main.rs 68 KB
Newer Older
1
use clap::{Parser, ValueEnum};
Nicolas Patry's avatar
Nicolas Patry committed
2
3
4
5
use hf_hub::{
    api::sync::{Api, ApiBuilder},
    Repo, RepoType,
};
6
7
use nix::sys::signal::{self, Signal};
use nix::unistd::Pid;
8
use regex::Regex;
9
use serde::Deserialize;
Nicolas Patry's avatar
Nicolas Patry committed
10
use std::env;
11
use std::ffi::OsString;
12
use std::io::{BufRead, BufReader};
13
use std::os::unix::process::{CommandExt, ExitStatusExt};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
14
use std::path::Path;
OlivierDehaene's avatar
OlivierDehaene committed
15
use std::process::{Child, Command, ExitStatus, Stdio};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
16
17
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::TryRecvError;
18
use std::sync::{mpsc, Arc};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
19
20
21
use std::thread;
use std::thread::sleep;
use std::time::{Duration, Instant};
22
23
24
25
use std::{
    fs, io,
    io::{Read, Write},
};
26
use thiserror::Error;
27
use tracing_subscriber::{filter::LevelFilter, EnvFilter};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
28

29
mod env_runtime;
30
mod gpu;
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
fn get_config(
    model_id: &str,
    revision: &Option<String>,
) -> Result<Config, Box<dyn std::error::Error>> {
    let mut path = std::path::Path::new(model_id).to_path_buf();
    let model_id = model_id.to_string();
    let filename = if !path.exists() {
        // Assume it's a hub id

        let api = if let Ok(token) = std::env::var("HF_TOKEN") {
            // env variable has precedence over on file token.
            ApiBuilder::new().with_token(Some(token)).build()?
        } else {
            Api::new()?
        };
        let repo = if let Some(ref revision) = revision {
            api.repo(Repo::with_revision(
                model_id,
                RepoType::Model,
                revision.to_string(),
            ))
        } else {
            api.model(model_id)
        };
        repo.get("config.json")?
    } else {
        path.push("config.json");
        path
    };

    let content = std::fs::read_to_string(filename)?;
    let config: RawConfig = serde_json::from_str(&content)?;

    let config: Config = config.into();
    Ok(config)
}

fn resolve_attention(config: &Option<Config>, lora_adapters: &Option<String>) -> (String, String) {
70
    let compute_capability = gpu::get_cuda_capability();
71
    let mut prefix_caching: Option<String> = std::env::var("PREFIX_CACHING").ok();
72
73
74
75
76
77
78
79
80
81
82
    let mut attention: Option<String> = std::env::var("ATTENTION").ok();
    if let Some(config) = config {
        if prefix_caching.is_none() {
            if config.vision_config.is_some() {
                tracing::info!("Disabling prefix caching because of VLM model");
                prefix_caching = Some("0".to_string());
            } else if config.is_encoder_decoder {
                tracing::info!("Disabling prefix caching because of seq2seq model");
                prefix_caching = Some("0".to_string());
            }
        }
83
84
85
86
87
88
89

        let fallback_attention = if matches!(compute_capability, Some((major, _)) if major < 8) {
            "paged"
        } else {
            "flashdecoding"
        };

90
91
92
93
94
95
96
        match config.head_dim {
            Some(h) if h == 64 || h == 128 || h == 256 => {
                if lora_adapters.is_some() && prefix_caching.is_none() {
                    tracing::info!("Disabling prefix caching because of lora adapters");
                    prefix_caching = Some("0".to_string());
                }
                match config.model_type.as_deref() {
Daniël de Kok's avatar
Daniël de Kok committed
97
                    Some("falcon") | Some("deepseek_v2") => {
98
99
100
101
                        // Required because gemma2 needs bfloat16 which is not supported by
                        // flashinfer ?
                        if attention.is_none() {
                            tracing::info!(
102
                                "Forcing attention to '{fallback_attention}' because model {} requires it",
103
104
                                config.model_type.as_ref().unwrap()
                            );
105
106
107
108
109
                            attention = Some(fallback_attention.to_string());
                        }
                        if fallback_attention == "paged" && prefix_caching.is_none() {
                            tracing::info!("Disabling prefix caching because it is not supported with 'paged' attention");
                            prefix_caching = Some("0".to_string());
110
111
112
113
114
115
116
117
                        }
                    }
                    Some("t5") => {}
                    _ => {}
                }
            }
            _ => {
                if attention.is_none() {
118
119
                    tracing::info!("Forcing attention to '{fallback_attention}' because head dim is not supported by flashinfer, also disabling prefix caching");
                    attention = Some(fallback_attention.to_string());
120
121
122
123
124
125
126
                }
                if prefix_caching.is_none() {
                    prefix_caching = Some("0".to_string());
                }
            }
        }
    }
127
128
129
130
    if attention == Some("paged".to_string()) && prefix_caching.is_none() {
        tracing::info!("Disabling prefix caching on paged attention");
        prefix_caching = Some("0".to_string());
    }
131

132
    let attention = attention.unwrap_or("flashinfer".to_string());
133
134
    let prefix_caching = prefix_caching.unwrap_or("true".to_string());

135
136
137
    (prefix_caching, attention)
}

138
#[derive(Deserialize)]
139
struct RawConfig {
140
    max_position_embeddings: Option<usize>,
141
    n_positions: Option<usize>,
142
    model_type: Option<String>,
143
    max_seq_len: Option<usize>,
144
    quantization_config: Option<QuantizationConfig>,
145
146
147
148
149
150
    n_embd: Option<usize>,
    hidden_size: Option<usize>,
    num_attention_heads: Option<usize>,
    head_dim: Option<usize>,
    vision_config: Option<VisionConfig>,
    is_encoder_decoder: Option<bool>,
151
152
153
154
155
}

#[derive(Deserialize)]
struct QuantizationConfig {
    quant_method: Option<Quantization>,
156
157
}

158
159
160
#[derive(Deserialize)]
struct VisionConfig {}

161
162
163
#[derive(Deserialize)]
struct Config {
    max_position_embeddings: Option<usize>,
164
    quantize: Option<Quantization>,
165
166
167
168
    head_dim: Option<usize>,
    model_type: Option<String>,
    vision_config: Option<VisionConfig>,
    is_encoder_decoder: bool,
169
170
171
172
173
174
175
176
}

impl From<RawConfig> for Config {
    fn from(other: RawConfig) -> Self {
        let max_position_embeddings = other
            .max_position_embeddings
            .or(other.max_seq_len)
            .or(other.n_positions);
177
        let quantize = other.quantization_config.and_then(|q| q.quant_method);
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
        let head_dim = other.head_dim.or_else(|| {
            match (other.hidden_size, other.n_embd, other.num_attention_heads) {
                (Some(hidden_size), _, Some(num_attention_heads))
                    if hidden_size % num_attention_heads == 0 =>
                {
                    Some(hidden_size / num_attention_heads)
                }
                // Legacy
                (_, Some(hidden_size), Some(num_attention_heads))
                    if hidden_size % num_attention_heads == 0 =>
                {
                    Some(hidden_size / num_attention_heads)
                }
                _ => None,
            }
        });
        let model_type = other.model_type;
        let vision_config = other.vision_config;
        let is_encoder_decoder = other.is_encoder_decoder.unwrap_or(false);
197
198
        Config {
            max_position_embeddings,
199
            quantize,
200
201
202
203
            head_dim,
            model_type,
            vision_config,
            is_encoder_decoder,
204
205
206
207
        }
    }
}

208
209
#[derive(Clone, Copy, Debug, ValueEnum, Deserialize)]
#[serde(rename_all = "kebab-case")]
210
enum Quantization {
211
    /// 4 bit quantization. Requires a specific AWQ quantized model:
212
    ///   <https://hf.co/models?search=awq>.
213
    /// Should replace GPTQ models wherever possible because of the better latency
214
    Awq,
215
216
    /// Compressed tensors, which can be a mixture of different quantization methods.
    CompressedTensors,
217
218
    /// 8 bit quantization, doesn't require specific model.
    /// Should be a drop-in replacement to bitsandbytes with much better performance.
219
    /// Kernels are from <https://github.com/NetEase-FuXi/EETQ.git>
220
    Eetq,
221
222
223
224
    /// Variable bit quantization. Requires a specific EXL2 quantized model:
    /// <https://hf.co/models?search=exl2>. Requires exllama2 kernels and does
    /// not support tensor parallelism (num_shard > 1).
    Exl2,
225
    /// 4 bit quantization. Requires a specific GTPQ quantized model: <https://hf.co/models?search=gptq>.
226
    /// text-generation-inference will use exllama (faster) kernels wherever possible, and use
227
228
229
    /// triton kernel (wider support) when it's not.
    /// AWQ has faster kernels.
    Gptq,
230
231
    /// 4 bit quantization. Requires a specific Marlin quantized model: <https://hf.co/models?search=marlin>.
    Marlin,
232
233
    /// Bitsandbytes 8bit. Can be applied on any model, will cut the memory requirement in half,
    /// but it is known that the model will be much slower to run than the native f16.
234
235
236
237
    // #[deprecated(
    //     since = "1.1.0",
    //     note = "Use `eetq` instead, which provides better latencies overall and is drop-in in most cases"
    // )]
238
    Bitsandbytes,
239
240
    /// Bitsandbytes 4bit. Can be applied on any model, will cut the memory requirement by 4x,
    /// but it is known that the model will be much slower to run than the native f16.
241
    BitsandbytesNf4,
242
243
    /// Bitsandbytes 4bit. nf4 should be preferred in most cases but maybe this one has better
    /// perplexity performance for you model
244
    BitsandbytesFp4,
Nicolas Patry's avatar
Nicolas Patry committed
245
246
247
248
249
    /// [FP8](https://developer.nvidia.com/blog/nvidia-arm-and-intel-publish-fp8-specification-for-standardization-as-an-interchange-format-for-ai/) (e4m3) works on H100 and above
    /// This dtype has native ops should be the fastest if available.
    /// This is currently not the fastest because of local unpacking + padding to satisfy matrix
    /// multiplication limitations.
    Fp8,
250
251
252
253
254
255
}

impl std::fmt::Display for Quantization {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
256
257
            #[allow(deprecated)]
            // Use `eetq` instead, which provides better latencies overall and is drop-in in most cases
258
259
260
            Quantization::Bitsandbytes => {
                write!(f, "bitsandbytes")
            }
261
            Quantization::BitsandbytesNf4 => {
Nicolas Patry's avatar
Nicolas Patry committed
262
263
                write!(f, "bitsandbytes-nf4")
            }
264
            Quantization::BitsandbytesFp4 => {
Nicolas Patry's avatar
Nicolas Patry committed
265
266
                write!(f, "bitsandbytes-fp4")
            }
267
268
269
            Quantization::Exl2 => {
                write!(f, "exl2")
            }
270
271
272
            Quantization::Gptq => {
                write!(f, "gptq")
            }
273
274
275
            Quantization::Marlin => {
                write!(f, "marlin")
            }
276
277
278
            Quantization::Awq => {
                write!(f, "awq")
            }
279
280
281
            Quantization::CompressedTensors => {
                write!(f, "compressed-tensors")
            }
282
283
284
            Quantization::Eetq => {
                write!(f, "eetq")
            }
Nicolas Patry's avatar
Nicolas Patry committed
285
286
287
            Quantization::Fp8 => {
                write!(f, "fp8")
            }
288
289
290
291
        }
    }
}

292
293
294
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Dtype {
    Float16,
295
    #[clap(name = "bfloat16")]
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
    BFloat16,
}

impl std::fmt::Display for Dtype {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            Dtype::Float16 => {
                write!(f, "float16")
            }
            Dtype::BFloat16 => {
                write!(f, "bfloat16")
            }
        }
    }
}

313
314
#[derive(Clone, Copy, Debug, ValueEnum)]
enum KVCacheDtype {
315
316
317
    #[clap(name = "fp8_e4m3fn")]
    Fp8e4m3fn,

318
319
320
321
322
323
324
    #[clap(name = "fp8_e5m2")]
    Fp8e5m2,
}

impl std::fmt::Display for KVCacheDtype {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
325
326
327
            KVCacheDtype::Fp8e4m3fn => {
                write!(f, "fp8_e4m3fn")
            }
328
329
330
331
332
333
334
            KVCacheDtype::Fp8e5m2 => {
                write!(f, "fp8_e5m2")
            }
        }
    }
}

Nicolas Patry's avatar
Nicolas Patry committed
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
#[derive(Clone, Copy, Debug, ValueEnum)]
enum RopeScaling {
    Linear,
    Dynamic,
}

impl std::fmt::Display for RopeScaling {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            RopeScaling::Linear => {
                write!(f, "linear")
            }
            RopeScaling::Dynamic => {
                write!(f, "dynamic")
            }
        }
    }
}

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
#[derive(Clone, Copy, Debug, ValueEnum)]
pub enum UsageStatsLevel {
    /// Default option, usage statistics are collected anonymously
    On,
    /// Disables all collection of usage statistics
    Off,
    /// Doesn't send the error stack trace or error type, but allows sending a crash event
    NoStack,
}

impl std::fmt::Display for UsageStatsLevel {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            UsageStatsLevel::On => {
                write!(f, "on")
            }
            UsageStatsLevel::Off => {
                write!(f, "off")
            }
            UsageStatsLevel::NoStack => {
                write!(f, "no-stack")
            }
        }
    }
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
382
383
384
385
/// App Configuration
#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]
struct Args {
386
387
388
389
390
    /// The name of the model to load.
    /// Can be a MODEL_ID as listed on <https://hf.co/models> like
    /// `gpt2` or `OpenAssistant/oasst-sft-1-pythia-12b`.
    /// Or it can be a local directory containing the necessary files
    /// as saved by `save_pretrained(...)` methods of transformers
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
391
    #[clap(default_value = "bigscience/bloom-560m", long, env)]
392
    model_id: String,
393
394
395

    /// The actual revision of the model if you're referring to a model
    /// on the hub. You can use a specific commit id or a branch like `refs/pr/2`.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
396
    #[clap(long, env)]
397
    revision: Option<String>,
398

399
400
401
402
403
    /// The number of tokenizer workers used for payload validation and truncation inside the
    /// router.
    #[clap(default_value = "2", long, env)]
    validation_workers: usize,

404
    /// Whether to shard the model across multiple GPUs
405
406
    /// By default text-generation-inference will use all available GPUs to run
    /// the model. Setting it to `false` deactivates `num_shard`.
407
408
    #[clap(long, env)]
    sharded: Option<bool>,
409
410

    /// The number of shards to use if you don't want to use all GPUs on a given machine.
411
412
    /// You can use `CUDA_VISIBLE_DEVICES=0,1 text-generation-launcher... --num_shard 2`
    /// and `CUDA_VISIBLE_DEVICES=2,3 text-generation-launcher... --num_shard 2` to
413
    /// launch 2 copies with 2 shard each on a given machine with 4 GPUs for instance.
414
415
    #[clap(long, env)]
    num_shard: Option<usize>,
416

417
418
419
420
421
    /// Quantization method to use for the model. It is not necessary to specify this option
    /// for pre-quantized models, since the quantization method is read from the model
    /// configuration.
    ///
    /// Marlin kernels will be used automatically for GPTQ/AWQ models.
422
423
    #[clap(long, env, value_enum)]
    quantize: Option<Quantization>,
424

Nicolas Patry's avatar
Nicolas Patry committed
425
426
427
428
429
430
431
    /// The number of input_ids to speculate on
    /// If using a medusa model, the heads will be picked up automatically
    /// Other wise, it will use n-gram speculation which is relatively free
    /// in terms of compute, but the speedup heavily depends on the task.
    #[clap(long, env)]
    speculate: Option<usize>,

432
433
434
435
    /// The dtype to be forced upon the model. This option cannot be used with `--quantize`.
    #[clap(long, env, value_enum)]
    dtype: Option<Dtype>,

436
437
    /// Specify the dtype for the key-value cache. When this option is not provided,
    /// the dtype of the model is used (typically `float16` or `bfloat16`). Currently
438
    /// the only supported value are `fp8_e4m3fn` and `fp8_e5m2` on CUDA.
439
440
441
    #[clap(long, env, value_enum)]
    kv_cache_dtype: Option<KVCacheDtype>,

442
443
444
445
446
447
    /// Whether you want to execute hub modelling code. Explicitly passing a `revision` is
    /// encouraged when loading a model with custom code to ensure no malicious code has been
    /// contributed in a newer revision.
    #[clap(long, env, value_enum)]
    trust_remote_code: bool,

448
449
450
    /// The maximum amount of concurrent requests for this particular deployment.
    /// Having a low limit will refuse clients requests instead of having them
    /// wait for too long and is usually good to handle backpressure correctly.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
451
452
    #[clap(default_value = "128", long, env)]
    max_concurrent_requests: usize,
453
454
455
456

    /// This is the maximum allowed value for clients to set `best_of`.
    /// Best of makes `n` generations at the same time, and return the best
    /// in terms of overall log probability over the entire generated sequence
457
458
    #[clap(default_value = "2", long, env)]
    max_best_of: usize,
459
460
461
462
463
464

    /// This is the maximum allowed value for clients to set `stop_sequences`.
    /// Stop sequences are used to allow the model to stop on more than just
    /// the EOS token, and enable more complex "prompting" where users can preprompt
    /// the model in a specific way and define their "own" stop token aligned with
    /// their prompt.
465
466
    #[clap(default_value = "4", long, env)]
    max_stop_sequences: usize,
467

Nicolas Patry's avatar
Nicolas Patry committed
468
    /// This is the maximum allowed value for clients to set `top_n_tokens`.
469
    /// `top_n_tokens` is used to return information about the the `n` most likely
Nicolas Patry's avatar
Nicolas Patry committed
470
471
472
473
474
475
    /// tokens at each generation step, instead of just the sampled token. This
    /// information can be used for downstream tasks like for classification or
    /// ranking.
    #[clap(default_value = "5", long, env)]
    max_top_n_tokens: u32,

476
477
478
479
    /// This is the maximum allowed input length (expressed in number of tokens)
    /// for users. The larger this value, the longer prompt users can send which
    /// can impact the overall memory required to handle the load.
    /// Please note that some models have a finite range of sequence they can handle.
480
    /// Default to min(max_allocatable, max_position_embeddings) - 1
481
482
483
484
485
486
    #[clap(long, env)]
    max_input_tokens: Option<usize>,

    /// Legacy version of [`Args::max_input_tokens`].
    #[clap(long, env)]
    max_input_length: Option<usize>,
487
488
489
490
491
492
493
494
495

    /// This is the most important value to set as it defines the "memory budget"
    /// of running clients requests.
    /// Clients will send input sequences and ask to generate `max_new_tokens`
    /// on top. with a value of `1512` users can send either a prompt of
    /// `1000` and ask for `512` new tokens, or send a prompt of `1` and ask for
    /// `1511` max_new_tokens.
    /// The larger this value, the larger amount each request will be in your RAM
    /// and the less effective batching can be.
496
    /// Default to min(max_allocatable, max_position_embeddings)
497
498
    #[clap(long, env)]
    max_total_tokens: Option<usize>,
499
500
501
502
503
504
505
506
507
508
509

    /// This represents the ratio of waiting queries vs running queries where
    /// you want to start considering pausing the running queries to include the waiting
    /// ones into the same batch.
    /// `waiting_served_ratio=1.2` Means when 12 queries are waiting and there's
    /// only 10 queries left in the current batch we check if we can fit those 12
    /// waiting queries into the batching strategy, and if yes, then batching happens
    /// delaying the 10 running queries by a `prefill` run.
    ///
    /// This setting is only applied if there is room in the batch
    /// as defined by `max_batch_total_tokens`.
510
    #[clap(default_value = "0.3", long, env)]
511
    waiting_served_ratio: f32,
512

513
514
515
    /// Limits the number of tokens for the prefill operation.
    /// Since this operation take the most memory and is compute bound, it is interesting
    /// to limit the number of requests that can be sent.
516
517
518
    /// Default to `max_input_tokens + 50` to give a bit of room.
    #[clap(long, env)]
    max_batch_prefill_tokens: Option<u32>,
519

520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
    /// **IMPORTANT** This is one critical control to allow maximum usage
    /// of the available hardware.
    ///
    /// This represents the total amount of potential tokens within a batch.
    /// When using padding (not recommended) this would be equivalent of
    /// `batch_size` * `max_total_tokens`.
    ///
    /// However in the non-padded (flash attention) version this can be much finer.
    ///
    /// For `max_batch_total_tokens=1000`, you could fit `10` queries of `total_tokens=100`
    /// or a single query of `1000` tokens.
    ///
    /// Overall this number should be the largest possible amount that fits the
    /// remaining memory (after the model is loaded). Since the actual memory overhead
    /// depends on other parameters like if you're using quantization, flash attention
    /// or the model implementation, text-generation-inference cannot infer this number
    /// automatically.
537
538
    #[clap(long, env)]
    max_batch_total_tokens: Option<u32>,
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556

    /// This setting defines how many tokens can be passed before forcing the waiting
    /// queries to be put on the batch (if the size of the batch allows for it).
    /// New queries require 1 `prefill` forward, which is different from `decode`
    /// and therefore you need to pause the running batch in order to run `prefill`
    /// to create the correct values for the waiting queries to be able to join the batch.
    ///
    /// With a value too small, queries will always "steal" the compute to run `prefill`
    /// and running queries will be delayed by a lot.
    ///
    /// With a value too big, waiting queries could wait for a very long time
    /// before being allowed a slot in the running batch. If your server is busy
    /// that means that requests that could run in ~2s on an empty server could
    /// end up running in ~20s because the query had to wait for 18s.
    ///
    /// This number is expressed in number of tokens to make it a bit more
    /// "model" agnostic, but what should really matter is the overall latency
    /// for end users.
557
558
    #[clap(default_value = "20", long, env)]
    max_waiting_tokens: usize,
559

560
561
562
563
564
    /// Enforce a maximum number of requests per batch
    /// Specific flag for hardware targets that do not support unpadded inference
    #[clap(long, env)]
    max_batch_size: Option<usize>,

565
566
    /// Specify the batch sizes to compute cuda graphs for.
    /// Use "0" to disable.
567
568
569
    /// Default = "1,2,4,8,16,32"
    #[clap(long, env, value_delimiter = ',')]
    cuda_graphs: Option<Vec<usize>>,
570

571
572
573
574
    /// The IP address to listen on
    #[clap(default_value = "0.0.0.0", long, env)]
    hostname: String,

575
    /// The port to listen on.
576
    #[clap(default_value = "3000", long, short, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
577
    port: u16,
578
579
580

    /// The name of the socket for gRPC communication between the webserver
    /// and the shards.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
581
582
    #[clap(default_value = "/tmp/text-generation-server", long, env)]
    shard_uds_path: String,
583
584

    /// The address the master shard will listen on. (setting used by torch distributed)
585
    #[clap(default_value = "localhost", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
586
    master_addr: String,
587
588

    /// The address the master port will listen on. (setting used by torch distributed)
589
    #[clap(default_value = "29500", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
590
    master_port: usize,
591
592
593

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
594
    #[clap(long, env)]
595
    huggingface_hub_cache: Option<String>,
596
597
598

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
599
600
    #[clap(long, env)]
    weights_cache_override: Option<String>,
601
602
603
604
605

    /// For some models (like bloom), text-generation-inference implemented custom
    /// cuda kernels to speed up inference. Those kernels were only tested on A100.
    /// Use this flag to disable them if you're running on different hardware and
    /// encounter issues.
606
    #[clap(long, env)]
607
    disable_custom_kernels: bool,
608

609
610
611
612
613
    /// Limit the CUDA available memory.
    /// The allowed value equals the total visible memory multiplied by cuda-memory-fraction.
    #[clap(default_value = "1.0", long, env)]
    cuda_memory_fraction: f32,

Nicolas Patry's avatar
Nicolas Patry committed
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
    /// Rope scaling will only be used for RoPE models
    /// and allow rescaling the position rotary to accomodate for
    /// larger prompts.
    ///
    /// Goes together with `rope_factor`.
    ///
    /// `--rope-factor 2.0` gives linear scaling with a factor of 2.0
    /// `--rope-scaling dynamic` gives dynamic scaling with a factor of 1.0
    /// `--rope-scaling linear` gives linear scaling with a factor of 1.0 (Nothing will be changed
    /// basically)
    ///
    /// `--rope-scaling linear --rope-factor` fully describes the scaling you want
    #[clap(long, env)]
    rope_scaling: Option<RopeScaling>,

    /// Rope scaling will only be used for RoPE models
    /// See `rope_scaling`
    #[clap(long, env)]
    rope_factor: Option<f32>,

634
    /// Outputs the logs in JSON format (useful for telemetry)
635
    #[clap(long, env)]
636
    json_output: bool,
637

638
639
    #[clap(long, env)]
    otlp_endpoint: Option<String>,
640

641
642
643
    #[clap(default_value = "text-generation-inference.router", long, env)]
    otlp_service_name: String,

644
645
    #[clap(long, env)]
    cors_allow_origin: Vec<String>,
Erik Kaunismäki's avatar
Erik Kaunismäki committed
646
647
648
649

    #[clap(long, env)]
    api_key: Option<String>,

650
651
652
653
    #[clap(long, env)]
    watermark_gamma: Option<f32>,
    #[clap(long, env)]
    watermark_delta: Option<f32>,
654

655
656
657
658
659
660
661
662
    /// Enable ngrok tunneling
    #[clap(long, env)]
    ngrok: bool,

    /// ngrok authentication token
    #[clap(long, env)]
    ngrok_authtoken: Option<String>,

663
    /// ngrok edge
664
    #[clap(long, env)]
665
    ngrok_edge: Option<String>,
666

667
668
669
670
671
    /// The path to the tokenizer config file. This path is used to load the tokenizer configuration which may
    /// include a `chat_template`. If not provided, the default config will be used from the model hub.
    #[clap(long, env)]
    tokenizer_config_path: Option<String>,

drbh's avatar
drbh committed
672
673
674
675
676
    /// Disable outlines grammar constrained generation.
    /// This is a feature that allows you to generate text that follows a specific grammar.
    #[clap(long, env)]
    disable_grammar_support: bool,

677
678
679
    /// Display a lot of information about your runtime environment
    #[clap(long, short, action)]
    env: bool,
680
681
682
683

    /// Control the maximum number of inputs that a client can send in a single request
    #[clap(default_value = "4", long, env)]
    max_client_batch_size: usize,
drbh's avatar
drbh committed
684
685
686
687
688

    /// Lora Adapters a list of adapter ids i.e. `repo/adapter1,repo/adapter2` to load during
    /// startup that will be available to callers via the `adapter_id` field in a request.
    #[clap(long, env)]
    lora_adapters: Option<String>,
689

690
691
692
693
694
    /// Control if anonymous usage stats are collected.
    /// Options are "on", "off" and "no-stack"
    /// Defaul is on.
    #[clap(default_value = "on", long, env)]
    usage_stats: UsageStatsLevel,
695
696
697
698
699
700

    /// Payload size limit in bytes
    ///
    /// Default is 2MB
    #[clap(default_value = "2000000", long, env)]
    payload_limit: usize,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
701
702
}

703
704
705
#[derive(Debug)]
enum ShardStatus {
    Ready,
706
    Failed(usize),
707
}
708

709
710
711
712
#[allow(clippy::too_many_arguments)]
fn shard_manager(
    model_id: String,
    revision: Option<String>,
713
    quantize: Option<Quantization>,
Nicolas Patry's avatar
Nicolas Patry committed
714
    speculate: Option<usize>,
715
    dtype: Option<Dtype>,
716
    kv_cache_dtype: Option<KVCacheDtype>,
717
    trust_remote_code: bool,
718
719
720
721
722
723
724
725
726
727
    uds_path: String,
    rank: usize,
    world_size: usize,
    master_addr: String,
    master_port: usize,
    huggingface_hub_cache: Option<String>,
    weights_cache_override: Option<String>,
    disable_custom_kernels: bool,
    watermark_gamma: Option<f32>,
    watermark_delta: Option<f32>,
728
    cuda_graphs: Vec<usize>,
729
    cuda_memory_fraction: f32,
Nicolas Patry's avatar
Nicolas Patry committed
730
731
    rope_scaling: Option<RopeScaling>,
    rope_factor: Option<f32>,
732
    max_total_tokens: Option<usize>,
733
    max_batch_size: Option<usize>,
734
    max_input_tokens: Option<usize>,
drbh's avatar
drbh committed
735
    lora_adapters: Option<String>,
736
    otlp_endpoint: Option<String>,
737
    otlp_service_name: String,
738
    log_level: LevelFilter,
739
    status_sender: mpsc::Sender<ShardStatus>,
740
    shutdown: Arc<AtomicBool>,
741
742
    _shutdown_sender: mpsc::Sender<()>,
) {
743
744
745
    // Enter shard-manager tracing span
    let _span = tracing::span!(tracing::Level::INFO, "shard-manager", rank = rank).entered();

746
747
748
749
    // Get UDS path
    let uds_string = format!("{uds_path}-{rank}");
    let uds = Path::new(&uds_string);
    // Clean previous runs
750
751
752
    if uds.exists() {
        fs::remove_file(uds).unwrap();
    }
753
754

    // Process args
OlivierDehaene's avatar
OlivierDehaene committed
755
    let mut shard_args = vec![
756
757
758
759
760
        "serve".to_string(),
        model_id,
        "--uds-path".to_string(),
        uds_path,
        "--logger-level".to_string(),
761
        log_level.to_string().to_uppercase(),
762
763
764
        "--json-output".to_string(),
    ];

765
766
    // Activate trust remote code
    if trust_remote_code {
OlivierDehaene's avatar
OlivierDehaene committed
767
        shard_args.push("--trust-remote-code".to_string());
768
769
    }

770
771
    // Activate tensor parallelism
    if world_size > 1 {
OlivierDehaene's avatar
OlivierDehaene committed
772
        shard_args.push("--sharded".to_string());
773
774
    }

775
    if let Some(quantize) = quantize {
OlivierDehaene's avatar
OlivierDehaene committed
776
777
        shard_args.push("--quantize".to_string());
        shard_args.push(quantize.to_string())
778
    }
779

Nicolas Patry's avatar
Nicolas Patry committed
780
781
782
783
784
    if let Some(speculate) = speculate {
        shard_args.push("--speculate".to_string());
        shard_args.push(speculate.to_string())
    }

785
    if let Some(dtype) = dtype {
OlivierDehaene's avatar
OlivierDehaene committed
786
787
        shard_args.push("--dtype".to_string());
        shard_args.push(dtype.to_string())
788
789
    }

790
791
792
793
794
    if let Some(kv_cache_dtype) = kv_cache_dtype {
        shard_args.push("--kv-cache-dtype".to_string());
        shard_args.push(kv_cache_dtype.to_string())
    }

795
796
    // Model optional revision
    if let Some(revision) = revision {
OlivierDehaene's avatar
OlivierDehaene committed
797
798
        shard_args.push("--revision".to_string());
        shard_args.push(revision)
799
    }
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
800

Nicolas Patry's avatar
Nicolas Patry committed
801
802
803
804
805
806
    let rope = match (rope_scaling, rope_factor) {
        (None, None) => None,
        (Some(scaling), None) => Some((scaling, 1.0)),
        (Some(scaling), Some(factor)) => Some((scaling, factor)),
        (None, Some(factor)) => Some((RopeScaling::Linear, factor)),
    };
807

808
    // OpenTelemetry Endpoint
809
    if let Some(otlp_endpoint) = otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
810
811
        shard_args.push("--otlp-endpoint".to_string());
        shard_args.push(otlp_endpoint);
812
813
    }

814
815
816
817
    // OpenTelemetry Service Name
    shard_args.push("--otlp-service-name".to_string());
    shard_args.push(otlp_service_name);

818
    // In case we use sliding window, we may ignore the sliding in flash for some backends depending on the parameter.
819
820
821
822
    if let Some(max_input_tokens) = max_input_tokens {
        shard_args.push("--max-input-tokens".to_string());
        shard_args.push(max_input_tokens.to_string());
    }
823

824
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
825
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
826

827
828
829
    // Remove LOG_LEVEL if present
    envs.retain(|(name, _)| name != "LOG_LEVEL");

830
    // Torch Distributed Env vars
OlivierDehaene's avatar
OlivierDehaene committed
831
832
833
834
    envs.push(("RANK".into(), rank.to_string().into()));
    envs.push(("WORLD_SIZE".into(), world_size.to_string().into()));
    envs.push(("MASTER_ADDR".into(), master_addr.into()));
    envs.push(("MASTER_PORT".into(), master_port.to_string().into()));
835
    envs.push(("TORCH_NCCL_AVOID_RECORD_STREAMS".into(), "1".into()));
836

837
838
839
840
841
842
    // CUDA memory fraction
    envs.push((
        "CUDA_MEMORY_FRACTION".into(),
        cuda_memory_fraction.to_string().into(),
    ));

843
    // Safetensors load fast
OlivierDehaene's avatar
OlivierDehaene committed
844
    envs.push(("SAFETENSORS_FAST_GPU".into(), "1".into()));
845

846
847
848
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

849
850
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
851
    envs.push((
852
853
854
855
856
857
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));

    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
858
        envs.push(("HF_TOKEN".into(), api_token.into()))
859
860
    };

Nicolas Patry's avatar
Nicolas Patry committed
861
862
863
864
865
866
867
868
869
    // Detect rope scaling
    // Sending as env instead of CLI args to not bloat everything
    // those only can be used by RoPE models, so passing information around
    // for all models will complexify code unnecessarily
    if let Some((scaling, factor)) = rope {
        envs.push(("ROPE_SCALING".into(), scaling.to_string().into()));
        envs.push(("ROPE_FACTOR".into(), factor.to_string().into()));
    }

870
871
872
873
874
875
    if let Some(max_total_tokens) = max_total_tokens {
        envs.push((
            "MAX_TOTAL_TOKENS".into(),
            max_total_tokens.to_string().into(),
        ));
    }
876
877
878
879
    if let Some(max_batch_size) = max_batch_size {
        envs.push(("MAX_BATCH_SIZE".into(), max_batch_size.to_string().into()));
    }

drbh's avatar
drbh committed
880
881
882
883
884
    // Lora Adapters
    if let Some(lora_adapters) = lora_adapters {
        envs.push(("LORA_ADAPTERS".into(), lora_adapters.into()));
    }

885
886
887
    // If huggingface_hub_cache is some, pass it to the shard
    // Useful when running inside a docker container
    if let Some(huggingface_hub_cache) = huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
888
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
889
890
891
892
893
    };

    // If weights_cache_override is some, pass it to the shard
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
894
        envs.push((
895
896
897
898
899
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

900
    // Enable experimental support for cuda graphs
901
902
903
904
905
906
907
908
909
910
    if !cuda_graphs.is_empty() {
        envs.push((
            "CUDA_GRAPHS".into(),
            cuda_graphs
                .into_iter()
                .map(|c| c.to_string())
                .collect::<Vec<_>>()
                .join(",")
                .into(),
        ));
911
912
    }

913
914
    // If disable_custom_kernels is true, pass it to the shard as an env var
    if disable_custom_kernels {
OlivierDehaene's avatar
OlivierDehaene committed
915
        envs.push(("DISABLE_CUSTOM_KERNELS".into(), "True".into()))
916
917
918
919
    }

    // Watermark Gamma
    if let Some(watermark_gamma) = watermark_gamma {
OlivierDehaene's avatar
OlivierDehaene committed
920
        envs.push(("WATERMARK_GAMMA".into(), watermark_gamma.to_string().into()))
921
922
923
924
    }

    // Watermark Delta
    if let Some(watermark_delta) = watermark_delta {
OlivierDehaene's avatar
OlivierDehaene committed
925
        envs.push(("WATERMARK_DELTA".into(), watermark_delta.to_string().into()))
926
927
928
    }

    // Start process
929
    tracing::info!("Starting shard");
930
    let mut p = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
931
        .args(shard_args)
932
        .env_clear()
OlivierDehaene's avatar
OlivierDehaene committed
933
        .envs(envs)
934
        .stdin(Stdio::piped())
935
936
937
938
939
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
940
941
        Ok(p) => p,
        Err(err) => {
942
943
944
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
945
946
            }
            {
947
                tracing::error!("{}", err);
948
            }
949

950
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
951
952
953
954
955
            return;
        }
    };

    // Redirect STDOUT to the console
956
    let mut pstdin = p.stdin.take().unwrap();
957
    let shard_stdout_reader = BufReader::new(p.stdout.take().unwrap());
958
    let shard_stderr_reader = BufReader::new(p.stderr.take().unwrap());
959

960
    //stdout tracing thread
961
    thread::spawn(move || {
962
        log_lines(shard_stdout_reader);
963
    });
964
965
966
    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
OlivierDehaene's avatar
OlivierDehaene committed
967
        for line in shard_stderr_reader.lines().map_while(Result::ok) {
968
969
970
            err_sender.send(line).unwrap_or(());
        }
    });
971
    // We read stdin in another thread as it seems that lines() can block in some cases
Nicolas Patry's avatar
Nicolas Patry committed
972
973
974
975
976
977
978
979
980
    if LevelFilter::current() >= tracing::Level::DEBUG {
        thread::spawn(move || {
            let mut stdin = io::stdin(); // We get `Stdin` here.
            loop {
                let mut buffer = vec![0; 4096];
                if let Ok(n) = stdin.read(&mut buffer) {
                    if n > 0 {
                        let _ = pstdin.write_all(&buffer[..n]);
                    }
981
982
                }
            }
Nicolas Patry's avatar
Nicolas Patry committed
983
984
        });
    }
985
986
987
988
989
990

    let mut ready = false;
    let start_time = Instant::now();
    let mut wait_time = Instant::now();
    loop {
        // Process exited
991
        if let Some(exit_status) = p.try_wait().unwrap() {
992
993
994
995
            let mut err = String::new();
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }
996

997
            tracing::error!("Shard complete standard error output:\n{err}");
998

999
            if let Some(signal) = exit_status.signal() {
1000
1001
1002
                tracing::error!("Shard process was signaled to shutdown with signal {signal}");
            }

1003
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
1004
1005
1006
1007
            return;
        }

        // We received a shutdown signal
1008
        if shutdown.load(Ordering::SeqCst) {
1009
            terminate("shard", p, Duration::from_secs(90)).unwrap();
1010
1011
1012
1013
1014
            return;
        }

        // Shard is ready
        if uds.exists() && !ready {
1015
            tracing::info!("Shard ready in {:?}", start_time.elapsed());
1016
1017
1018
            status_sender.send(ShardStatus::Ready).unwrap();
            ready = true;
        } else if !ready && wait_time.elapsed() > Duration::from_secs(10) {
1019
            tracing::info!("Waiting for shard to be ready...");
1020
1021
1022
1023
1024
1025
            wait_time = Instant::now();
        }
        sleep(Duration::from_millis(100));
    }
}

1026
fn shutdown_shards(shutdown: Arc<AtomicBool>, shutdown_receiver: &mpsc::Receiver<()>) {
1027
1028
1029
    tracing::info!("Shutting down shards");
    // Update shutdown value to true
    // This will be picked up by the shard manager
1030
    shutdown.store(true, Ordering::SeqCst);
1031
1032
1033
1034
1035
1036
1037

    // Wait for shards to shutdown
    // This will block till all shutdown_sender are dropped
    let _ = shutdown_receiver.recv();
}

fn num_cuda_devices() -> Option<usize> {
1038
1039
    let devices = match env::var("CUDA_VISIBLE_DEVICES") {
        Ok(devices) => devices,
1040
1041
1042
        Err(_) => match env::var("NVIDIA_VISIBLE_DEVICES") {
            Ok(devices) => devices,
            Err(_) => env::var("ZE_AFFINITY_MASK").ok()?,
Nicolas Patry's avatar
Nicolas Patry committed
1043
        },
1044
    };
1045
1046
    let n_devices = devices.split(',').count();
    Some(n_devices)
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
}

#[derive(Deserialize)]
#[serde(rename_all = "UPPERCASE")]
enum PythonLogLevelEnum {
    Trace,
    Debug,
    Info,
    Success,
    Warning,
    Error,
    Critical,
}

#[derive(Deserialize)]
struct PythonLogLevel {
    name: PythonLogLevelEnum,
}

#[derive(Deserialize)]
struct PythonLogRecord {
    level: PythonLogLevel,
}

#[derive(Deserialize)]
struct PythonLogMessage {
    text: String,
    record: PythonLogRecord,
}

impl PythonLogMessage {
    fn trace(&self) {
        match self.record.level.name {
1080
1081
1082
1083
1084
1085
1086
            PythonLogLevelEnum::Trace => tracing::trace!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Debug => tracing::debug!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Info => tracing::info!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Success => tracing::info!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Warning => tracing::warn!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Error => tracing::error!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Critical => tracing::error!("{}", self.text.trim_end()),
1087
1088
1089
1090
        }
    }
}

1091
impl TryFrom<&[u8]> for PythonLogMessage {
1092
1093
    type Error = serde_json::Error;

1094
1095
    fn try_from(value: &[u8]) -> Result<Self, Self::Error> {
        serde_json::from_slice::<Self>(value)
1096
1097
1098
    }
}

1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
fn log_lines<R: Sized + Read>(mut bufread: BufReader<R>) {
    let mut buffer = vec![0u8; 8 * 4096];
    let mut stdout = std::io::stdout();
    loop {
        let n = bufread.read(&mut buffer);
        if let Ok(n) = n {
            if n > 0 {
                let mut lines = buffer[..n].split(|i| *i == b'\n').peekable();
                while let Some(line) = lines.next() {
                    match PythonLogMessage::try_from(line) {
                        Ok(log) => log.trace(),
                        // For interactive debugging ?
                        Err(_) => {
1112
1113
1114
1115
1116
1117
                            if LevelFilter::current() >= tracing::Level::DEBUG {
                                stdout.write_all(line).unwrap();
                                if lines.peek().is_some() {
                                    stdout.write_all(b"\n").unwrap();
                                }
                                stdout.flush().unwrap();
1118
1119
1120
1121
                            }
                        }
                    }
                }
1122
1123
            } else {
                break;
1124
            }
1125
1126
1127
1128
        }
    }
}

1129
1130
1131
1132
fn find_num_shards(
    sharded: Option<bool>,
    num_shard: Option<usize>,
) -> Result<usize, LauncherError> {
1133
1134
1135
1136
    // get the number of shards given `sharded` and `num_shard`
    let num_shard = match (sharded, num_shard) {
        (Some(true), None) => {
            // try to default to the number of available GPUs
1137
            tracing::info!("Parsing num_shard from CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES/ZE_AFFINITY_MASK");
1138
            let n_devices = num_cuda_devices()
1139
                .expect("--num-shard and CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES/ZE_AFFINITY_MASK are not set");
1140
            if n_devices <= 1 {
1141
1142
1143
                return Err(LauncherError::NotEnoughCUDADevices(format!(
                    "`sharded` is true but only found {n_devices} CUDA devices"
                )));
1144
            }
1145
            n_devices
1146
        }
1147
1148
1149
        (Some(true), Some(num_shard)) => {
            // we can't have only one shard while sharded
            if num_shard <= 1 {
1150
1151
1152
                return Err(LauncherError::ArgumentValidation(
                    "`sharded` is true but `num_shard` <= 1".to_string(),
                ));
1153
1154
            }
            num_shard
1155
        }
1156
1157
1158
1159
        (Some(false), Some(num_shard)) => num_shard,
        (Some(false), None) => 1,
        (None, None) => num_cuda_devices().unwrap_or(1),
        (None, Some(num_shard)) => num_shard,
1160
    };
1161
    if num_shard < 1 {
1162
1163
1164
        return Err(LauncherError::ArgumentValidation(
            "`num_shard` cannot be < 1".to_string(),
        ));
1165
    }
1166
    Ok(num_shard)
1167
}
1168

1169
#[derive(Debug, Error)]
1170
enum LauncherError {
1171
    #[error("Invalid argument: {0}")]
1172
    ArgumentValidation(String),
1173
    #[error("not enough cuda devices: {0}")]
1174
    NotEnoughCUDADevices(String),
1175
    #[error("Download error")]
1176
    DownloadError,
1177
    #[error("Shard cannot start")]
1178
    ShardCannotStart,
1179
    #[error("Shard disconnected")]
1180
    ShardDisconnected,
1181
    #[error("Shard failed")]
1182
    ShardFailed,
1183
    #[error("Webserver failed")]
1184
    WebserverFailed,
1185
    #[error("Webserver cannot start")]
1186
1187
    WebserverCannotStart,
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1188

1189
1190
1191
1192
1193
1194
1195
1196
fn download_convert_model(
    model_id: &str,
    revision: Option<&str>,
    trust_remote_code: bool,
    huggingface_hub_cache: Option<&str>,
    weights_cache_override: Option<&str>,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
1197
1198
1199
    // Enter download tracing span
    let _span = tracing::span!(tracing::Level::INFO, "download").entered();

OlivierDehaene's avatar
OlivierDehaene committed
1200
    let mut download_args = vec![
1201
        "download-weights".to_string(),
1202
        model_id.to_string(),
1203
1204
1205
1206
1207
1208
        "--extension".to_string(),
        ".safetensors".to_string(),
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];
1209

1210
    // Model optional revision
1211
    if let Some(revision) = &revision {
OlivierDehaene's avatar
OlivierDehaene committed
1212
1213
        download_args.push("--revision".to_string());
        download_args.push(revision.to_string())
1214
    }
1215

1216
    // Trust remote code for automatic peft fusion
1217
    if trust_remote_code {
1218
1219
1220
        download_args.push("--trust-remote-code".to_string());
    }

1221
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
1222
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
1223

1224
1225
1226
    // Remove LOG_LEVEL if present
    envs.retain(|(name, _)| name != "LOG_LEVEL");

1227
1228
1229
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

1230
    // If huggingface_hub_cache is set, pass it to the download process
1231
    // Useful when running inside a docker container
1232
    if let Some(ref huggingface_hub_cache) = huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
1233
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
1234
    };
1235

1236
1237
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
1238
    envs.push((
1239
1240
1241
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));
1242

1243
1244
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
1245
        envs.push(("HF_TOKEN".into(), api_token.into()))
1246
    };
1247

1248
1249
    // If args.weights_cache_override is some, pass it to the download process
    // Useful when running inside a HuggingFace Inference Endpoint
1250
    if let Some(weights_cache_override) = &weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
1251
        envs.push((
1252
1253
1254
1255
1256
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

1257
    // Start process
1258
    tracing::info!("Starting check and download process for {model_id}");
1259
    let mut download_process = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
1260
        .args(download_args)
1261
        .env_clear()
OlivierDehaene's avatar
OlivierDehaene committed
1262
        .envs(envs)
1263
1264
1265
1266
1267
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
1268
1269
        Ok(p) => p,
        Err(err) => {
1270
1271
1272
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
1273
1274
            } else {
                tracing::error!("{}", err);
1275
            }
1276

1277
1278
1279
            return Err(LauncherError::DownloadError);
        }
    };
1280

1281
    let download_stdout = BufReader::new(download_process.stdout.take().unwrap());
1282

1283
    thread::spawn(move || {
1284
        log_lines(download_stdout);
1285
1286
1287
1288
1289
1290
1291
    });

    let download_stderr = BufReader::new(download_process.stderr.take().unwrap());

    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
OlivierDehaene's avatar
OlivierDehaene committed
1292
        for line in download_stderr.lines().map_while(Result::ok) {
1293
1294
            err_sender.send(line).unwrap_or(());
        }
1295
    });
1296

1297
    loop {
1298
1299
        if let Some(status) = download_process.try_wait().unwrap() {
            if status.success() {
1300
                tracing::info!("Successfully downloaded weights for {model_id}");
1301
                break;
1302
            }
1303
1304

            let mut err = String::new();
1305
1306
1307
1308
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }

1309
1310
1311
1312
1313
1314
1315
1316
1317
            if let Some(signal) = status.signal() {
                tracing::error!(
                    "Download process was signaled to shutdown with signal {signal}: {err}"
                );
            } else {
                tracing::error!("Download encountered an error: {err}");
            }

            return Err(LauncherError::DownloadError);
1318
        }
1319
        if !running.load(Ordering::SeqCst) {
OlivierDehaene's avatar
OlivierDehaene committed
1320
            terminate("download", download_process, Duration::from_secs(10)).unwrap();
1321
1322
1323
            return Ok(());
        }
        sleep(Duration::from_millis(100));
1324
    }
1325
1326
    Ok(())
}
1327

1328
#[allow(clippy::too_many_arguments)]
1329
1330
1331
fn spawn_shards(
    num_shard: usize,
    args: &Args,
1332
    cuda_graphs: Vec<usize>,
1333
1334
    max_total_tokens: Option<usize>,
    max_input_tokens: Option<usize>,
1335
    quantize: Option<Quantization>,
1336
    max_log_level: LevelFilter,
1337
    shutdown: Arc<AtomicBool>,
1338
1339
1340
1341
1342
1343
    shutdown_receiver: &mpsc::Receiver<()>,
    shutdown_sender: mpsc::Sender<()>,
    status_receiver: &mpsc::Receiver<ShardStatus>,
    status_sender: mpsc::Sender<ShardStatus>,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1344
1345
    // Start shard processes
    for rank in 0..num_shard {
1346
1347
1348
1349
1350
1351
        let model_id = args.model_id.clone();
        let revision = args.revision.clone();
        let uds_path = args.shard_uds_path.clone();
        let master_addr = args.master_addr.clone();
        let huggingface_hub_cache = args.huggingface_hub_cache.clone();
        let weights_cache_override = args.weights_cache_override.clone();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1352
1353
1354
        let status_sender = status_sender.clone();
        let shutdown = shutdown.clone();
        let shutdown_sender = shutdown_sender.clone();
1355
        let otlp_endpoint = args.otlp_endpoint.clone();
1356
        let otlp_service_name = args.otlp_service_name.clone();
Nicolas Patry's avatar
Nicolas Patry committed
1357
        let speculate = args.speculate;
1358
        let dtype = args.dtype;
1359
        let kv_cache_dtype = args.kv_cache_dtype;
1360
        let trust_remote_code = args.trust_remote_code;
1361
1362
1363
1364
        let master_port = args.master_port;
        let disable_custom_kernels = args.disable_custom_kernels;
        let watermark_gamma = args.watermark_gamma;
        let watermark_delta = args.watermark_delta;
1365
        let cuda_graphs_clone = cuda_graphs.clone();
1366
        let cuda_memory_fraction = args.cuda_memory_fraction;
Nicolas Patry's avatar
Nicolas Patry committed
1367
1368
        let rope_scaling = args.rope_scaling;
        let rope_factor = args.rope_factor;
1369
        let max_batch_size = args.max_batch_size;
drbh's avatar
drbh committed
1370
        let lora_adapters = args.lora_adapters.clone();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1371
1372
        thread::spawn(move || {
            shard_manager(
1373
                model_id,
1374
                revision,
1375
                quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1376
                speculate,
1377
                dtype,
1378
                kv_cache_dtype,
1379
                trust_remote_code,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1380
1381
1382
1383
1384
                uds_path,
                rank,
                num_shard,
                master_addr,
                master_port,
1385
1386
                huggingface_hub_cache,
                weights_cache_override,
1387
                disable_custom_kernels,
1388
1389
                watermark_gamma,
                watermark_delta,
1390
                cuda_graphs_clone,
1391
                cuda_memory_fraction,
Nicolas Patry's avatar
Nicolas Patry committed
1392
1393
                rope_scaling,
                rope_factor,
1394
1395
                max_total_tokens,
                max_batch_size,
1396
                max_input_tokens,
drbh's avatar
drbh committed
1397
                lora_adapters,
1398
                otlp_endpoint,
1399
                otlp_service_name,
1400
                max_log_level,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
                status_sender,
                shutdown,
                shutdown_sender,
            )
        });
    }
    drop(shutdown_sender);

    // Wait for shard to start
    let mut shard_ready = 0;
    while running.load(Ordering::SeqCst) {
        match status_receiver.try_recv() {
            Ok(ShardStatus::Ready) => {
                shard_ready += 1;
                if shard_ready == num_shard {
                    break;
                }
            }
            Err(TryRecvError::Empty) => {
                sleep(Duration::from_millis(100));
            }
1422
            Ok(ShardStatus::Failed(rank)) => {
1423
                tracing::error!("Shard {rank} failed to start");
1424
                shutdown_shards(shutdown, shutdown_receiver);
1425
                return Err(LauncherError::ShardCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1426
1427
1428
            }
            Err(TryRecvError::Disconnected) => {
                tracing::error!("Shard status channel disconnected");
1429
                shutdown_shards(shutdown, shutdown_receiver);
1430
                return Err(LauncherError::ShardDisconnected);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1431
1432
1433
            }
        }
    }
1434
1435
    Ok(())
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1436

1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
fn compute_type(num_shard: usize) -> Option<String> {
    let output = Command::new("nvidia-smi")
        .args(["--query-gpu=gpu_name", "--format=csv"])
        .output()
        .ok()?;
    let output = String::from_utf8(output.stdout).ok()?;
    let fullname = output.split('\n').nth(1)?;
    let cardname = fullname.replace(' ', "-").to_lowercase();
    let compute_type = format!("{num_shard}-{cardname}");
    Some(compute_type)
}

1449
fn spawn_webserver(
1450
    num_shard: usize,
1451
    args: Args,
1452
1453
    max_input_tokens: Option<usize>,
    max_total_tokens: Option<usize>,
1454
    max_batch_prefill_tokens: u32,
1455
    shutdown: Arc<AtomicBool>,
1456
    shutdown_receiver: &mpsc::Receiver<()>,
1457
) -> Result<Child, LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1458
1459
1460
    // All shard started
    // Start webserver
    tracing::info!("Starting Webserver");
OlivierDehaene's avatar
OlivierDehaene committed
1461
    let mut router_args = vec![
1462
1463
        "--max-client-batch-size".to_string(),
        args.max_client_batch_size.to_string(),
1464
        "--max-concurrent-requests".to_string(),
1465
        args.max_concurrent_requests.to_string(),
1466
        "--max-best-of".to_string(),
1467
        args.max_best_of.to_string(),
1468
        "--max-stop-sequences".to_string(),
1469
        args.max_stop_sequences.to_string(),
Nicolas Patry's avatar
Nicolas Patry committed
1470
1471
        "--max-top-n-tokens".to_string(),
        args.max_top_n_tokens.to_string(),
1472
        "--max-batch-prefill-tokens".to_string(),
1473
        max_batch_prefill_tokens.to_string(),
1474
        "--waiting-served-ratio".to_string(),
1475
        args.waiting_served_ratio.to_string(),
1476
        "--max-waiting-tokens".to_string(),
1477
        args.max_waiting_tokens.to_string(),
1478
1479
        "--validation-workers".to_string(),
        args.validation_workers.to_string(),
1480
1481
        "--hostname".to_string(),
        args.hostname.to_string(),
1482
        "--port".to_string(),
1483
        args.port.to_string(),
1484
        "--master-shard-uds-path".to_string(),
1485
        format!("{}-0", args.shard_uds_path),
1486
        "--tokenizer-name".to_string(),
1487
        args.model_id,
1488
1489
        "--payload-limit".to_string(),
        args.payload_limit.to_string(),
1490
    ];
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
    if let Some(max_input_tokens) = max_input_tokens {
        router_args.extend_from_slice(&[
            "--max-input-tokens".to_string(),
            max_input_tokens.to_string(),
        ]);
    }
    if let Some(max_total_tokens) = max_total_tokens {
        router_args.extend_from_slice(&[
            "--max-total-tokens".to_string(),
            max_total_tokens.to_string(),
        ]);
    }
1503

1504
    // Pass usage stats flags to router
1505
1506
    router_args.push("--usage-stats".to_string());
    router_args.push(args.usage_stats.to_string());
1507

drbh's avatar
drbh committed
1508
1509
1510
1511
1512
    // Grammar support
    if args.disable_grammar_support {
        router_args.push("--disable-grammar-support".to_string());
    }

1513
1514
1515
1516
1517
1518
    // Tokenizer config path
    if let Some(ref tokenizer_config_path) = args.tokenizer_config_path {
        router_args.push("--tokenizer-config-path".to_string());
        router_args.push(tokenizer_config_path.to_string());
    }

1519
1520
1521
1522
1523
1524
    // Model optional max batch total tokens
    if let Some(max_batch_total_tokens) = args.max_batch_total_tokens {
        router_args.push("--max-batch-total-tokens".to_string());
        router_args.push(max_batch_total_tokens.to_string());
    }

1525
1526
1527
1528
1529
1530
    // Router optional max batch size
    if let Some(max_batch_size) = args.max_batch_size {
        router_args.push("--max-batch-size".to_string());
        router_args.push(max_batch_size.to_string());
    }

1531
1532
    // Model optional revision
    if let Some(ref revision) = args.revision {
OlivierDehaene's avatar
OlivierDehaene committed
1533
1534
        router_args.push("--revision".to_string());
        router_args.push(revision.to_string())
1535
1536
    }

1537
1538
1539
1540
    if args.trust_remote_code {
        router_args.push("--trust-remote-code".to_string());
    }

1541
    if args.json_output {
OlivierDehaene's avatar
OlivierDehaene committed
1542
        router_args.push("--json-output".to_string());
1543
1544
    }

1545
    // OpenTelemetry
1546
    if let Some(otlp_endpoint) = args.otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
1547
1548
        router_args.push("--otlp-endpoint".to_string());
        router_args.push(otlp_endpoint);
1549
1550
    }

1551
1552
1553
1554
1555
    // OpenTelemetry
    let otlp_service_name = args.otlp_service_name;
    router_args.push("--otlp-service-name".to_string());
    router_args.push(otlp_service_name);

1556
1557
    // CORS origins
    for origin in args.cors_allow_origin.into_iter() {
OlivierDehaene's avatar
OlivierDehaene committed
1558
1559
        router_args.push("--cors-allow-origin".to_string());
        router_args.push(origin);
1560
1561
    }

Erik Kaunismäki's avatar
Erik Kaunismäki committed
1562
1563
1564
1565
1566
    // API Key
    if let Some(api_key) = args.api_key {
        router_args.push("--api-key".to_string());
        router_args.push(api_key);
    }
1567
1568
    // Ngrok
    if args.ngrok {
OlivierDehaene's avatar
OlivierDehaene committed
1569
1570
        router_args.push("--ngrok".to_string());
        router_args.push("--ngrok-authtoken".to_string());
1571
1572
1573
        router_args.push(args.ngrok_authtoken.unwrap());
        router_args.push("--ngrok-edge".to_string());
        router_args.push(args.ngrok_edge.unwrap());
1574
1575
    }

1576
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
1577
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
1578

1579
1580
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
1581
        envs.push(("HF_TOKEN".into(), api_token.into()))
1582
    };
1583

1584
1585
1586
1587
1588
1589
1590
    // Parse Compute type
    if let Ok(compute_type) = env::var("COMPUTE_TYPE") {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    } else if let Some(compute_type) = compute_type(num_shard) {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    }

1591
    let mut webserver = match Command::new("text-generation-router")
OlivierDehaene's avatar
OlivierDehaene committed
1592
1593
        .args(router_args)
        .envs(envs)
1594
1595
1596
1597
1598
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1599
1600
        Ok(p) => p,
        Err(err) => {
1601
            tracing::error!("Failed to start webserver: {}", err);
1602
1603
1604
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-router not found in PATH");
                tracing::error!("Please install it with `make install-router`")
1605
1606
            } else {
                tracing::error!("{}", err);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1607
            }
1608

1609
            shutdown_shards(shutdown, shutdown_receiver);
1610
            return Err(LauncherError::WebserverCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1611
1612
1613
        }
    };

1614
1615
1616
    // Redirect STDOUT and STDERR to the console
    let webserver_stdout = webserver.stdout.take().unwrap();
    let webserver_stderr = webserver.stderr.take().unwrap();
1617
1618

    thread::spawn(move || {
1619
1620
        let stdout = BufReader::new(webserver_stdout);
        let stderr = BufReader::new(webserver_stderr);
1621
        for line in stdout.lines() {
1622
            println!("{}", line.unwrap());
1623
        }
1624
1625
        for line in stderr.lines() {
            println!("{}", line.unwrap());
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1626
        }
1627
1628
1629
    });
    Ok(webserver)
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1630

OlivierDehaene's avatar
OlivierDehaene committed
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
fn terminate(process_name: &str, mut process: Child, timeout: Duration) -> io::Result<ExitStatus> {
    tracing::info!("Terminating {process_name}");

    let terminate_time = Instant::now();
    signal::kill(Pid::from_raw(process.id() as i32), Signal::SIGTERM).unwrap();

    tracing::info!("Waiting for {process_name} to gracefully shutdown");
    while terminate_time.elapsed() < timeout {
        if let Some(status) = process.try_wait()? {
            tracing::info!("{process_name} terminated");
            return Ok(status);
        }
        sleep(Duration::from_millis(100));
    }
    tracing::info!("Killing {process_name}");

    process.kill()?;
    let exit_status = process.wait()?;

    tracing::info!("{process_name} killed");
    Ok(exit_status)
}

1654
1655
fn main() -> Result<(), LauncherError> {
    // Pattern match configuration
1656
    let args: Args = Args::parse();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1657

1658
    // Filter events with LOG_LEVEL
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
    let varname = "LOG_LEVEL";
    let env_filter = if let Ok(log_level) = std::env::var(varname) {
        // Override to avoid simple logs to be spammed with tokio level informations
        let log_level = match &log_level[..] {
            "warn" => "text_generation_launcher=warn,text_generation_router=warn",
            "info" => "text_generation_launcher=info,text_generation_router=info",
            "debug" => "text_generation_launcher=debug,text_generation_router=debug",
            log_level => log_level,
        };
        EnvFilter::builder()
            .with_default_directive(LevelFilter::INFO.into())
            .parse_lossy(log_level)
    } else {
        EnvFilter::new("info")
    };
    let max_log_level = env_filter.max_level_hint().unwrap_or(LevelFilter::INFO);
1675

1676
    if args.json_output {
1677
1678
1679
1680
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .json()
            .init();
1681
    } else {
1682
1683
1684
1685
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .compact()
            .init();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1686
1687
    }

1688
1689
1690
1691
1692
    if args.env {
        let env_runtime = env_runtime::Env::new();
        tracing::info!("{}", env_runtime);
    }

Nicolas Patry's avatar
Nicolas Patry committed
1693
    tracing::info!("{:#?}", args);
1694

1695
1696
1697
1698
1699
1700
1701
1702
1703
    let config: Option<Config> = get_config(&args.model_id, &args.revision).ok();
    let quantize = config.as_ref().and_then(|c| c.quantize);
    // Quantization usually means you're even more RAM constrained.
    let max_default = 4096;

    let max_position_embeddings = if let Some(config) = &config {
        if let Some(max_position_embeddings) = config.max_position_embeddings {
            if max_position_embeddings > max_default {
                max_default
1704
            } else {
1705
                max_position_embeddings
1706
            }
1707
1708
1709
1710
1711
1712
1713
1714
        } else {
            max_default
        }
    } else {
        max_default
    };
    let (prefix_caching, attention) = resolve_attention(&config, &args.lora_adapters);
    tracing::info!("Using attention {attention} - Prefix caching {prefix_caching}");
1715
    std::env::set_var("PREFIX_CACHING", prefix_caching);
1716
    std::env::set_var("ATTENTION", attention);
1717
1718
1719
1720
1721
1722
1723
1724

    let max_input_tokens = {
        match (args.max_input_tokens, args.max_input_length) {
            (Some(max_input_tokens), Some(max_input_length)) => {
                return Err(LauncherError::ArgumentValidation(
                    format!("Both `max_input_tokens` ({max_input_tokens}) and `max_input_length` ({max_input_length}) are set. Please define only `max_input_tokens` as `max_input_length is deprecated for naming consistency.",
                )));
            }
1725
1726
            (Some(max_input_tokens), None) | (None, Some(max_input_tokens)) => {
                Some(max_input_tokens)
1727
            }
1728
            (None, None) => None,
1729
1730
        }
    };
1731
    let max_total_tokens = args.max_total_tokens;
1732
1733
1734
1735
    let max_batch_prefill_tokens = {
        match args.max_batch_prefill_tokens {
            Some(max_batch_prefill_tokens) => max_batch_prefill_tokens,
            None => {
1736
1737
                // TODO figure out hardware optimal value
                let value = 4096.min(max_position_embeddings as u32);
1738
1739
1740
1741
1742
1743
                tracing::info!("Default `max_batch_prefill_tokens` to {value}");
                value
            }
        }
    };

1744
    // Validate args
1745
1746
1747
1748
1749
1750
    if let (Some(max_input_tokens), Some(max_total_tokens)) = (max_input_tokens, max_total_tokens) {
        if max_input_tokens >= max_total_tokens {
            return Err(LauncherError::ArgumentValidation(
                    format!("`max_input_tokens`({max_input_tokens}) must be < `max_total_tokens`({max_total_tokens})"),
                ));
        }
1751
    }
1752

1753
1754
1755
1756
1757
    if matches!(args.quantize, Some(Quantization::Bitsandbytes)) {
        tracing::warn!("Bitsandbytes is deprecated, use `eetq` instead, which provides better latencies overall and is drop-in in most cases.");
    }
    let quantize = args.quantize.or(quantize);
    let cuda_graphs = match (&args.cuda_graphs, &quantize) {
Nicolas Patry's avatar
Nicolas Patry committed
1758
        (Some(cuda_graphs), _) => cuda_graphs.iter().cloned().filter(|&c| c > 0).collect(),
1759
1760
1761
1762
1763
        #[allow(deprecated)]
        (
            None,
            Some(
                Quantization::Bitsandbytes
1764
1765
                | Quantization::BitsandbytesNf4
                | Quantization::BitsandbytesFp4,
1766
1767
            ),
        ) => {
1768
1769
1770
1771
1772
            tracing::warn!("Bitsandbytes doesn't work with cuda graphs, deactivating them");
            vec![]
        }
        (None, Some(Quantization::Exl2)) => {
            tracing::warn!("Exl2 doesn't work with cuda graphs, deactivating them");
1773
1774
1775
1776
1777
1778
1779
1780
1781
            vec![]
        }
        _ => {
            let cuda_graphs = vec![1, 2, 4, 8, 16, 32];
            tracing::info!("Using default cuda graphs {cuda_graphs:?}");
            cuda_graphs
        }
    };

1782
1783
1784
1785
1786
    if args.validation_workers == 0 {
        return Err(LauncherError::ArgumentValidation(
            "`validation_workers` must be > 0".to_string(),
        ));
    }
1787
1788
1789
1790
1791
1792
    if args.trust_remote_code {
        tracing::warn!(
            "`trust_remote_code` is set. Trusting that model `{}` do not contain malicious code.",
            args.model_id
        );
    }
1793
1794

    let num_shard = find_num_shards(args.sharded, args.num_shard)?;
1795
    if num_shard > 1 {
1796
1797
1798
1799
1800
        if matches!(args.quantize, Some(Quantization::Exl2)) {
            return Err(LauncherError::ArgumentValidation(
                "Sharding is currently not supported with `exl2` quantization".into(),
            ));
        }
1801
        tracing::info!("Sharding model on {num_shard} processes");
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1802
1803
    }

1804
    if let Some(ref max_batch_total_tokens) = args.max_batch_total_tokens {
1805
1806
1807
1808
1809
1810
1811
        if let Some(max_total_tokens) = max_total_tokens {
            if max_total_tokens as u32 > *max_batch_total_tokens {
                return Err(LauncherError::ArgumentValidation(format!(
                    "`max_total_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
                    max_total_tokens, max_batch_total_tokens
                )));
            }
1812
1813
1814
        }
    }

1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
    if args.ngrok {
        if args.ngrok_authtoken.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-authtoken` must be set when using ngrok tunneling".to_string(),
            ));
        }

        if args.ngrok_edge.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-edge` must be set when using ngrok tunneling".to_string(),
            ));
        }
    }

1829
1830
1831
1832
1833
1834
1835
    // Signal handler
    let running = Arc::new(AtomicBool::new(true));
    let r = running.clone();
    ctrlc::set_handler(move || {
        r.store(false, Ordering::SeqCst);
    })
    .expect("Error setting Ctrl-C handler");
1836

1837
    // Download and convert model weights
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
    download_convert_model(
        &args.model_id,
        args.revision.as_deref(),
        args.trust_remote_code,
        args.huggingface_hub_cache.as_deref(),
        args.weights_cache_override.as_deref(),
        running.clone(),
    )?;

    // Download and convert lora adapters if any
    if let Some(lora_adapters) = &args.lora_adapters {
        for adapter in lora_adapters.split(',') {
1850
1851
1852
1853
            // skip download if a path is provided
            if adapter.contains('=') {
                continue;
            }
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884

            let adapter = adapter.trim();

            // check if adapter has more than 1 '@'
            if adapter.matches('@').count() > 1 {
                return Err(LauncherError::ArgumentValidation(format!(
                    "Invalid LoRA adapter format: {}",
                    adapter
                )));
            }

            // capture adapter_id, path, revision in format of adapter_id=path@revision
            let re = Regex::new(r"^([^=@]+)(?:=([^@]+))?(?:@(.+))?$").unwrap();
            if let Some(caps) = re.captures(adapter) {
                let adapter_id = caps.get(1).map_or("", |m| m.as_str());
                let revision = caps.get(3).map(|m| m.as_str());

                download_convert_model(
                    adapter_id,
                    revision,
                    args.trust_remote_code,
                    args.huggingface_hub_cache.as_deref(),
                    args.weights_cache_override.as_deref(),
                    running.clone(),
                )?;
            } else {
                return Err(LauncherError::ArgumentValidation(format!(
                    "Invalid LoRA adapter format: {}",
                    adapter
                )));
            }
1885
1886
        }
    }
1887

OlivierDehaene's avatar
OlivierDehaene committed
1888
1889
1890
1891
1892
    if !running.load(Ordering::SeqCst) {
        // Launcher was asked to stop
        return Ok(());
    }

1893
    // Shared shutdown bool
1894
    let shutdown = Arc::new(AtomicBool::new(false));
1895
1896
1897
    // Shared shutdown channel
    // When shutting down, the main thread will wait for all senders to be dropped
    let (shutdown_sender, shutdown_receiver) = mpsc::channel();
1898

1899
1900
    // Shared channel to track shard status
    let (status_sender, status_receiver) = mpsc::channel();
1901

1902
1903
1904
    spawn_shards(
        num_shard,
        &args,
1905
        cuda_graphs,
1906
        max_total_tokens,
1907
        max_input_tokens,
1908
        quantize,
1909
        max_log_level,
1910
1911
1912
1913
1914
1915
1916
        shutdown.clone(),
        &shutdown_receiver,
        shutdown_sender,
        &status_receiver,
        status_sender,
        running.clone(),
    )?;
1917

1918
1919
1920
1921
1922
    // We might have received a termination signal
    if !running.load(Ordering::SeqCst) {
        shutdown_shards(shutdown, &shutdown_receiver);
        return Ok(());
    }
1923

1924
1925
1926
1927
1928
1929
1930
1931
1932
    let mut webserver = spawn_webserver(
        num_shard,
        args,
        max_input_tokens,
        max_total_tokens,
        max_batch_prefill_tokens,
        shutdown.clone(),
        &shutdown_receiver,
    )
1933
    .inspect_err(|_| {
1934
1935
        shutdown_shards(shutdown.clone(), &shutdown_receiver);
    })?;
1936
1937
1938
1939
1940

    // Default exit code
    let mut exit_code = Ok(());

    while running.load(Ordering::SeqCst) {
1941
        if let Ok(ShardStatus::Failed(rank)) = status_receiver.try_recv() {
OlivierDehaene's avatar
OlivierDehaene committed
1942
            tracing::error!("Shard {rank} crashed");
1943
1944
1945
1946
            exit_code = Err(LauncherError::ShardFailed);
            break;
        };

1947
        match webserver.try_wait().unwrap() {
1948
1949
1950
1951
1952
1953
1954
1955
1956
            Some(_) => {
                tracing::error!("Webserver Crashed");
                shutdown_shards(shutdown, &shutdown_receiver);
                return Err(LauncherError::WebserverFailed);
            }
            None => {
                sleep(Duration::from_millis(100));
            }
        };
1957
    }
1958
1959

    // Graceful termination
OlivierDehaene's avatar
OlivierDehaene committed
1960
    terminate("webserver", webserver, Duration::from_secs(90)).unwrap();
1961
1962
1963
    shutdown_shards(shutdown, &shutdown_receiver);

    exit_code
1964
}