main.rs 67.9 KB
Newer Older
1
use clap::{Parser, ValueEnum};
Nicolas Patry's avatar
Nicolas Patry committed
2
3
4
5
use hf_hub::{
    api::sync::{Api, ApiBuilder},
    Repo, RepoType,
};
6
7
use nix::sys::signal::{self, Signal};
use nix::unistd::Pid;
8
use regex::Regex;
9
use serde::Deserialize;
Nicolas Patry's avatar
Nicolas Patry committed
10
use std::env;
11
use std::ffi::OsString;
12
use std::io::{BufRead, BufReader};
13
use std::os::unix::process::{CommandExt, ExitStatusExt};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
14
use std::path::Path;
OlivierDehaene's avatar
OlivierDehaene committed
15
use std::process::{Child, Command, ExitStatus, Stdio};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
16
17
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::TryRecvError;
18
use std::sync::{mpsc, Arc};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
19
20
21
use std::thread;
use std::thread::sleep;
use std::time::{Duration, Instant};
22
23
24
25
use std::{
    fs, io,
    io::{Read, Write},
};
26
use thiserror::Error;
27
use tracing_subscriber::{filter::LevelFilter, EnvFilter};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
28

29
mod env_runtime;
30
mod gpu;
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
fn get_config(
    model_id: &str,
    revision: &Option<String>,
) -> Result<Config, Box<dyn std::error::Error>> {
    let mut path = std::path::Path::new(model_id).to_path_buf();
    let model_id = model_id.to_string();
    let filename = if !path.exists() {
        // Assume it's a hub id

        let api = if let Ok(token) = std::env::var("HF_TOKEN") {
            // env variable has precedence over on file token.
            ApiBuilder::new().with_token(Some(token)).build()?
        } else {
            Api::new()?
        };
        let repo = if let Some(ref revision) = revision {
            api.repo(Repo::with_revision(
                model_id,
                RepoType::Model,
                revision.to_string(),
            ))
        } else {
            api.model(model_id)
        };
        repo.get("config.json")?
    } else {
        path.push("config.json");
        path
    };

    let content = std::fs::read_to_string(filename)?;
    let config: RawConfig = serde_json::from_str(&content)?;

    let config: Config = config.into();
    Ok(config)
}

fn resolve_attention(config: &Option<Config>, lora_adapters: &Option<String>) -> (String, String) {
70
    let compute_capability = gpu::get_cuda_capability();
71
    let mut prefix_caching: Option<String> = std::env::var("PREFIX_CACHING").ok();
72
73
74
75
76
77
78
79
80
81
82
    let mut attention: Option<String> = std::env::var("ATTENTION").ok();
    if let Some(config) = config {
        if prefix_caching.is_none() {
            if config.vision_config.is_some() {
                tracing::info!("Disabling prefix caching because of VLM model");
                prefix_caching = Some("0".to_string());
            } else if config.is_encoder_decoder {
                tracing::info!("Disabling prefix caching because of seq2seq model");
                prefix_caching = Some("0".to_string());
            }
        }
83
84
85
86
87
88
89

        let fallback_attention = if matches!(compute_capability, Some((major, _)) if major < 8) {
            "paged"
        } else {
            "flashdecoding"
        };

90
91
92
93
94
95
96
        match config.head_dim {
            Some(h) if h == 64 || h == 128 || h == 256 => {
                if lora_adapters.is_some() && prefix_caching.is_none() {
                    tracing::info!("Disabling prefix caching because of lora adapters");
                    prefix_caching = Some("0".to_string());
                }
                match config.model_type.as_deref() {
Daniël de Kok's avatar
Daniël de Kok committed
97
                    Some("falcon") | Some("deepseek_v2") => {
98
99
100
101
                        // Required because gemma2 needs bfloat16 which is not supported by
                        // flashinfer ?
                        if attention.is_none() {
                            tracing::info!(
102
                                "Forcing attention to '{fallback_attention}' because model {} requires it",
103
104
                                config.model_type.as_ref().unwrap()
                            );
105
106
107
108
109
                            attention = Some(fallback_attention.to_string());
                        }
                        if fallback_attention == "paged" && prefix_caching.is_none() {
                            tracing::info!("Disabling prefix caching because it is not supported with 'paged' attention");
                            prefix_caching = Some("0".to_string());
110
111
112
113
114
115
116
117
                        }
                    }
                    Some("t5") => {}
                    _ => {}
                }
            }
            _ => {
                if attention.is_none() {
118
119
                    tracing::info!("Forcing attention to '{fallback_attention}' because head dim is not supported by flashinfer, also disabling prefix caching");
                    attention = Some(fallback_attention.to_string());
120
121
122
123
124
125
126
                }
                if prefix_caching.is_none() {
                    prefix_caching = Some("0".to_string());
                }
            }
        }
    }
127
128
129
130
    if attention == Some("paged".to_string()) && prefix_caching.is_none() {
        tracing::info!("Disabling prefix caching on paged attention");
        prefix_caching = Some("0".to_string());
    }
131

132
    let attention = attention.unwrap_or("flashinfer".to_string());
133
134
    let prefix_caching = prefix_caching.unwrap_or("true".to_string());

135
136
137
    (prefix_caching, attention)
}

138
#[derive(Deserialize)]
139
struct RawConfig {
140
    max_position_embeddings: Option<usize>,
141
    n_positions: Option<usize>,
142
    model_type: Option<String>,
143
    max_seq_len: Option<usize>,
144
    quantization_config: Option<QuantizationConfig>,
145
146
147
148
149
150
    n_embd: Option<usize>,
    hidden_size: Option<usize>,
    num_attention_heads: Option<usize>,
    head_dim: Option<usize>,
    vision_config: Option<VisionConfig>,
    is_encoder_decoder: Option<bool>,
151
152
153
154
155
}

#[derive(Deserialize)]
struct QuantizationConfig {
    quant_method: Option<Quantization>,
156
157
}

158
159
160
#[derive(Deserialize)]
struct VisionConfig {}

161
162
163
#[derive(Deserialize)]
struct Config {
    max_position_embeddings: Option<usize>,
164
    quantize: Option<Quantization>,
165
166
167
168
    head_dim: Option<usize>,
    model_type: Option<String>,
    vision_config: Option<VisionConfig>,
    is_encoder_decoder: bool,
169
170
171
172
173
174
175
176
}

impl From<RawConfig> for Config {
    fn from(other: RawConfig) -> Self {
        let max_position_embeddings = other
            .max_position_embeddings
            .or(other.max_seq_len)
            .or(other.n_positions);
177
        let quantize = other.quantization_config.and_then(|q| q.quant_method);
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
        let head_dim = other.head_dim.or_else(|| {
            match (other.hidden_size, other.n_embd, other.num_attention_heads) {
                (Some(hidden_size), _, Some(num_attention_heads))
                    if hidden_size % num_attention_heads == 0 =>
                {
                    Some(hidden_size / num_attention_heads)
                }
                // Legacy
                (_, Some(hidden_size), Some(num_attention_heads))
                    if hidden_size % num_attention_heads == 0 =>
                {
                    Some(hidden_size / num_attention_heads)
                }
                _ => None,
            }
        });
        let model_type = other.model_type;
        let vision_config = other.vision_config;
        let is_encoder_decoder = other.is_encoder_decoder.unwrap_or(false);
197
198
        Config {
            max_position_embeddings,
199
            quantize,
200
201
202
203
            head_dim,
            model_type,
            vision_config,
            is_encoder_decoder,
204
205
206
207
        }
    }
}

208
209
#[derive(Clone, Copy, Debug, ValueEnum, Deserialize)]
#[serde(rename_all = "kebab-case")]
210
enum Quantization {
211
    /// 4 bit quantization. Requires a specific AWQ quantized model:
212
    ///   <https://hf.co/models?search=awq>.
213
    /// Should replace GPTQ models wherever possible because of the better latency
214
215
216
    Awq,
    /// 8 bit quantization, doesn't require specific model.
    /// Should be a drop-in replacement to bitsandbytes with much better performance.
217
    /// Kernels are from <https://github.com/NetEase-FuXi/EETQ.git>
218
    Eetq,
219
220
221
222
    /// Variable bit quantization. Requires a specific EXL2 quantized model:
    /// <https://hf.co/models?search=exl2>. Requires exllama2 kernels and does
    /// not support tensor parallelism (num_shard > 1).
    Exl2,
223
    /// 4 bit quantization. Requires a specific GTPQ quantized model: <https://hf.co/models?search=gptq>.
224
    /// text-generation-inference will use exllama (faster) kernels wherever possible, and use
225
226
227
    /// triton kernel (wider support) when it's not.
    /// AWQ has faster kernels.
    Gptq,
228
229
    /// 4 bit quantization. Requires a specific Marlin quantized model: <https://hf.co/models?search=marlin>.
    Marlin,
230
231
    /// Bitsandbytes 8bit. Can be applied on any model, will cut the memory requirement in half,
    /// but it is known that the model will be much slower to run than the native f16.
232
233
234
235
    // #[deprecated(
    //     since = "1.1.0",
    //     note = "Use `eetq` instead, which provides better latencies overall and is drop-in in most cases"
    // )]
236
    Bitsandbytes,
237
238
    /// Bitsandbytes 4bit. Can be applied on any model, will cut the memory requirement by 4x,
    /// but it is known that the model will be much slower to run than the native f16.
239
    BitsandbytesNf4,
240
241
    /// Bitsandbytes 4bit. nf4 should be preferred in most cases but maybe this one has better
    /// perplexity performance for you model
242
    BitsandbytesFp4,
Nicolas Patry's avatar
Nicolas Patry committed
243
244
245
246
247
    /// [FP8](https://developer.nvidia.com/blog/nvidia-arm-and-intel-publish-fp8-specification-for-standardization-as-an-interchange-format-for-ai/) (e4m3) works on H100 and above
    /// This dtype has native ops should be the fastest if available.
    /// This is currently not the fastest because of local unpacking + padding to satisfy matrix
    /// multiplication limitations.
    Fp8,
248
249
250
251
252
253
}

impl std::fmt::Display for Quantization {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
254
255
            #[allow(deprecated)]
            // Use `eetq` instead, which provides better latencies overall and is drop-in in most cases
256
257
258
            Quantization::Bitsandbytes => {
                write!(f, "bitsandbytes")
            }
259
            Quantization::BitsandbytesNf4 => {
Nicolas Patry's avatar
Nicolas Patry committed
260
261
                write!(f, "bitsandbytes-nf4")
            }
262
            Quantization::BitsandbytesFp4 => {
Nicolas Patry's avatar
Nicolas Patry committed
263
264
                write!(f, "bitsandbytes-fp4")
            }
265
266
267
            Quantization::Exl2 => {
                write!(f, "exl2")
            }
268
269
270
            Quantization::Gptq => {
                write!(f, "gptq")
            }
271
272
273
            Quantization::Marlin => {
                write!(f, "marlin")
            }
274
275
276
            Quantization::Awq => {
                write!(f, "awq")
            }
277
278
279
            Quantization::Eetq => {
                write!(f, "eetq")
            }
Nicolas Patry's avatar
Nicolas Patry committed
280
281
282
            Quantization::Fp8 => {
                write!(f, "fp8")
            }
283
284
285
286
        }
    }
}

287
288
289
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Dtype {
    Float16,
290
    #[clap(name = "bfloat16")]
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
    BFloat16,
}

impl std::fmt::Display for Dtype {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            Dtype::Float16 => {
                write!(f, "float16")
            }
            Dtype::BFloat16 => {
                write!(f, "bfloat16")
            }
        }
    }
}

308
309
#[derive(Clone, Copy, Debug, ValueEnum)]
enum KVCacheDtype {
310
311
312
    #[clap(name = "fp8_e4m3fn")]
    Fp8e4m3fn,

313
314
315
316
317
318
319
    #[clap(name = "fp8_e5m2")]
    Fp8e5m2,
}

impl std::fmt::Display for KVCacheDtype {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
320
321
322
            KVCacheDtype::Fp8e4m3fn => {
                write!(f, "fp8_e4m3fn")
            }
323
324
325
326
327
328
329
            KVCacheDtype::Fp8e5m2 => {
                write!(f, "fp8_e5m2")
            }
        }
    }
}

Nicolas Patry's avatar
Nicolas Patry committed
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
#[derive(Clone, Copy, Debug, ValueEnum)]
enum RopeScaling {
    Linear,
    Dynamic,
}

impl std::fmt::Display for RopeScaling {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            RopeScaling::Linear => {
                write!(f, "linear")
            }
            RopeScaling::Dynamic => {
                write!(f, "dynamic")
            }
        }
    }
}

350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
#[derive(Clone, Copy, Debug, ValueEnum)]
pub enum UsageStatsLevel {
    /// Default option, usage statistics are collected anonymously
    On,
    /// Disables all collection of usage statistics
    Off,
    /// Doesn't send the error stack trace or error type, but allows sending a crash event
    NoStack,
}

impl std::fmt::Display for UsageStatsLevel {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            UsageStatsLevel::On => {
                write!(f, "on")
            }
            UsageStatsLevel::Off => {
                write!(f, "off")
            }
            UsageStatsLevel::NoStack => {
                write!(f, "no-stack")
            }
        }
    }
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
377
378
379
380
/// App Configuration
#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]
struct Args {
381
382
383
384
385
    /// The name of the model to load.
    /// Can be a MODEL_ID as listed on <https://hf.co/models> like
    /// `gpt2` or `OpenAssistant/oasst-sft-1-pythia-12b`.
    /// Or it can be a local directory containing the necessary files
    /// as saved by `save_pretrained(...)` methods of transformers
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
386
    #[clap(default_value = "bigscience/bloom-560m", long, env)]
387
    model_id: String,
388
389
390

    /// The actual revision of the model if you're referring to a model
    /// on the hub. You can use a specific commit id or a branch like `refs/pr/2`.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
391
    #[clap(long, env)]
392
    revision: Option<String>,
393

394
395
396
397
398
    /// The number of tokenizer workers used for payload validation and truncation inside the
    /// router.
    #[clap(default_value = "2", long, env)]
    validation_workers: usize,

399
    /// Whether to shard the model across multiple GPUs
400
401
    /// By default text-generation-inference will use all available GPUs to run
    /// the model. Setting it to `false` deactivates `num_shard`.
402
403
    #[clap(long, env)]
    sharded: Option<bool>,
404
405

    /// The number of shards to use if you don't want to use all GPUs on a given machine.
406
407
    /// You can use `CUDA_VISIBLE_DEVICES=0,1 text-generation-launcher... --num_shard 2`
    /// and `CUDA_VISIBLE_DEVICES=2,3 text-generation-launcher... --num_shard 2` to
408
    /// launch 2 copies with 2 shard each on a given machine with 4 GPUs for instance.
409
410
    #[clap(long, env)]
    num_shard: Option<usize>,
411

412
413
414
415
416
    /// Quantization method to use for the model. It is not necessary to specify this option
    /// for pre-quantized models, since the quantization method is read from the model
    /// configuration.
    ///
    /// Marlin kernels will be used automatically for GPTQ/AWQ models.
417
418
    #[clap(long, env, value_enum)]
    quantize: Option<Quantization>,
419

Nicolas Patry's avatar
Nicolas Patry committed
420
421
422
423
424
425
426
    /// The number of input_ids to speculate on
    /// If using a medusa model, the heads will be picked up automatically
    /// Other wise, it will use n-gram speculation which is relatively free
    /// in terms of compute, but the speedup heavily depends on the task.
    #[clap(long, env)]
    speculate: Option<usize>,

427
428
429
430
    /// The dtype to be forced upon the model. This option cannot be used with `--quantize`.
    #[clap(long, env, value_enum)]
    dtype: Option<Dtype>,

431
432
    /// Specify the dtype for the key-value cache. When this option is not provided,
    /// the dtype of the model is used (typically `float16` or `bfloat16`). Currently
433
    /// the only supported value are `fp8_e4m3fn` and `fp8_e5m2` on CUDA.
434
435
436
    #[clap(long, env, value_enum)]
    kv_cache_dtype: Option<KVCacheDtype>,

437
438
439
440
441
442
    /// Whether you want to execute hub modelling code. Explicitly passing a `revision` is
    /// encouraged when loading a model with custom code to ensure no malicious code has been
    /// contributed in a newer revision.
    #[clap(long, env, value_enum)]
    trust_remote_code: bool,

443
444
445
    /// The maximum amount of concurrent requests for this particular deployment.
    /// Having a low limit will refuse clients requests instead of having them
    /// wait for too long and is usually good to handle backpressure correctly.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
446
447
    #[clap(default_value = "128", long, env)]
    max_concurrent_requests: usize,
448
449
450
451

    /// This is the maximum allowed value for clients to set `best_of`.
    /// Best of makes `n` generations at the same time, and return the best
    /// in terms of overall log probability over the entire generated sequence
452
453
    #[clap(default_value = "2", long, env)]
    max_best_of: usize,
454
455
456
457
458
459

    /// This is the maximum allowed value for clients to set `stop_sequences`.
    /// Stop sequences are used to allow the model to stop on more than just
    /// the EOS token, and enable more complex "prompting" where users can preprompt
    /// the model in a specific way and define their "own" stop token aligned with
    /// their prompt.
460
461
    #[clap(default_value = "4", long, env)]
    max_stop_sequences: usize,
462

Nicolas Patry's avatar
Nicolas Patry committed
463
    /// This is the maximum allowed value for clients to set `top_n_tokens`.
464
    /// `top_n_tokens` is used to return information about the the `n` most likely
Nicolas Patry's avatar
Nicolas Patry committed
465
466
467
468
469
470
    /// tokens at each generation step, instead of just the sampled token. This
    /// information can be used for downstream tasks like for classification or
    /// ranking.
    #[clap(default_value = "5", long, env)]
    max_top_n_tokens: u32,

471
472
473
474
    /// This is the maximum allowed input length (expressed in number of tokens)
    /// for users. The larger this value, the longer prompt users can send which
    /// can impact the overall memory required to handle the load.
    /// Please note that some models have a finite range of sequence they can handle.
475
476
477
478
479
480
481
    /// Default to min(max_position_embeddings - 1, 4095)
    #[clap(long, env)]
    max_input_tokens: Option<usize>,

    /// Legacy version of [`Args::max_input_tokens`].
    #[clap(long, env)]
    max_input_length: Option<usize>,
482
483
484
485
486
487
488
489
490

    /// This is the most important value to set as it defines the "memory budget"
    /// of running clients requests.
    /// Clients will send input sequences and ask to generate `max_new_tokens`
    /// on top. with a value of `1512` users can send either a prompt of
    /// `1000` and ask for `512` new tokens, or send a prompt of `1` and ask for
    /// `1511` max_new_tokens.
    /// The larger this value, the larger amount each request will be in your RAM
    /// and the less effective batching can be.
491
492
493
    /// Default to min(max_position_embeddings, 4096)
    #[clap(long, env)]
    max_total_tokens: Option<usize>,
494
495
496
497
498
499
500
501
502
503
504

    /// This represents the ratio of waiting queries vs running queries where
    /// you want to start considering pausing the running queries to include the waiting
    /// ones into the same batch.
    /// `waiting_served_ratio=1.2` Means when 12 queries are waiting and there's
    /// only 10 queries left in the current batch we check if we can fit those 12
    /// waiting queries into the batching strategy, and if yes, then batching happens
    /// delaying the 10 running queries by a `prefill` run.
    ///
    /// This setting is only applied if there is room in the batch
    /// as defined by `max_batch_total_tokens`.
505
    #[clap(default_value = "0.3", long, env)]
506
    waiting_served_ratio: f32,
507

508
509
510
    /// Limits the number of tokens for the prefill operation.
    /// Since this operation take the most memory and is compute bound, it is interesting
    /// to limit the number of requests that can be sent.
511
512
513
    /// Default to `max_input_tokens + 50` to give a bit of room.
    #[clap(long, env)]
    max_batch_prefill_tokens: Option<u32>,
514

515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
    /// **IMPORTANT** This is one critical control to allow maximum usage
    /// of the available hardware.
    ///
    /// This represents the total amount of potential tokens within a batch.
    /// When using padding (not recommended) this would be equivalent of
    /// `batch_size` * `max_total_tokens`.
    ///
    /// However in the non-padded (flash attention) version this can be much finer.
    ///
    /// For `max_batch_total_tokens=1000`, you could fit `10` queries of `total_tokens=100`
    /// or a single query of `1000` tokens.
    ///
    /// Overall this number should be the largest possible amount that fits the
    /// remaining memory (after the model is loaded). Since the actual memory overhead
    /// depends on other parameters like if you're using quantization, flash attention
    /// or the model implementation, text-generation-inference cannot infer this number
    /// automatically.
532
533
    #[clap(long, env)]
    max_batch_total_tokens: Option<u32>,
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551

    /// This setting defines how many tokens can be passed before forcing the waiting
    /// queries to be put on the batch (if the size of the batch allows for it).
    /// New queries require 1 `prefill` forward, which is different from `decode`
    /// and therefore you need to pause the running batch in order to run `prefill`
    /// to create the correct values for the waiting queries to be able to join the batch.
    ///
    /// With a value too small, queries will always "steal" the compute to run `prefill`
    /// and running queries will be delayed by a lot.
    ///
    /// With a value too big, waiting queries could wait for a very long time
    /// before being allowed a slot in the running batch. If your server is busy
    /// that means that requests that could run in ~2s on an empty server could
    /// end up running in ~20s because the query had to wait for 18s.
    ///
    /// This number is expressed in number of tokens to make it a bit more
    /// "model" agnostic, but what should really matter is the overall latency
    /// for end users.
552
553
    #[clap(default_value = "20", long, env)]
    max_waiting_tokens: usize,
554

555
556
557
558
559
    /// Enforce a maximum number of requests per batch
    /// Specific flag for hardware targets that do not support unpadded inference
    #[clap(long, env)]
    max_batch_size: Option<usize>,

560
561
    /// Specify the batch sizes to compute cuda graphs for.
    /// Use "0" to disable.
562
563
564
    /// Default = "1,2,4,8,16,32"
    #[clap(long, env, value_delimiter = ',')]
    cuda_graphs: Option<Vec<usize>>,
565

566
567
568
569
    /// The IP address to listen on
    #[clap(default_value = "0.0.0.0", long, env)]
    hostname: String,

570
    /// The port to listen on.
571
    #[clap(default_value = "3000", long, short, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
572
    port: u16,
573
574
575

    /// The name of the socket for gRPC communication between the webserver
    /// and the shards.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
576
577
    #[clap(default_value = "/tmp/text-generation-server", long, env)]
    shard_uds_path: String,
578
579

    /// The address the master shard will listen on. (setting used by torch distributed)
580
    #[clap(default_value = "localhost", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
581
    master_addr: String,
582
583

    /// The address the master port will listen on. (setting used by torch distributed)
584
    #[clap(default_value = "29500", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
585
    master_port: usize,
586
587
588

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
589
    #[clap(long, env)]
590
    huggingface_hub_cache: Option<String>,
591
592
593

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
594
595
    #[clap(long, env)]
    weights_cache_override: Option<String>,
596
597
598
599
600

    /// For some models (like bloom), text-generation-inference implemented custom
    /// cuda kernels to speed up inference. Those kernels were only tested on A100.
    /// Use this flag to disable them if you're running on different hardware and
    /// encounter issues.
601
    #[clap(long, env)]
602
    disable_custom_kernels: bool,
603

604
605
606
607
608
    /// Limit the CUDA available memory.
    /// The allowed value equals the total visible memory multiplied by cuda-memory-fraction.
    #[clap(default_value = "1.0", long, env)]
    cuda_memory_fraction: f32,

Nicolas Patry's avatar
Nicolas Patry committed
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
    /// Rope scaling will only be used for RoPE models
    /// and allow rescaling the position rotary to accomodate for
    /// larger prompts.
    ///
    /// Goes together with `rope_factor`.
    ///
    /// `--rope-factor 2.0` gives linear scaling with a factor of 2.0
    /// `--rope-scaling dynamic` gives dynamic scaling with a factor of 1.0
    /// `--rope-scaling linear` gives linear scaling with a factor of 1.0 (Nothing will be changed
    /// basically)
    ///
    /// `--rope-scaling linear --rope-factor` fully describes the scaling you want
    #[clap(long, env)]
    rope_scaling: Option<RopeScaling>,

    /// Rope scaling will only be used for RoPE models
    /// See `rope_scaling`
    #[clap(long, env)]
    rope_factor: Option<f32>,

629
    /// Outputs the logs in JSON format (useful for telemetry)
630
    #[clap(long, env)]
631
    json_output: bool,
632

633
634
    #[clap(long, env)]
    otlp_endpoint: Option<String>,
635

636
637
638
    #[clap(default_value = "text-generation-inference.router", long, env)]
    otlp_service_name: String,

639
640
    #[clap(long, env)]
    cors_allow_origin: Vec<String>,
Erik Kaunismäki's avatar
Erik Kaunismäki committed
641
642
643
644

    #[clap(long, env)]
    api_key: Option<String>,

645
646
647
648
    #[clap(long, env)]
    watermark_gamma: Option<f32>,
    #[clap(long, env)]
    watermark_delta: Option<f32>,
649

650
651
652
653
654
655
656
657
    /// Enable ngrok tunneling
    #[clap(long, env)]
    ngrok: bool,

    /// ngrok authentication token
    #[clap(long, env)]
    ngrok_authtoken: Option<String>,

658
    /// ngrok edge
659
    #[clap(long, env)]
660
    ngrok_edge: Option<String>,
661

662
663
664
665
666
    /// The path to the tokenizer config file. This path is used to load the tokenizer configuration which may
    /// include a `chat_template`. If not provided, the default config will be used from the model hub.
    #[clap(long, env)]
    tokenizer_config_path: Option<String>,

drbh's avatar
drbh committed
667
668
669
670
671
    /// Disable outlines grammar constrained generation.
    /// This is a feature that allows you to generate text that follows a specific grammar.
    #[clap(long, env)]
    disable_grammar_support: bool,

672
673
674
    /// Display a lot of information about your runtime environment
    #[clap(long, short, action)]
    env: bool,
675
676
677
678

    /// Control the maximum number of inputs that a client can send in a single request
    #[clap(default_value = "4", long, env)]
    max_client_batch_size: usize,
drbh's avatar
drbh committed
679
680
681
682
683

    /// Lora Adapters a list of adapter ids i.e. `repo/adapter1,repo/adapter2` to load during
    /// startup that will be available to callers via the `adapter_id` field in a request.
    #[clap(long, env)]
    lora_adapters: Option<String>,
684

685
686
687
688
689
    /// Control if anonymous usage stats are collected.
    /// Options are "on", "off" and "no-stack"
    /// Defaul is on.
    #[clap(default_value = "on", long, env)]
    usage_stats: UsageStatsLevel,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
690
691
}

692
693
694
#[derive(Debug)]
enum ShardStatus {
    Ready,
695
    Failed(usize),
696
}
697

698
699
700
701
#[allow(clippy::too_many_arguments)]
fn shard_manager(
    model_id: String,
    revision: Option<String>,
702
    quantize: Option<Quantization>,
Nicolas Patry's avatar
Nicolas Patry committed
703
    speculate: Option<usize>,
704
    dtype: Option<Dtype>,
705
    kv_cache_dtype: Option<KVCacheDtype>,
706
    trust_remote_code: bool,
707
708
709
710
711
712
713
714
715
716
    uds_path: String,
    rank: usize,
    world_size: usize,
    master_addr: String,
    master_port: usize,
    huggingface_hub_cache: Option<String>,
    weights_cache_override: Option<String>,
    disable_custom_kernels: bool,
    watermark_gamma: Option<f32>,
    watermark_delta: Option<f32>,
717
    cuda_graphs: Vec<usize>,
718
    cuda_memory_fraction: f32,
Nicolas Patry's avatar
Nicolas Patry committed
719
720
    rope_scaling: Option<RopeScaling>,
    rope_factor: Option<f32>,
721
722
    max_total_tokens: usize,
    max_batch_size: Option<usize>,
723
    max_input_tokens: usize,
drbh's avatar
drbh committed
724
    lora_adapters: Option<String>,
725
    otlp_endpoint: Option<String>,
726
    otlp_service_name: String,
727
    log_level: LevelFilter,
728
    status_sender: mpsc::Sender<ShardStatus>,
729
    shutdown: Arc<AtomicBool>,
730
731
    _shutdown_sender: mpsc::Sender<()>,
) {
732
733
734
    // Enter shard-manager tracing span
    let _span = tracing::span!(tracing::Level::INFO, "shard-manager", rank = rank).entered();

735
736
737
738
    // Get UDS path
    let uds_string = format!("{uds_path}-{rank}");
    let uds = Path::new(&uds_string);
    // Clean previous runs
739
740
741
    if uds.exists() {
        fs::remove_file(uds).unwrap();
    }
742
743

    // Process args
OlivierDehaene's avatar
OlivierDehaene committed
744
    let mut shard_args = vec![
745
746
747
748
749
        "serve".to_string(),
        model_id,
        "--uds-path".to_string(),
        uds_path,
        "--logger-level".to_string(),
750
        log_level.to_string().to_uppercase(),
751
752
753
        "--json-output".to_string(),
    ];

754
755
    // Activate trust remote code
    if trust_remote_code {
OlivierDehaene's avatar
OlivierDehaene committed
756
        shard_args.push("--trust-remote-code".to_string());
757
758
    }

759
760
    // Activate tensor parallelism
    if world_size > 1 {
OlivierDehaene's avatar
OlivierDehaene committed
761
        shard_args.push("--sharded".to_string());
762
763
    }

764
    if let Some(quantize) = quantize {
OlivierDehaene's avatar
OlivierDehaene committed
765
766
        shard_args.push("--quantize".to_string());
        shard_args.push(quantize.to_string())
767
    }
768

Nicolas Patry's avatar
Nicolas Patry committed
769
770
771
772
773
    if let Some(speculate) = speculate {
        shard_args.push("--speculate".to_string());
        shard_args.push(speculate.to_string())
    }

774
    if let Some(dtype) = dtype {
OlivierDehaene's avatar
OlivierDehaene committed
775
776
        shard_args.push("--dtype".to_string());
        shard_args.push(dtype.to_string())
777
778
    }

779
780
781
782
783
    if let Some(kv_cache_dtype) = kv_cache_dtype {
        shard_args.push("--kv-cache-dtype".to_string());
        shard_args.push(kv_cache_dtype.to_string())
    }

784
785
    // Model optional revision
    if let Some(revision) = revision {
OlivierDehaene's avatar
OlivierDehaene committed
786
787
        shard_args.push("--revision".to_string());
        shard_args.push(revision)
788
    }
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
789

Nicolas Patry's avatar
Nicolas Patry committed
790
791
792
793
794
795
    let rope = match (rope_scaling, rope_factor) {
        (None, None) => None,
        (Some(scaling), None) => Some((scaling, 1.0)),
        (Some(scaling), Some(factor)) => Some((scaling, factor)),
        (None, Some(factor)) => Some((RopeScaling::Linear, factor)),
    };
796

797
    // OpenTelemetry Endpoint
798
    if let Some(otlp_endpoint) = otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
799
800
        shard_args.push("--otlp-endpoint".to_string());
        shard_args.push(otlp_endpoint);
801
802
    }

803
804
805
806
    // OpenTelemetry Service Name
    shard_args.push("--otlp-service-name".to_string());
    shard_args.push(otlp_service_name);

807
808
809
810
    // In case we use sliding window, we may ignore the sliding in flash for some backends depending on the parameter.
    shard_args.push("--max-input-tokens".to_string());
    shard_args.push(max_input_tokens.to_string());

811
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
812
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
813

814
815
816
    // Remove LOG_LEVEL if present
    envs.retain(|(name, _)| name != "LOG_LEVEL");

817
    // Torch Distributed Env vars
OlivierDehaene's avatar
OlivierDehaene committed
818
819
820
821
    envs.push(("RANK".into(), rank.to_string().into()));
    envs.push(("WORLD_SIZE".into(), world_size.to_string().into()));
    envs.push(("MASTER_ADDR".into(), master_addr.into()));
    envs.push(("MASTER_PORT".into(), master_port.to_string().into()));
822
    envs.push(("TORCH_NCCL_AVOID_RECORD_STREAMS".into(), "1".into()));
823

824
825
826
827
828
829
    // CUDA memory fraction
    envs.push((
        "CUDA_MEMORY_FRACTION".into(),
        cuda_memory_fraction.to_string().into(),
    ));

830
    // Safetensors load fast
OlivierDehaene's avatar
OlivierDehaene committed
831
    envs.push(("SAFETENSORS_FAST_GPU".into(), "1".into()));
832

833
834
835
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

836
837
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
838
    envs.push((
839
840
841
842
843
844
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));

    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
845
        envs.push(("HF_TOKEN".into(), api_token.into()))
846
847
    };

Nicolas Patry's avatar
Nicolas Patry committed
848
849
850
851
852
853
854
855
856
    // Detect rope scaling
    // Sending as env instead of CLI args to not bloat everything
    // those only can be used by RoPE models, so passing information around
    // for all models will complexify code unnecessarily
    if let Some((scaling, factor)) = rope {
        envs.push(("ROPE_SCALING".into(), scaling.to_string().into()));
        envs.push(("ROPE_FACTOR".into(), factor.to_string().into()));
    }

857
858
859
860
861
862
863
864
    envs.push((
        "MAX_TOTAL_TOKENS".into(),
        max_total_tokens.to_string().into(),
    ));
    if let Some(max_batch_size) = max_batch_size {
        envs.push(("MAX_BATCH_SIZE".into(), max_batch_size.to_string().into()));
    }

drbh's avatar
drbh committed
865
866
867
868
869
    // Lora Adapters
    if let Some(lora_adapters) = lora_adapters {
        envs.push(("LORA_ADAPTERS".into(), lora_adapters.into()));
    }

870
871
872
    // If huggingface_hub_cache is some, pass it to the shard
    // Useful when running inside a docker container
    if let Some(huggingface_hub_cache) = huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
873
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
874
875
876
877
878
    };

    // If weights_cache_override is some, pass it to the shard
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
879
        envs.push((
880
881
882
883
884
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

885
    // Enable experimental support for cuda graphs
886
887
888
889
890
891
892
893
894
895
    if !cuda_graphs.is_empty() {
        envs.push((
            "CUDA_GRAPHS".into(),
            cuda_graphs
                .into_iter()
                .map(|c| c.to_string())
                .collect::<Vec<_>>()
                .join(",")
                .into(),
        ));
896
897
    }

898
899
    // If disable_custom_kernels is true, pass it to the shard as an env var
    if disable_custom_kernels {
OlivierDehaene's avatar
OlivierDehaene committed
900
        envs.push(("DISABLE_CUSTOM_KERNELS".into(), "True".into()))
901
902
903
904
    }

    // Watermark Gamma
    if let Some(watermark_gamma) = watermark_gamma {
OlivierDehaene's avatar
OlivierDehaene committed
905
        envs.push(("WATERMARK_GAMMA".into(), watermark_gamma.to_string().into()))
906
907
908
909
    }

    // Watermark Delta
    if let Some(watermark_delta) = watermark_delta {
OlivierDehaene's avatar
OlivierDehaene committed
910
        envs.push(("WATERMARK_DELTA".into(), watermark_delta.to_string().into()))
911
912
913
    }

    // Start process
914
    tracing::info!("Starting shard");
915
    let mut p = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
916
        .args(shard_args)
917
        .env_clear()
OlivierDehaene's avatar
OlivierDehaene committed
918
        .envs(envs)
919
        .stdin(Stdio::piped())
920
921
922
923
924
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
925
926
        Ok(p) => p,
        Err(err) => {
927
928
929
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
930
931
            }
            {
932
                tracing::error!("{}", err);
933
            }
934

935
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
936
937
938
939
940
            return;
        }
    };

    // Redirect STDOUT to the console
941
    let mut pstdin = p.stdin.take().unwrap();
942
    let shard_stdout_reader = BufReader::new(p.stdout.take().unwrap());
943
    let shard_stderr_reader = BufReader::new(p.stderr.take().unwrap());
944

945
    //stdout tracing thread
946
    thread::spawn(move || {
947
        log_lines(shard_stdout_reader);
948
    });
949
950
951
    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
OlivierDehaene's avatar
OlivierDehaene committed
952
        for line in shard_stderr_reader.lines().map_while(Result::ok) {
953
954
955
            err_sender.send(line).unwrap_or(());
        }
    });
956
    // We read stdin in another thread as it seems that lines() can block in some cases
Nicolas Patry's avatar
Nicolas Patry committed
957
958
959
960
961
962
963
964
965
    if LevelFilter::current() >= tracing::Level::DEBUG {
        thread::spawn(move || {
            let mut stdin = io::stdin(); // We get `Stdin` here.
            loop {
                let mut buffer = vec![0; 4096];
                if let Ok(n) = stdin.read(&mut buffer) {
                    if n > 0 {
                        let _ = pstdin.write_all(&buffer[..n]);
                    }
966
967
                }
            }
Nicolas Patry's avatar
Nicolas Patry committed
968
969
        });
    }
970
971
972
973
974
975

    let mut ready = false;
    let start_time = Instant::now();
    let mut wait_time = Instant::now();
    loop {
        // Process exited
976
        if let Some(exit_status) = p.try_wait().unwrap() {
977
978
979
980
            let mut err = String::new();
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }
981

982
            tracing::error!("Shard complete standard error output:\n{err}");
983

984
            if let Some(signal) = exit_status.signal() {
985
986
987
                tracing::error!("Shard process was signaled to shutdown with signal {signal}");
            }

988
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
989
990
991
992
            return;
        }

        // We received a shutdown signal
993
        if shutdown.load(Ordering::SeqCst) {
994
            terminate("shard", p, Duration::from_secs(90)).unwrap();
995
996
997
998
999
            return;
        }

        // Shard is ready
        if uds.exists() && !ready {
1000
            tracing::info!("Shard ready in {:?}", start_time.elapsed());
1001
1002
1003
            status_sender.send(ShardStatus::Ready).unwrap();
            ready = true;
        } else if !ready && wait_time.elapsed() > Duration::from_secs(10) {
1004
            tracing::info!("Waiting for shard to be ready...");
1005
1006
1007
1008
1009
1010
            wait_time = Instant::now();
        }
        sleep(Duration::from_millis(100));
    }
}

1011
fn shutdown_shards(shutdown: Arc<AtomicBool>, shutdown_receiver: &mpsc::Receiver<()>) {
1012
1013
1014
    tracing::info!("Shutting down shards");
    // Update shutdown value to true
    // This will be picked up by the shard manager
1015
    shutdown.store(true, Ordering::SeqCst);
1016
1017
1018
1019
1020
1021
1022

    // Wait for shards to shutdown
    // This will block till all shutdown_sender are dropped
    let _ = shutdown_receiver.recv();
}

fn num_cuda_devices() -> Option<usize> {
1023
1024
    let devices = match env::var("CUDA_VISIBLE_DEVICES") {
        Ok(devices) => devices,
1025
1026
1027
        Err(_) => match env::var("NVIDIA_VISIBLE_DEVICES") {
            Ok(devices) => devices,
            Err(_) => env::var("ZE_AFFINITY_MASK").ok()?,
Nicolas Patry's avatar
Nicolas Patry committed
1028
        },
1029
    };
1030
1031
    let n_devices = devices.split(',').count();
    Some(n_devices)
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
}

#[derive(Deserialize)]
#[serde(rename_all = "UPPERCASE")]
enum PythonLogLevelEnum {
    Trace,
    Debug,
    Info,
    Success,
    Warning,
    Error,
    Critical,
}

#[derive(Deserialize)]
struct PythonLogLevel {
    name: PythonLogLevelEnum,
}

#[derive(Deserialize)]
struct PythonLogRecord {
    level: PythonLogLevel,
}

#[derive(Deserialize)]
struct PythonLogMessage {
    text: String,
    record: PythonLogRecord,
}

impl PythonLogMessage {
    fn trace(&self) {
        match self.record.level.name {
1065
1066
1067
1068
1069
1070
1071
            PythonLogLevelEnum::Trace => tracing::trace!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Debug => tracing::debug!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Info => tracing::info!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Success => tracing::info!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Warning => tracing::warn!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Error => tracing::error!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Critical => tracing::error!("{}", self.text.trim_end()),
1072
1073
1074
1075
        }
    }
}

1076
impl TryFrom<&[u8]> for PythonLogMessage {
1077
1078
    type Error = serde_json::Error;

1079
1080
    fn try_from(value: &[u8]) -> Result<Self, Self::Error> {
        serde_json::from_slice::<Self>(value)
1081
1082
1083
    }
}

1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
fn log_lines<R: Sized + Read>(mut bufread: BufReader<R>) {
    let mut buffer = vec![0u8; 8 * 4096];
    let mut stdout = std::io::stdout();
    loop {
        let n = bufread.read(&mut buffer);
        if let Ok(n) = n {
            if n > 0 {
                let mut lines = buffer[..n].split(|i| *i == b'\n').peekable();
                while let Some(line) = lines.next() {
                    match PythonLogMessage::try_from(line) {
                        Ok(log) => log.trace(),
                        // For interactive debugging ?
                        Err(_) => {
1097
1098
1099
1100
1101
1102
                            if LevelFilter::current() >= tracing::Level::DEBUG {
                                stdout.write_all(line).unwrap();
                                if lines.peek().is_some() {
                                    stdout.write_all(b"\n").unwrap();
                                }
                                stdout.flush().unwrap();
1103
1104
1105
1106
1107
                            }
                        }
                    }
                }
            }
1108
1109
1110
1111
        }
    }
}

1112
1113
1114
1115
fn find_num_shards(
    sharded: Option<bool>,
    num_shard: Option<usize>,
) -> Result<usize, LauncherError> {
1116
1117
1118
1119
    // get the number of shards given `sharded` and `num_shard`
    let num_shard = match (sharded, num_shard) {
        (Some(true), None) => {
            // try to default to the number of available GPUs
1120
            tracing::info!("Parsing num_shard from CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES/ZE_AFFINITY_MASK");
1121
            let n_devices = num_cuda_devices()
1122
                .expect("--num-shard and CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES/ZE_AFFINITY_MASK are not set");
1123
            if n_devices <= 1 {
1124
1125
1126
                return Err(LauncherError::NotEnoughCUDADevices(format!(
                    "`sharded` is true but only found {n_devices} CUDA devices"
                )));
1127
            }
1128
            n_devices
1129
        }
1130
1131
1132
        (Some(true), Some(num_shard)) => {
            // we can't have only one shard while sharded
            if num_shard <= 1 {
1133
1134
1135
                return Err(LauncherError::ArgumentValidation(
                    "`sharded` is true but `num_shard` <= 1".to_string(),
                ));
1136
1137
            }
            num_shard
1138
        }
1139
1140
1141
1142
        (Some(false), Some(num_shard)) => num_shard,
        (Some(false), None) => 1,
        (None, None) => num_cuda_devices().unwrap_or(1),
        (None, Some(num_shard)) => num_shard,
1143
    };
1144
    if num_shard < 1 {
1145
1146
1147
        return Err(LauncherError::ArgumentValidation(
            "`num_shard` cannot be < 1".to_string(),
        ));
1148
    }
1149
    Ok(num_shard)
1150
}
1151

1152
#[derive(Debug, Error)]
1153
enum LauncherError {
1154
    #[error("Invalid argument: {0}")]
1155
    ArgumentValidation(String),
1156
    #[error("not enough cuda devices: {0}")]
1157
    NotEnoughCUDADevices(String),
1158
    #[error("Download error")]
1159
    DownloadError,
1160
    #[error("Shard cannot start")]
1161
    ShardCannotStart,
1162
    #[error("Shard disconnected")]
1163
    ShardDisconnected,
1164
    #[error("Shard failed")]
1165
    ShardFailed,
1166
    #[error("Webserver failed")]
1167
    WebserverFailed,
1168
    #[error("Webserver cannot start")]
1169
1170
    WebserverCannotStart,
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1171

1172
1173
1174
1175
1176
1177
1178
1179
fn download_convert_model(
    model_id: &str,
    revision: Option<&str>,
    trust_remote_code: bool,
    huggingface_hub_cache: Option<&str>,
    weights_cache_override: Option<&str>,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
1180
1181
1182
    // Enter download tracing span
    let _span = tracing::span!(tracing::Level::INFO, "download").entered();

OlivierDehaene's avatar
OlivierDehaene committed
1183
    let mut download_args = vec![
1184
        "download-weights".to_string(),
1185
        model_id.to_string(),
1186
1187
1188
1189
1190
1191
        "--extension".to_string(),
        ".safetensors".to_string(),
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];
1192

1193
    // Model optional revision
1194
    if let Some(revision) = &revision {
OlivierDehaene's avatar
OlivierDehaene committed
1195
1196
        download_args.push("--revision".to_string());
        download_args.push(revision.to_string())
1197
    }
1198

1199
    // Trust remote code for automatic peft fusion
1200
    if trust_remote_code {
1201
1202
1203
        download_args.push("--trust-remote-code".to_string());
    }

1204
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
1205
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
1206

1207
1208
1209
    // Remove LOG_LEVEL if present
    envs.retain(|(name, _)| name != "LOG_LEVEL");

1210
1211
1212
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

1213
    // If huggingface_hub_cache is set, pass it to the download process
1214
    // Useful when running inside a docker container
1215
    if let Some(ref huggingface_hub_cache) = huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
1216
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
1217
    };
1218

1219
1220
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
1221
    envs.push((
1222
1223
1224
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));
1225

1226
1227
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
1228
        envs.push(("HF_TOKEN".into(), api_token.into()))
1229
    };
1230

1231
1232
    // If args.weights_cache_override is some, pass it to the download process
    // Useful when running inside a HuggingFace Inference Endpoint
1233
    if let Some(weights_cache_override) = &weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
1234
        envs.push((
1235
1236
1237
1238
1239
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

1240
    // Start process
1241
    tracing::info!("Starting check and download process for {model_id}");
1242
    let mut download_process = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
1243
        .args(download_args)
1244
        .env_clear()
OlivierDehaene's avatar
OlivierDehaene committed
1245
        .envs(envs)
1246
1247
1248
1249
1250
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
1251
1252
        Ok(p) => p,
        Err(err) => {
1253
1254
1255
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
1256
1257
            } else {
                tracing::error!("{}", err);
1258
            }
1259

1260
1261
1262
            return Err(LauncherError::DownloadError);
        }
    };
1263

1264
    let download_stdout = BufReader::new(download_process.stdout.take().unwrap());
1265

1266
    thread::spawn(move || {
1267
        log_lines(download_stdout);
1268
1269
1270
1271
1272
1273
1274
    });

    let download_stderr = BufReader::new(download_process.stderr.take().unwrap());

    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
OlivierDehaene's avatar
OlivierDehaene committed
1275
        for line in download_stderr.lines().map_while(Result::ok) {
1276
1277
            err_sender.send(line).unwrap_or(());
        }
1278
    });
1279

1280
    loop {
1281
1282
        if let Some(status) = download_process.try_wait().unwrap() {
            if status.success() {
1283
                tracing::info!("Successfully downloaded weights for {model_id}");
1284
                break;
1285
            }
1286
1287

            let mut err = String::new();
1288
1289
1290
1291
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }

1292
1293
1294
1295
1296
1297
1298
1299
1300
            if let Some(signal) = status.signal() {
                tracing::error!(
                    "Download process was signaled to shutdown with signal {signal}: {err}"
                );
            } else {
                tracing::error!("Download encountered an error: {err}");
            }

            return Err(LauncherError::DownloadError);
1301
        }
1302
        if !running.load(Ordering::SeqCst) {
OlivierDehaene's avatar
OlivierDehaene committed
1303
            terminate("download", download_process, Duration::from_secs(10)).unwrap();
1304
1305
1306
            return Ok(());
        }
        sleep(Duration::from_millis(100));
1307
    }
1308
1309
    Ok(())
}
1310

1311
#[allow(clippy::too_many_arguments)]
1312
1313
1314
fn spawn_shards(
    num_shard: usize,
    args: &Args,
1315
    cuda_graphs: Vec<usize>,
1316
    max_total_tokens: usize,
1317
    max_input_tokens: usize,
1318
    quantize: Option<Quantization>,
1319
    max_log_level: LevelFilter,
1320
    shutdown: Arc<AtomicBool>,
1321
1322
1323
1324
1325
1326
    shutdown_receiver: &mpsc::Receiver<()>,
    shutdown_sender: mpsc::Sender<()>,
    status_receiver: &mpsc::Receiver<ShardStatus>,
    status_sender: mpsc::Sender<ShardStatus>,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1327
1328
    // Start shard processes
    for rank in 0..num_shard {
1329
1330
1331
1332
1333
1334
        let model_id = args.model_id.clone();
        let revision = args.revision.clone();
        let uds_path = args.shard_uds_path.clone();
        let master_addr = args.master_addr.clone();
        let huggingface_hub_cache = args.huggingface_hub_cache.clone();
        let weights_cache_override = args.weights_cache_override.clone();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1335
1336
1337
        let status_sender = status_sender.clone();
        let shutdown = shutdown.clone();
        let shutdown_sender = shutdown_sender.clone();
1338
        let otlp_endpoint = args.otlp_endpoint.clone();
1339
        let otlp_service_name = args.otlp_service_name.clone();
Nicolas Patry's avatar
Nicolas Patry committed
1340
        let speculate = args.speculate;
1341
        let dtype = args.dtype;
1342
        let kv_cache_dtype = args.kv_cache_dtype;
1343
        let trust_remote_code = args.trust_remote_code;
1344
1345
1346
1347
        let master_port = args.master_port;
        let disable_custom_kernels = args.disable_custom_kernels;
        let watermark_gamma = args.watermark_gamma;
        let watermark_delta = args.watermark_delta;
1348
        let cuda_graphs_clone = cuda_graphs.clone();
1349
        let cuda_memory_fraction = args.cuda_memory_fraction;
Nicolas Patry's avatar
Nicolas Patry committed
1350
1351
        let rope_scaling = args.rope_scaling;
        let rope_factor = args.rope_factor;
1352
        let max_batch_size = args.max_batch_size;
drbh's avatar
drbh committed
1353
        let lora_adapters = args.lora_adapters.clone();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1354
1355
        thread::spawn(move || {
            shard_manager(
1356
                model_id,
1357
                revision,
1358
                quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1359
                speculate,
1360
                dtype,
1361
                kv_cache_dtype,
1362
                trust_remote_code,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1363
1364
1365
1366
1367
                uds_path,
                rank,
                num_shard,
                master_addr,
                master_port,
1368
1369
                huggingface_hub_cache,
                weights_cache_override,
1370
                disable_custom_kernels,
1371
1372
                watermark_gamma,
                watermark_delta,
1373
                cuda_graphs_clone,
1374
                cuda_memory_fraction,
Nicolas Patry's avatar
Nicolas Patry committed
1375
1376
                rope_scaling,
                rope_factor,
1377
1378
                max_total_tokens,
                max_batch_size,
1379
                max_input_tokens,
drbh's avatar
drbh committed
1380
                lora_adapters,
1381
                otlp_endpoint,
1382
                otlp_service_name,
1383
                max_log_level,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
                status_sender,
                shutdown,
                shutdown_sender,
            )
        });
    }
    drop(shutdown_sender);

    // Wait for shard to start
    let mut shard_ready = 0;
    while running.load(Ordering::SeqCst) {
        match status_receiver.try_recv() {
            Ok(ShardStatus::Ready) => {
                shard_ready += 1;
                if shard_ready == num_shard {
                    break;
                }
            }
            Err(TryRecvError::Empty) => {
                sleep(Duration::from_millis(100));
            }
1405
            Ok(ShardStatus::Failed(rank)) => {
1406
                tracing::error!("Shard {rank} failed to start");
1407
                shutdown_shards(shutdown, shutdown_receiver);
1408
                return Err(LauncherError::ShardCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1409
1410
1411
            }
            Err(TryRecvError::Disconnected) => {
                tracing::error!("Shard status channel disconnected");
1412
                shutdown_shards(shutdown, shutdown_receiver);
1413
                return Err(LauncherError::ShardDisconnected);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1414
1415
1416
            }
        }
    }
1417
1418
    Ok(())
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1419

1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
fn compute_type(num_shard: usize) -> Option<String> {
    let output = Command::new("nvidia-smi")
        .args(["--query-gpu=gpu_name", "--format=csv"])
        .output()
        .ok()?;
    let output = String::from_utf8(output.stdout).ok()?;
    let fullname = output.split('\n').nth(1)?;
    let cardname = fullname.replace(' ', "-").to_lowercase();
    let compute_type = format!("{num_shard}-{cardname}");
    Some(compute_type)
}

1432
fn spawn_webserver(
1433
    num_shard: usize,
1434
    args: Args,
1435
1436
1437
    max_input_tokens: usize,
    max_total_tokens: usize,
    max_batch_prefill_tokens: u32,
1438
    shutdown: Arc<AtomicBool>,
1439
    shutdown_receiver: &mpsc::Receiver<()>,
1440
) -> Result<Child, LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1441
1442
1443
    // All shard started
    // Start webserver
    tracing::info!("Starting Webserver");
OlivierDehaene's avatar
OlivierDehaene committed
1444
    let mut router_args = vec![
1445
1446
        "--max-client-batch-size".to_string(),
        args.max_client_batch_size.to_string(),
1447
        "--max-concurrent-requests".to_string(),
1448
        args.max_concurrent_requests.to_string(),
1449
        "--max-best-of".to_string(),
1450
        args.max_best_of.to_string(),
1451
        "--max-stop-sequences".to_string(),
1452
        args.max_stop_sequences.to_string(),
Nicolas Patry's avatar
Nicolas Patry committed
1453
1454
        "--max-top-n-tokens".to_string(),
        args.max_top_n_tokens.to_string(),
1455
1456
        "--max-input-tokens".to_string(),
        max_input_tokens.to_string(),
1457
        "--max-total-tokens".to_string(),
1458
        max_total_tokens.to_string(),
1459
        "--max-batch-prefill-tokens".to_string(),
1460
        max_batch_prefill_tokens.to_string(),
1461
        "--waiting-served-ratio".to_string(),
1462
        args.waiting_served_ratio.to_string(),
1463
        "--max-waiting-tokens".to_string(),
1464
        args.max_waiting_tokens.to_string(),
1465
1466
        "--validation-workers".to_string(),
        args.validation_workers.to_string(),
1467
1468
        "--hostname".to_string(),
        args.hostname.to_string(),
1469
        "--port".to_string(),
1470
        args.port.to_string(),
1471
        "--master-shard-uds-path".to_string(),
1472
        format!("{}-0", args.shard_uds_path),
1473
        "--tokenizer-name".to_string(),
1474
        args.model_id,
1475
1476
    ];

1477
    // Pass usage stats flags to router
1478
1479
    router_args.push("--usage-stats".to_string());
    router_args.push(args.usage_stats.to_string());
1480

drbh's avatar
drbh committed
1481
1482
1483
1484
1485
    // Grammar support
    if args.disable_grammar_support {
        router_args.push("--disable-grammar-support".to_string());
    }

1486
1487
1488
1489
1490
1491
    // Tokenizer config path
    if let Some(ref tokenizer_config_path) = args.tokenizer_config_path {
        router_args.push("--tokenizer-config-path".to_string());
        router_args.push(tokenizer_config_path.to_string());
    }

1492
1493
1494
1495
1496
1497
    // Model optional max batch total tokens
    if let Some(max_batch_total_tokens) = args.max_batch_total_tokens {
        router_args.push("--max-batch-total-tokens".to_string());
        router_args.push(max_batch_total_tokens.to_string());
    }

1498
1499
1500
1501
1502
1503
    // Router optional max batch size
    if let Some(max_batch_size) = args.max_batch_size {
        router_args.push("--max-batch-size".to_string());
        router_args.push(max_batch_size.to_string());
    }

1504
1505
    // Model optional revision
    if let Some(ref revision) = args.revision {
OlivierDehaene's avatar
OlivierDehaene committed
1506
1507
        router_args.push("--revision".to_string());
        router_args.push(revision.to_string())
1508
1509
    }

1510
    if args.json_output {
OlivierDehaene's avatar
OlivierDehaene committed
1511
        router_args.push("--json-output".to_string());
1512
1513
    }

1514
    // OpenTelemetry
1515
    if let Some(otlp_endpoint) = args.otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
1516
1517
        router_args.push("--otlp-endpoint".to_string());
        router_args.push(otlp_endpoint);
1518
1519
    }

1520
1521
1522
1523
1524
    // OpenTelemetry
    let otlp_service_name = args.otlp_service_name;
    router_args.push("--otlp-service-name".to_string());
    router_args.push(otlp_service_name);

1525
1526
    // CORS origins
    for origin in args.cors_allow_origin.into_iter() {
OlivierDehaene's avatar
OlivierDehaene committed
1527
1528
        router_args.push("--cors-allow-origin".to_string());
        router_args.push(origin);
1529
1530
    }

Erik Kaunismäki's avatar
Erik Kaunismäki committed
1531
1532
1533
1534
1535
    // API Key
    if let Some(api_key) = args.api_key {
        router_args.push("--api-key".to_string());
        router_args.push(api_key);
    }
1536
1537
    // Ngrok
    if args.ngrok {
OlivierDehaene's avatar
OlivierDehaene committed
1538
1539
        router_args.push("--ngrok".to_string());
        router_args.push("--ngrok-authtoken".to_string());
1540
1541
1542
        router_args.push(args.ngrok_authtoken.unwrap());
        router_args.push("--ngrok-edge".to_string());
        router_args.push(args.ngrok_edge.unwrap());
1543
1544
    }

1545
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
1546
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
1547

1548
1549
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
1550
        envs.push(("HF_TOKEN".into(), api_token.into()))
1551
    };
1552

1553
1554
1555
1556
1557
1558
1559
    // Parse Compute type
    if let Ok(compute_type) = env::var("COMPUTE_TYPE") {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    } else if let Some(compute_type) = compute_type(num_shard) {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    }

1560
    let mut webserver = match Command::new("text-generation-router")
OlivierDehaene's avatar
OlivierDehaene committed
1561
1562
        .args(router_args)
        .envs(envs)
1563
1564
1565
1566
1567
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1568
1569
        Ok(p) => p,
        Err(err) => {
1570
            tracing::error!("Failed to start webserver: {}", err);
1571
1572
1573
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-router not found in PATH");
                tracing::error!("Please install it with `make install-router`")
1574
1575
            } else {
                tracing::error!("{}", err);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1576
            }
1577

1578
            shutdown_shards(shutdown, shutdown_receiver);
1579
            return Err(LauncherError::WebserverCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1580
1581
1582
        }
    };

1583
1584
1585
    // Redirect STDOUT and STDERR to the console
    let webserver_stdout = webserver.stdout.take().unwrap();
    let webserver_stderr = webserver.stderr.take().unwrap();
1586
1587

    thread::spawn(move || {
1588
1589
        let stdout = BufReader::new(webserver_stdout);
        let stderr = BufReader::new(webserver_stderr);
1590
        for line in stdout.lines() {
1591
            println!("{}", line.unwrap());
1592
        }
1593
1594
        for line in stderr.lines() {
            println!("{}", line.unwrap());
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1595
        }
1596
1597
1598
    });
    Ok(webserver)
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1599

OlivierDehaene's avatar
OlivierDehaene committed
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
fn terminate(process_name: &str, mut process: Child, timeout: Duration) -> io::Result<ExitStatus> {
    tracing::info!("Terminating {process_name}");

    let terminate_time = Instant::now();
    signal::kill(Pid::from_raw(process.id() as i32), Signal::SIGTERM).unwrap();

    tracing::info!("Waiting for {process_name} to gracefully shutdown");
    while terminate_time.elapsed() < timeout {
        if let Some(status) = process.try_wait()? {
            tracing::info!("{process_name} terminated");
            return Ok(status);
        }
        sleep(Duration::from_millis(100));
    }
    tracing::info!("Killing {process_name}");

    process.kill()?;
    let exit_status = process.wait()?;

    tracing::info!("{process_name} killed");
    Ok(exit_status)
}

1623
1624
fn main() -> Result<(), LauncherError> {
    // Pattern match configuration
1625
    let args: Args = Args::parse();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1626

1627
    // Filter events with LOG_LEVEL
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
    let varname = "LOG_LEVEL";
    let env_filter = if let Ok(log_level) = std::env::var(varname) {
        // Override to avoid simple logs to be spammed with tokio level informations
        let log_level = match &log_level[..] {
            "warn" => "text_generation_launcher=warn,text_generation_router=warn",
            "info" => "text_generation_launcher=info,text_generation_router=info",
            "debug" => "text_generation_launcher=debug,text_generation_router=debug",
            log_level => log_level,
        };
        EnvFilter::builder()
            .with_default_directive(LevelFilter::INFO.into())
            .parse_lossy(log_level)
    } else {
        EnvFilter::new("info")
    };
    let max_log_level = env_filter.max_level_hint().unwrap_or(LevelFilter::INFO);
1644

1645
    if args.json_output {
1646
1647
1648
1649
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .json()
            .init();
1650
    } else {
1651
1652
1653
1654
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .compact()
            .init();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1655
1656
    }

1657
1658
1659
1660
1661
    if args.env {
        let env_runtime = env_runtime::Env::new();
        tracing::info!("{}", env_runtime);
    }

Nicolas Patry's avatar
Nicolas Patry committed
1662
    tracing::info!("{:#?}", args);
1663

1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
    let config: Option<Config> = get_config(&args.model_id, &args.revision).ok();
    let quantize = config.as_ref().and_then(|c| c.quantize);
    // Quantization usually means you're even more RAM constrained.
    let max_default = 4096;

    let max_position_embeddings = if let Some(config) = &config {
        if let Some(max_position_embeddings) = config.max_position_embeddings {
            if max_position_embeddings > max_default {
                let max = max_position_embeddings;
                if args.max_input_tokens.is_none()
                    && args.max_total_tokens.is_none()
                    && args.max_batch_prefill_tokens.is_none()
                {
                    tracing::info!("Model supports up to {max} but tgi will now set its default to {max_default} instead. This is to save VRAM by refusing large prompts in order to allow more users on the same hardware. You can increase that size using `--max-batch-prefill-tokens={} --max-total-tokens={max} --max-input-tokens={}`.", max + 50, max - 1);
1678
                }
1679
                max_default
1680
            } else {
1681
                max_position_embeddings
1682
            }
1683
1684
1685
1686
1687
1688
1689
1690
        } else {
            max_default
        }
    } else {
        max_default
    };
    let (prefix_caching, attention) = resolve_attention(&config, &args.lora_adapters);
    tracing::info!("Using attention {attention} - Prefix caching {prefix_caching}");
1691
    std::env::set_var("PREFIX_CACHING", prefix_caching);
1692
    std::env::set_var("ATTENTION", attention);
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735

    let max_input_tokens = {
        match (args.max_input_tokens, args.max_input_length) {
            (Some(max_input_tokens), Some(max_input_length)) => {
                return Err(LauncherError::ArgumentValidation(
                    format!("Both `max_input_tokens` ({max_input_tokens}) and `max_input_length` ({max_input_length}) are set. Please define only `max_input_tokens` as `max_input_length is deprecated for naming consistency.",
                )));
            }
            (Some(max_input_tokens), None) | (None, Some(max_input_tokens)) => max_input_tokens,
            (None, None) => {
                let value = max_position_embeddings - 1;
                tracing::info!("Default `max_input_tokens` to {value}");
                value
            }
        }
    };
    let max_total_tokens = {
        match args.max_total_tokens {
            Some(max_total_tokens) => max_total_tokens,
            None => {
                let value = max_position_embeddings;
                tracing::info!("Default `max_total_tokens` to {value}");
                value
            }
        }
    };
    let max_batch_prefill_tokens = {
        match args.max_batch_prefill_tokens {
            Some(max_batch_prefill_tokens) => max_batch_prefill_tokens,
            None => {
                let value: u32 = if let Some(max_batch_size) = args.max_batch_size {
                    max_batch_size * max_input_tokens
                } else {
                    // Adding some edge in order to account for potential block_size alignement
                    // issue.
                    max_input_tokens + 50
                } as u32;
                tracing::info!("Default `max_batch_prefill_tokens` to {value}");
                value
            }
        }
    };

1736
    // Validate args
1737
    if max_input_tokens >= max_total_tokens {
1738
        return Err(LauncherError::ArgumentValidation(
1739
            "`max_input_tokens must be < `max_total_tokens`".to_string(),
1740
1741
        ));
    }
1742

1743
1744
1745
1746
1747
    if matches!(args.quantize, Some(Quantization::Bitsandbytes)) {
        tracing::warn!("Bitsandbytes is deprecated, use `eetq` instead, which provides better latencies overall and is drop-in in most cases.");
    }
    let quantize = args.quantize.or(quantize);
    let cuda_graphs = match (&args.cuda_graphs, &quantize) {
Nicolas Patry's avatar
Nicolas Patry committed
1748
        (Some(cuda_graphs), _) => cuda_graphs.iter().cloned().filter(|&c| c > 0).collect(),
1749
1750
1751
1752
1753
        #[allow(deprecated)]
        (
            None,
            Some(
                Quantization::Bitsandbytes
1754
1755
                | Quantization::BitsandbytesNf4
                | Quantization::BitsandbytesFp4,
1756
1757
            ),
        ) => {
1758
1759
1760
1761
1762
            tracing::warn!("Bitsandbytes doesn't work with cuda graphs, deactivating them");
            vec![]
        }
        (None, Some(Quantization::Exl2)) => {
            tracing::warn!("Exl2 doesn't work with cuda graphs, deactivating them");
1763
1764
1765
1766
1767
1768
1769
1770
1771
            vec![]
        }
        _ => {
            let cuda_graphs = vec![1, 2, 4, 8, 16, 32];
            tracing::info!("Using default cuda graphs {cuda_graphs:?}");
            cuda_graphs
        }
    };

1772
1773
1774
1775
1776
    if args.validation_workers == 0 {
        return Err(LauncherError::ArgumentValidation(
            "`validation_workers` must be > 0".to_string(),
        ));
    }
1777
1778
1779
1780
1781
1782
    if args.trust_remote_code {
        tracing::warn!(
            "`trust_remote_code` is set. Trusting that model `{}` do not contain malicious code.",
            args.model_id
        );
    }
1783
1784

    let num_shard = find_num_shards(args.sharded, args.num_shard)?;
1785
    if num_shard > 1 {
1786
1787
1788
1789
1790
        if matches!(args.quantize, Some(Quantization::Exl2)) {
            return Err(LauncherError::ArgumentValidation(
                "Sharding is currently not supported with `exl2` quantization".into(),
            ));
        }
1791
        tracing::info!("Sharding model on {num_shard} processes");
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1792
1793
    }

1794
    if let Some(ref max_batch_total_tokens) = args.max_batch_total_tokens {
1795
        if max_total_tokens as u32 > *max_batch_total_tokens {
1796
1797
            return Err(LauncherError::ArgumentValidation(format!(
                "`max_total_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
1798
                max_total_tokens, max_batch_total_tokens
1799
1800
1801
1802
            )));
        }
    }

1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
    if args.ngrok {
        if args.ngrok_authtoken.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-authtoken` must be set when using ngrok tunneling".to_string(),
            ));
        }

        if args.ngrok_edge.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-edge` must be set when using ngrok tunneling".to_string(),
            ));
        }
    }

1817
1818
1819
1820
1821
1822
1823
    // Signal handler
    let running = Arc::new(AtomicBool::new(true));
    let r = running.clone();
    ctrlc::set_handler(move || {
        r.store(false, Ordering::SeqCst);
    })
    .expect("Error setting Ctrl-C handler");
1824

1825
    // Download and convert model weights
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
    download_convert_model(
        &args.model_id,
        args.revision.as_deref(),
        args.trust_remote_code,
        args.huggingface_hub_cache.as_deref(),
        args.weights_cache_override.as_deref(),
        running.clone(),
    )?;

    // Download and convert lora adapters if any
    if let Some(lora_adapters) = &args.lora_adapters {
        for adapter in lora_adapters.split(',') {
1838
1839
1840
1841
            // skip download if a path is provided
            if adapter.contains('=') {
                continue;
            }
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872

            let adapter = adapter.trim();

            // check if adapter has more than 1 '@'
            if adapter.matches('@').count() > 1 {
                return Err(LauncherError::ArgumentValidation(format!(
                    "Invalid LoRA adapter format: {}",
                    adapter
                )));
            }

            // capture adapter_id, path, revision in format of adapter_id=path@revision
            let re = Regex::new(r"^([^=@]+)(?:=([^@]+))?(?:@(.+))?$").unwrap();
            if let Some(caps) = re.captures(adapter) {
                let adapter_id = caps.get(1).map_or("", |m| m.as_str());
                let revision = caps.get(3).map(|m| m.as_str());

                download_convert_model(
                    adapter_id,
                    revision,
                    args.trust_remote_code,
                    args.huggingface_hub_cache.as_deref(),
                    args.weights_cache_override.as_deref(),
                    running.clone(),
                )?;
            } else {
                return Err(LauncherError::ArgumentValidation(format!(
                    "Invalid LoRA adapter format: {}",
                    adapter
                )));
            }
1873
1874
        }
    }
1875

OlivierDehaene's avatar
OlivierDehaene committed
1876
1877
1878
1879
1880
    if !running.load(Ordering::SeqCst) {
        // Launcher was asked to stop
        return Ok(());
    }

1881
    // Shared shutdown bool
1882
    let shutdown = Arc::new(AtomicBool::new(false));
1883
1884
1885
    // Shared shutdown channel
    // When shutting down, the main thread will wait for all senders to be dropped
    let (shutdown_sender, shutdown_receiver) = mpsc::channel();
1886

1887
1888
    // Shared channel to track shard status
    let (status_sender, status_receiver) = mpsc::channel();
1889

1890
1891
1892
    spawn_shards(
        num_shard,
        &args,
1893
        cuda_graphs,
1894
        max_total_tokens,
1895
        max_input_tokens,
1896
        quantize,
1897
        max_log_level,
1898
1899
1900
1901
1902
1903
1904
        shutdown.clone(),
        &shutdown_receiver,
        shutdown_sender,
        &status_receiver,
        status_sender,
        running.clone(),
    )?;
1905

1906
1907
1908
1909
1910
    // We might have received a termination signal
    if !running.load(Ordering::SeqCst) {
        shutdown_shards(shutdown, &shutdown_receiver);
        return Ok(());
    }
1911

1912
1913
1914
1915
1916
1917
1918
1919
1920
    let mut webserver = spawn_webserver(
        num_shard,
        args,
        max_input_tokens,
        max_total_tokens,
        max_batch_prefill_tokens,
        shutdown.clone(),
        &shutdown_receiver,
    )
1921
    .inspect_err(|_| {
1922
1923
        shutdown_shards(shutdown.clone(), &shutdown_receiver);
    })?;
1924
1925
1926
1927
1928

    // Default exit code
    let mut exit_code = Ok(());

    while running.load(Ordering::SeqCst) {
1929
        if let Ok(ShardStatus::Failed(rank)) = status_receiver.try_recv() {
OlivierDehaene's avatar
OlivierDehaene committed
1930
            tracing::error!("Shard {rank} crashed");
1931
1932
1933
1934
            exit_code = Err(LauncherError::ShardFailed);
            break;
        };

1935
        match webserver.try_wait().unwrap() {
1936
1937
1938
1939
1940
1941
1942
1943
1944
            Some(_) => {
                tracing::error!("Webserver Crashed");
                shutdown_shards(shutdown, &shutdown_receiver);
                return Err(LauncherError::WebserverFailed);
            }
            None => {
                sleep(Duration::from_millis(100));
            }
        };
1945
    }
1946
1947

    // Graceful termination
OlivierDehaene's avatar
OlivierDehaene committed
1948
    terminate("webserver", webserver, Duration::from_secs(90)).unwrap();
1949
1950
1951
    shutdown_shards(shutdown, &shutdown_receiver);

    exit_code
1952
}