torch.rand(1) < self.p:

            # cast self.value to script acceptable type
            if isinstance(self.value, (int, float)):
                value = [self.value, ]
            elif isinstance(self.value, str):
                value = None
            elif isinstance(self.value, tuple):
                value = list(self.value)
            else:
                value = self.value

            if value is not None and not (len(value) in (1, img.shape[-3])):
                raise ValueError(
                    "If value is a sequence, it should have either a single value or "
                    "{} (number of input channels)".format(img.shape[-3])
                )

            x, y, h, w, v = self.get_params(img, scale=self.scale, ratio=self.ratio, value=value)
1508
            return F.erase(img, x, y, h, w, v, self.inplace)
1509
        return img
1510
1511


1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
class GaussianBlur(torch.nn.Module):
    """Blurs image with randomly chosen Gaussian blur.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading
    dimensions

    Args:
        kernel_size (int or sequence): Size of the Gaussian kernel.
        sigma (float or tuple of float (min, max)): Standard deviation to be used for
            creating kernel to perform blurring. If float, sigma is fixed. If it is tuple
            of float (min, max), sigma is chosen uniformly at random to lie in the
            given range.

    Returns:
        PIL Image or Tensor: Gaussian blurred version of the input image.

    """

    def __init__(self, kernel_size, sigma=(0.1, 2.0)):
        super().__init__()
        self.kernel_size = _setup_size(kernel_size, "Kernel size should be a tuple/list of two integers")
        for ks in self.kernel_size:
            if ks <= 0 or ks % 2 == 0:
                raise ValueError("Kernel size value should be an odd and positive number.")

        if isinstance(sigma, numbers.Number):
            if sigma <= 0:
                raise ValueError("If sigma is a single number, it must be positive.")
            sigma = (sigma, sigma)
        elif isinstance(sigma, Sequence) and len(sigma) == 2:
            if not 0. < sigma[0] <= sigma[1]:
                raise ValueError("sigma values should be positive and of the form (min, max).")
        else:
            raise ValueError("sigma should be a single number or a list/tuple with length 2.")

        self.sigma = sigma

    @staticmethod
    def get_params(sigma_min: float, sigma_max: float) -> float:
        """Choose sigma for ``gaussian_blur`` for random gaussian blurring.

        Args:
            sigma_min (float): Minimum standard deviation that can be chosen for blurring kernel.
            sigma_max (float): Maximum standard deviation that can be chosen for blurring kernel.

        Returns:
            float: Standard deviation to be passed to calculate kernel for gaussian blurring.
        """
        return torch.empty(1).uniform_(sigma_min, sigma_max).item()

    def forward(self, img: Tensor) -> Tensor:
        """
        Args:
            img (PIL Image or Tensor): image of size (C, H, W) to be blurred.

        Returns:
            PIL Image or Tensor: Gaussian blurred image
        """
        sigma = self.get_params(self.sigma[0], self.sigma[1])
        return F.gaussian_blur(img, self.kernel_size, [sigma, sigma])

    def __repr__(self):
        s = '(kernel_size={}, '.format(self.kernel_size)
        s += 'sigma={})'.format(self.sigma)
        return self.__class__.__name__ + s


1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
def _setup_size(size, error_msg):
    if isinstance(size, numbers.Number):
        return int(size), int(size)

    if isinstance(size, Sequence) and len(size) == 1:
        return size[0], size[0]

    if len(size) != 2:
        raise ValueError(error_msg)

    return size


def _check_sequence_input(x, name, req_sizes):
    msg = req_sizes[0] if len(req_sizes) < 2 else " or ".join([str(s) for s in req_sizes])
    if not isinstance(x, Sequence):
        raise TypeError("{} should be a sequence of length {}.".format(name, msg))
    if len(x) not in req_sizes:
        raise ValueError("{} should be sequence of length {}.".format(name, msg))


def _setup_angle(x, name, req_sizes=(2, )):
    if isinstance(x, numbers.Number):
        if x < 0:
            raise ValueError("If {} is a single number, it must be positive.".format(name))
        x = [-x, x]
    else:
        _check_sequence_input(x, name, req_sizes)

    return [float(d) for d in x]