main.rs 34.6 KB
Newer Older
1
use clap::{Parser, ValueEnum};
2
use serde::Deserialize;
Nicolas Patry's avatar
Nicolas Patry committed
3
use std::env;
4
use std::ffi::OsString;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
5
6
7
8
9
10
11
12
13
14
use std::io::{BufRead, BufReader, Read};
use std::path::Path;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::TryRecvError;
use std::sync::Arc;
use std::sync::{mpsc, Mutex};
use std::thread;
use std::thread::sleep;
use std::time::{Duration, Instant};
use std::{fs, io};
15
use subprocess::{ExitStatus, Popen, PopenConfig, PopenError, Redirection};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
16

17
18
mod env_runtime;

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Quantization {
    Bitsandbytes,
    Gptq,
}

impl std::fmt::Display for Quantization {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            Quantization::Bitsandbytes => {
                write!(f, "bitsandbytes")
            }
            Quantization::Gptq => {
                write!(f, "gptq")
            }
        }
    }
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
39
40
41
42
/// App Configuration
#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]
struct Args {
43
44
45
46
47
    /// The name of the model to load.
    /// Can be a MODEL_ID as listed on <https://hf.co/models> like
    /// `gpt2` or `OpenAssistant/oasst-sft-1-pythia-12b`.
    /// Or it can be a local directory containing the necessary files
    /// as saved by `save_pretrained(...)` methods of transformers
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
48
    #[clap(default_value = "bigscience/bloom-560m", long, env)]
49
    model_id: String,
50
51
52

    /// The actual revision of the model if you're referring to a model
    /// on the hub. You can use a specific commit id or a branch like `refs/pr/2`.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
53
    #[clap(long, env)]
54
    revision: Option<String>,
55

56
    /// Whether to shard the model across multiple GPUs
57
58
    /// By default text-generation-inference will use all available GPUs to run
    /// the model. Setting it to `false` deactivates `num_shard`.
59
60
    #[clap(long, env)]
    sharded: Option<bool>,
61
62
63
64
65

    /// The number of shards to use if you don't want to use all GPUs on a given machine.
    /// You can use `CUDA_VISIBLE_DEVICE=0,1 text-generation-launcher... --num_shard 2`
    /// and `CUDA_VISIBLE_DEVICE=2,3 text-generation-launcher... --num_shard 2` to
    /// launch 2 copies with 2 shard each on a given machine with 4 GPUs for instance.
66
67
    #[clap(long, env)]
    num_shard: Option<usize>,
68

69
    /// Whether you want the model to be quantized. This will use `bitsandbytes` for
70
71
72
    /// quantization on the fly, or `gptq`.
    #[clap(long, env, value_enum)]
    quantize: Option<Quantization>,
73

74
75
76
77
78
79
    /// Whether you want to execute hub modelling code. Explicitly passing a `revision` is
    /// encouraged when loading a model with custom code to ensure no malicious code has been
    /// contributed in a newer revision.
    #[clap(long, env, value_enum)]
    trust_remote_code: bool,

80
81
82
    /// The maximum amount of concurrent requests for this particular deployment.
    /// Having a low limit will refuse clients requests instead of having them
    /// wait for too long and is usually good to handle backpressure correctly.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
83
84
    #[clap(default_value = "128", long, env)]
    max_concurrent_requests: usize,
85
86
87
88

    /// This is the maximum allowed value for clients to set `best_of`.
    /// Best of makes `n` generations at the same time, and return the best
    /// in terms of overall log probability over the entire generated sequence
89
90
    #[clap(default_value = "2", long, env)]
    max_best_of: usize,
91
92
93
94
95
96

    /// This is the maximum allowed value for clients to set `stop_sequences`.
    /// Stop sequences are used to allow the model to stop on more than just
    /// the EOS token, and enable more complex "prompting" where users can preprompt
    /// the model in a specific way and define their "own" stop token aligned with
    /// their prompt.
97
98
    #[clap(default_value = "4", long, env)]
    max_stop_sequences: usize,
99
100
101
102
103

    /// This is the maximum allowed input length (expressed in number of tokens)
    /// for users. The larger this value, the longer prompt users can send which
    /// can impact the overall memory required to handle the load.
    /// Please note that some models have a finite range of sequence they can handle.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
104
105
    #[clap(default_value = "1000", long, env)]
    max_input_length: usize,
106
107
108
109
110
111
112
113
114

    /// This is the most important value to set as it defines the "memory budget"
    /// of running clients requests.
    /// Clients will send input sequences and ask to generate `max_new_tokens`
    /// on top. with a value of `1512` users can send either a prompt of
    /// `1000` and ask for `512` new tokens, or send a prompt of `1` and ask for
    /// `1511` max_new_tokens.
    /// The larger this value, the larger amount each request will be in your RAM
    /// and the less effective batching can be.
115
116
    #[clap(default_value = "1512", long, env)]
    max_total_tokens: usize,
117
118
119
120

    /// The maximum allowed batch size during dynamic batching.
    /// Using `max_batch_total_tokens` should be favored in general
    /// as it's a finer way to control RAM usage.
121
122
    #[clap(long, env)]
    max_batch_size: Option<usize>,
123
124
125
126
127
128
129
130
131
132
133

    /// This represents the ratio of waiting queries vs running queries where
    /// you want to start considering pausing the running queries to include the waiting
    /// ones into the same batch.
    /// `waiting_served_ratio=1.2` Means when 12 queries are waiting and there's
    /// only 10 queries left in the current batch we check if we can fit those 12
    /// waiting queries into the batching strategy, and if yes, then batching happens
    /// delaying the 10 running queries by a `prefill` run.
    ///
    /// This setting is only applied if there is room in the batch
    /// as defined by `max_batch_total_tokens`.
134
135
    #[clap(default_value = "1.2", long, env)]
    waiting_served_ratio: f32,
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

    /// **IMPORTANT** This is one critical control to allow maximum usage
    /// of the available hardware.
    ///
    /// This represents the total amount of potential tokens within a batch.
    /// When using padding (not recommended) this would be equivalent of
    /// `batch_size` * `max_total_tokens`.
    ///
    /// However in the non-padded (flash attention) version this can be much finer.
    ///
    /// For `max_batch_total_tokens=1000`, you could fit `10` queries of `total_tokens=100`
    /// or a single query of `1000` tokens.
    ///
    /// So you don't have to control that finely
    /// `max_batch_size` or `max_total_tokens`. In fact you could mostly relax them if you
    /// want maximum flexibility. However, for your users if they are asking for the full amount of
    /// total tokens, they are likely to wait for a very long time to get a spot
    /// in the batch (since they are going to be alone) so setting `max_batch_size`
    /// and `max_total_tokens` can still be useful to prevent those long waiting times.
    ///
    /// Overall this number should be the largest possible amount that fits the
    /// remaining memory (after the model is loaded). Since the actual memory overhead
    /// depends on other parameters like if you're using quantization, flash attention
    /// or the model implementation, text-generation-inference cannot infer this number
    /// automatically.
161
162
    #[clap(default_value = "32000", long, env)]
    max_batch_total_tokens: u32,
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

    /// This setting defines how many tokens can be passed before forcing the waiting
    /// queries to be put on the batch (if the size of the batch allows for it).
    /// New queries require 1 `prefill` forward, which is different from `decode`
    /// and therefore you need to pause the running batch in order to run `prefill`
    /// to create the correct values for the waiting queries to be able to join the batch.
    ///
    /// With a value too small, queries will always "steal" the compute to run `prefill`
    /// and running queries will be delayed by a lot.
    ///
    /// With a value too big, waiting queries could wait for a very long time
    /// before being allowed a slot in the running batch. If your server is busy
    /// that means that requests that could run in ~2s on an empty server could
    /// end up running in ~20s because the query had to wait for 18s.
    ///
    /// This number is expressed in number of tokens to make it a bit more
    /// "model" agnostic, but what should really matter is the overall latency
    /// for end users.
181
182
    #[clap(default_value = "20", long, env)]
    max_waiting_tokens: usize,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
183
    #[clap(default_value = "3000", long, short, env)]
184
185

    /// The port to listen on.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
186
    port: u16,
187
188
189

    /// The name of the socket for gRPC communication between the webserver
    /// and the shards.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
190
191
    #[clap(default_value = "/tmp/text-generation-server", long, env)]
    shard_uds_path: String,
192
193

    /// The address the master shard will listen on. (setting used by torch distributed)
194
    #[clap(default_value = "localhost", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
195
    master_addr: String,
196
197

    /// The address the master port will listen on. (setting used by torch distributed)
198
    #[clap(default_value = "29500", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
199
    master_port: usize,
200
201
202

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
203
    #[clap(long, env)]
204
    huggingface_hub_cache: Option<String>,
205
206
207

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
208
209
    #[clap(long, env)]
    weights_cache_override: Option<String>,
210
211
212
213
214

    /// For some models (like bloom), text-generation-inference implemented custom
    /// cuda kernels to speed up inference. Those kernels were only tested on A100.
    /// Use this flag to disable them if you're running on different hardware and
    /// encounter issues.
215
    #[clap(long, env)]
216
    disable_custom_kernels: bool,
217
218

    /// Outputs the logs in JSON format (useful for telemetry)
219
    #[clap(long, env)]
220
    json_output: bool,
221

222
223
    #[clap(long, env)]
    otlp_endpoint: Option<String>,
224

225
226
    #[clap(long, env)]
    cors_allow_origin: Vec<String>,
227
228
229
230
    #[clap(long, env)]
    watermark_gamma: Option<f32>,
    #[clap(long, env)]
    watermark_delta: Option<f32>,
231
232
233
234

    /// Display a lot of information about your runtime environment
    #[clap(long, short, action)]
    env: bool,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
235
236
}

237
238
239
240
241
#[derive(Debug)]
enum ShardStatus {
    Ready,
    Failed((usize, String)),
}
242

243
244
245
246
#[allow(clippy::too_many_arguments)]
fn shard_manager(
    model_id: String,
    revision: Option<String>,
247
    quantize: Option<Quantization>,
248
    trust_remote_code: bool,
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
    uds_path: String,
    rank: usize,
    world_size: usize,
    master_addr: String,
    master_port: usize,
    huggingface_hub_cache: Option<String>,
    weights_cache_override: Option<String>,
    disable_custom_kernels: bool,
    watermark_gamma: Option<f32>,
    watermark_delta: Option<f32>,
    otlp_endpoint: Option<String>,
    status_sender: mpsc::Sender<ShardStatus>,
    shutdown: Arc<Mutex<bool>>,
    _shutdown_sender: mpsc::Sender<()>,
) {
    // Get UDS path
    let uds_string = format!("{uds_path}-{rank}");
    let uds = Path::new(&uds_string);
    // Clean previous runs
    fs::remove_file(uds).unwrap_or_default();

    // Process args
    let mut shard_argv = vec![
        "text-generation-server".to_string(),
        "serve".to_string(),
        model_id,
        "--uds-path".to_string(),
        uds_path,
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];

282
283
284
285
286
    // Activate trust remote code
    if trust_remote_code {
        shard_argv.push("--trust-remote-code".to_string());
    }

287
288
289
    // Activate tensor parallelism
    if world_size > 1 {
        shard_argv.push("--sharded".to_string());
290
291
    }

292
293
294
    if let Some(quantize) = quantize {
        shard_argv.push("--quantize".to_string());
        shard_argv.push(quantize.to_string())
295
    }
296

297
298
299
300
301
    // Model optional revision
    if let Some(revision) = revision {
        shard_argv.push("--revision".to_string());
        shard_argv.push(revision)
    }
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
302

303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
    // OpenTelemetry
    if let Some(otlp_endpoint) = otlp_endpoint {
        shard_argv.push("--otlp-endpoint".to_string());
        shard_argv.push(otlp_endpoint);
    }

    // Copy current process env
    let mut env: Vec<(OsString, OsString)> = env::vars_os().collect();

    // Torch Distributed Env vars
    env.push(("RANK".into(), rank.to_string().into()));
    env.push(("WORLD_SIZE".into(), world_size.to_string().into()));
    env.push(("MASTER_ADDR".into(), master_addr.into()));
    env.push(("MASTER_PORT".into(), master_port.to_string().into()));
    env.push(("NCCL_ASYNC_ERROR_HANDLING".into(), "1".into()));

    // Safetensors load fast
    env.push(("SAFETENSORS_FAST_GPU".into(), "1".into()));

    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
    env.push((
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));

    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
        env.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
    };

    // If huggingface_hub_cache is some, pass it to the shard
    // Useful when running inside a docker container
    if let Some(huggingface_hub_cache) = huggingface_hub_cache {
        env.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
    };

    // If weights_cache_override is some, pass it to the shard
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = weights_cache_override {
        env.push((
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

    // If disable_custom_kernels is true, pass it to the shard as an env var
    if disable_custom_kernels {
        env.push(("DISABLE_CUSTOM_KERNELS".into(), "True".into()))
    }

    // Watermark Gamma
    if let Some(watermark_gamma) = watermark_gamma {
        env.push(("WATERMARK_GAMMA".into(), watermark_gamma.to_string().into()))
    }

    // Watermark Delta
    if let Some(watermark_delta) = watermark_delta {
        env.push(("WATERMARK_DELTA".into(), watermark_delta.to_string().into()))
    }

    // Start process
    tracing::info!("Starting shard {rank}");
    let mut p = match Popen::create(
        &shard_argv,
        PopenConfig {
            stdout: Redirection::Pipe,
            stderr: Redirection::Pipe,
            // Needed for the shutdown procedure
            setpgid: true,
            // NCCL env vars
            env: Some(env),
            ..Default::default()
        },
    ) {
        Ok(p) => p,
        Err(err) => {
            if let PopenError::IoError(ref err) = err {
                if err.kind() == io::ErrorKind::NotFound {
                    tracing::error!("text-generation-server not found in PATH");
                    tracing::error!("Please install it with `make install-server`")
384
385
                }
            }
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
            status_sender
                .send(ShardStatus::Failed((rank, err.to_string())))
                .unwrap();
            return;
        }
    };

    // Redirect STDOUT to the console
    let shard_stdout = p.stdout.take().unwrap();

    thread::spawn(move || {
        // Enter shard-manager tracing span
        let stdout = BufReader::new(shard_stdout);
        let _span = tracing::span!(tracing::Level::INFO, "shard-manager", rank = rank).entered();
        for line in stdout.lines() {
            // Parse loguru logs
            if let Ok(log) = serde_json::from_str::<PythonLogMessage>(&line.unwrap()) {
                log.trace();
            }
        }
    });

    let mut ready = false;
    let start_time = Instant::now();
    let mut wait_time = Instant::now();
    loop {
        // Process exited
        if p.poll().is_some() {
            let mut err = String::new();
            p.stderr.take().unwrap().read_to_string(&mut err).unwrap();
            status_sender
                .send(ShardStatus::Failed((rank, err)))
                .unwrap();
            return;
        }

        // We received a shutdown signal
        if *shutdown.lock().unwrap() {
            p.terminate().unwrap();
            let _ = p.wait_timeout(Duration::from_secs(90));
            tracing::info!("Shard {rank} terminated");
            return;
        }

        // Shard is ready
        if uds.exists() && !ready {
            tracing::info!("Shard {rank} ready in {:?}", start_time.elapsed());
            status_sender.send(ShardStatus::Ready).unwrap();
            ready = true;
        } else if !ready && wait_time.elapsed() > Duration::from_secs(10) {
            tracing::info!("Waiting for shard {rank} to be ready...");
            wait_time = Instant::now();
        }
        sleep(Duration::from_millis(100));
    }
}

fn shutdown_shards(shutdown: Arc<Mutex<bool>>, shutdown_receiver: &mpsc::Receiver<()>) {
    tracing::info!("Shutting down shards");
    // Update shutdown value to true
    // This will be picked up by the shard manager
    {
        let mut shutdown = shutdown.lock().unwrap();
        *shutdown = true;
    }

    // Wait for shards to shutdown
    // This will block till all shutdown_sender are dropped
    let _ = shutdown_receiver.recv();
}

fn num_cuda_devices() -> Option<usize> {
458
459
460
461
462
    let devices = env::var("CUDA_VISIBLE_DEVICES")
        .map_err(|_| env::var("NVIDIA_VISIBLE_DEVICES"))
        .ok()?;
    let n_devices = devices.split(',').count();
    Some(n_devices)
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
}

#[derive(Deserialize)]
#[serde(rename_all = "UPPERCASE")]
enum PythonLogLevelEnum {
    Trace,
    Debug,
    Info,
    Success,
    Warning,
    Error,
    Critical,
}

#[derive(Deserialize)]
struct PythonLogLevel {
    name: PythonLogLevelEnum,
}

#[derive(Deserialize)]
struct PythonLogRecord {
    level: PythonLogLevel,
}

#[derive(Deserialize)]
struct PythonLogMessage {
    text: String,
    record: PythonLogRecord,
}

impl PythonLogMessage {
    fn trace(&self) {
        match self.record.level.name {
            PythonLogLevelEnum::Trace => tracing::trace!("{}", self.text),
            PythonLogLevelEnum::Debug => tracing::debug!("{}", self.text),
            PythonLogLevelEnum::Info => tracing::info!("{}", self.text),
            PythonLogLevelEnum::Success => tracing::info!("{}", self.text),
            PythonLogLevelEnum::Warning => tracing::warn!("{}", self.text),
            PythonLogLevelEnum::Error => tracing::error!("{}", self.text),
            PythonLogLevelEnum::Critical => tracing::error!("{}", self.text),
        }
    }
}

fn find_num_shards(sharded: Option<bool>, num_shard: Option<usize>) -> usize {
    // get the number of shards given `sharded` and `num_shard`
    let num_shard = match (sharded, num_shard) {
        (Some(true), None) => {
            // try to default to the number of available GPUs
512
513
514
            tracing::info!("Parsing num_shard from CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES");
            let n_devices = num_cuda_devices()
                .expect("--num-shard and CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES are not set");
515
516
            if n_devices <= 1 {
                panic!("`sharded` is true but only found {n_devices} CUDA devices");
517
            }
518
            n_devices
519
        }
520
521
522
523
524
525
        (Some(true), Some(num_shard)) => {
            // we can't have only one shard while sharded
            if num_shard <= 1 {
                panic!("`sharded` is true but `num_shard` <= 1");
            }
            num_shard
526
        }
527
528
529
530
        (Some(false), Some(num_shard)) => num_shard,
        (Some(false), None) => 1,
        (None, None) => num_cuda_devices().unwrap_or(1),
        (None, Some(num_shard)) => num_shard,
531
    };
532
533
534
    if num_shard < 1 {
        panic!("`num_shard` cannot be < 1");
    }
535
536
    num_shard
}
537

538
539
540
541
542
543
544
545
546
#[derive(Debug)]
enum LauncherError {
    DownloadError,
    ShardCannotStart,
    ShardDisconnected,
    ShardFailed,
    WebserverFailed,
    WebserverCannotStart,
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
547

548
549
550
551
552
fn download_convert_model(
    args: &Args,
    auto_convert: bool,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
553
554
555
556
557
558
559
560
561
562
    let mut download_argv = vec![
        "text-generation-server".to_string(),
        "download-weights".to_string(),
        args.model_id.to_string(),
        "--extension".to_string(),
        ".safetensors".to_string(),
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];
563

564
565
566
567
568
    // Auto convert weights to safetensors
    if auto_convert {
        download_argv.push("--auto-convert".to_string());
    }

569
570
571
572
573
    // Model optional revision
    if let Some(revision) = &args.revision {
        download_argv.push("--revision".to_string());
        download_argv.push(revision.to_string())
    }
574

575
576
    // Copy current process env
    let mut env: Vec<(OsString, OsString)> = env::vars_os().collect();
577

578
    // If huggingface_hub_cache is set, pass it to the download process
579
580
581
582
    // Useful when running inside a docker container
    if let Some(ref huggingface_hub_cache) = args.huggingface_hub_cache {
        env.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
    };
583

584
585
586
587
588
589
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
    env.push((
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));
590

591
592
593
594
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
        env.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
    };
595

596
597
598
599
600
601
602
603
604
    // If args.weights_cache_override is some, pass it to the download process
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = &args.weights_cache_override {
        env.push((
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
    // Start process
    tracing::info!("Starting download process.");
    let mut download_process = match Popen::create(
        &download_argv,
        PopenConfig {
            stdout: Redirection::Pipe,
            stderr: Redirection::Pipe,
            // Needed for the shutdown procedure
            setpgid: true,
            env: Some(env),
            ..Default::default()
        },
    ) {
        Ok(p) => p,
        Err(err) => {
            if let PopenError::IoError(ref err) = err {
                if err.kind() == io::ErrorKind::NotFound {
                    tracing::error!("text-generation-server not found in PATH");
                    tracing::error!("Please install it with `make install-server`")
624
625
                }
            }
626
627
628
            return Err(LauncherError::DownloadError);
        }
    };
629

630
631
632
633
634
635
636
637
638
639
    // Redirect STDOUT to the console
    let download_stdout = download_process.stdout.take().unwrap();
    thread::spawn(move || {
        // Enter download tracing span
        let stdout = BufReader::new(download_stdout);
        let _span = tracing::span!(tracing::Level::INFO, "download").entered();
        for line in stdout.lines() {
            // Parse loguru logs
            if let Ok(log) = serde_json::from_str::<PythonLogMessage>(&line.unwrap()) {
                log.trace();
640
            }
641
642
        }
    });
643

644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
    loop {
        if let Some(status) = download_process.poll() {
            match status {
                ExitStatus::Exited(exit_code) => {
                    if exit_code == 0 {
                        tracing::info!("Successfully downloaded weights.");
                        break;
                    } else {
                        let mut err = String::new();
                        download_process
                            .stderr
                            .take()
                            .unwrap()
                            .read_to_string(&mut err)
                            .unwrap();
                        tracing::error!("Download encountered an error: {err}");
                        return Err(LauncherError::DownloadError);
661
662
                    }
                }
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
                ExitStatus::Signaled(signal) => {
                    let mut err = String::new();
                    download_process
                        .stderr
                        .take()
                        .unwrap()
                        .read_to_string(&mut err)
                        .unwrap();
                    tracing::error!(
                        "Download process was signaled to shutdown with signal {signal}: {err}"
                    );
                    return Err(LauncherError::DownloadError);
                }
                e => {
                    tracing::error!("Download process exited with an unknown status.: {e:?}");
678
679
                    return Err(LauncherError::DownloadError);
                }
680
681
            }
        }
682
683
684
685
686
687
688
689
690
691
        if !running.load(Ordering::SeqCst) {
            download_process.terminate().unwrap();
            tracing::info!("Waiting for download process to gracefully shutdown");
            download_process
                .wait_timeout(Duration::from_secs(90))
                .unwrap();
            tracing::info!("Download process terminated");
            return Ok(());
        }
        sleep(Duration::from_millis(100));
692
    }
693
694
    Ok(())
}
695

696
#[allow(clippy::too_many_arguments)]
697
698
699
700
701
702
703
704
705
706
fn spawn_shards(
    num_shard: usize,
    args: &Args,
    shutdown: Arc<Mutex<bool>>,
    shutdown_receiver: &mpsc::Receiver<()>,
    shutdown_sender: mpsc::Sender<()>,
    status_receiver: &mpsc::Receiver<ShardStatus>,
    status_sender: mpsc::Sender<ShardStatus>,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
707
708
709
710
711
712
713
714
715
716
    if args.trust_remote_code {
        tracing::warn!(
            "`trust_remote_code` is set. Trusting that model `{}` do not contain malicious code.",
            args.model_id
        );
        if args.revision.is_none() {
            tracing::warn!("Explicitly passing a `revision` is encouraged when loading a model with custom code to ensure no malicious code has been contributed in a newer revision.");
        }
    }

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
717
718
    // Start shard processes
    for rank in 0..num_shard {
719
720
721
722
723
724
        let model_id = args.model_id.clone();
        let revision = args.revision.clone();
        let uds_path = args.shard_uds_path.clone();
        let master_addr = args.master_addr.clone();
        let huggingface_hub_cache = args.huggingface_hub_cache.clone();
        let weights_cache_override = args.weights_cache_override.clone();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
725
726
727
        let status_sender = status_sender.clone();
        let shutdown = shutdown.clone();
        let shutdown_sender = shutdown_sender.clone();
728
        let otlp_endpoint = args.otlp_endpoint.clone();
729
        let quantize = args.quantize;
730
        let trust_remote_code = args.trust_remote_code;
731
732
733
734
        let master_port = args.master_port;
        let disable_custom_kernels = args.disable_custom_kernels;
        let watermark_gamma = args.watermark_gamma;
        let watermark_delta = args.watermark_delta;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
735
736
        thread::spawn(move || {
            shard_manager(
737
                model_id,
738
                revision,
739
                quantize,
740
                trust_remote_code,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
741
742
743
744
745
                uds_path,
                rank,
                num_shard,
                master_addr,
                master_port,
746
747
                huggingface_hub_cache,
                weights_cache_override,
748
                disable_custom_kernels,
749
750
                watermark_gamma,
                watermark_delta,
751
                otlp_endpoint,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
                status_sender,
                shutdown,
                shutdown_sender,
            )
        });
    }
    drop(shutdown_sender);

    // Wait for shard to start
    let mut shard_ready = 0;
    while running.load(Ordering::SeqCst) {
        match status_receiver.try_recv() {
            Ok(ShardStatus::Ready) => {
                shard_ready += 1;
                if shard_ready == num_shard {
                    break;
                }
            }
            Err(TryRecvError::Empty) => {
                sleep(Duration::from_millis(100));
            }
773
774
            Ok(ShardStatus::Failed((rank, err))) => {
                tracing::error!("Shard {} failed to start:\n{}", rank, err);
775
                shutdown_shards(shutdown, shutdown_receiver);
776
                return Err(LauncherError::ShardCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
777
778
779
            }
            Err(TryRecvError::Disconnected) => {
                tracing::error!("Shard status channel disconnected");
780
                shutdown_shards(shutdown, shutdown_receiver);
781
                return Err(LauncherError::ShardDisconnected);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
782
783
784
            }
        }
    }
785
786
    Ok(())
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
787

788
789
790
791
792
fn spawn_webserver(
    args: Args,
    shutdown: Arc<Mutex<bool>>,
    shutdown_receiver: &mpsc::Receiver<()>,
) -> Result<Popen, LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
793
794
795
    // All shard started
    // Start webserver
    tracing::info!("Starting Webserver");
796
797
798
    let mut argv = vec![
        "text-generation-router".to_string(),
        "--max-concurrent-requests".to_string(),
799
        args.max_concurrent_requests.to_string(),
800
        "--max-best-of".to_string(),
801
        args.max_best_of.to_string(),
802
        "--max-stop-sequences".to_string(),
803
        args.max_stop_sequences.to_string(),
804
        "--max-input-length".to_string(),
805
        args.max_input_length.to_string(),
806
        "--max-total-tokens".to_string(),
807
        args.max_total_tokens.to_string(),
808
        "--waiting-served-ratio".to_string(),
809
        args.waiting_served_ratio.to_string(),
810
        "--max-waiting-tokens".to_string(),
811
        args.max_waiting_tokens.to_string(),
812
        "--port".to_string(),
813
        args.port.to_string(),
814
        "--master-shard-uds-path".to_string(),
815
        format!("{}-0", args.shard_uds_path),
816
        "--tokenizer-name".to_string(),
817
        args.model_id,
818
819
    ];

820
    // Deprecate max_batch_size
821
    if let Some(max_batch_size) = args.max_batch_size {
822
        argv.push("--max-batch-size".to_string());
823
824
825
826
        argv.push(max_batch_size.to_string())
    } else {
        argv.push("--max-batch-total-tokens".to_string());
        argv.push(args.max_batch_total_tokens.to_string())
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
827
828
    }

829
830
831
832
    // Model optional revision
    if let Some(ref revision) = args.revision {
        argv.push("--revision".to_string());
        argv.push(revision.to_string())
833
834
    }

835
836
    if args.json_output {
        argv.push("--json-output".to_string());
837
838
    }

839
    // OpenTelemetry
840
841
842
843
844
845
846
847
848
    if let Some(otlp_endpoint) = args.otlp_endpoint {
        argv.push("--otlp-endpoint".to_string());
        argv.push(otlp_endpoint);
    }

    // CORS origins
    for origin in args.cors_allow_origin.into_iter() {
        argv.push("--cors-allow-origin".to_string());
        argv.push(origin);
849
850
    }

851
852
853
    // Copy current process env
    let mut env: Vec<(OsString, OsString)> = env::vars_os().collect();

854
855
856
857
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
        env.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
    };
858

859
860
    let mut webserver = match Popen::create(
        &argv,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
861
862
863
864
865
        PopenConfig {
            stdout: Redirection::Pipe,
            stderr: Redirection::Pipe,
            // Needed for the shutdown procedure
            setpgid: true,
Nicolas Patry's avatar
Nicolas Patry committed
866
            env: Some(env),
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
867
868
869
870
871
            ..Default::default()
        },
    ) {
        Ok(p) => p,
        Err(err) => {
872
873
            tracing::error!("Failed to start webserver: {}", err);
            if let PopenError::IoError(err) = err {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
874
                if err.kind() == io::ErrorKind::NotFound {
875
876
                    tracing::error!("text-generation-router not found in PATH");
                    tracing::error!("Please install it with `make install-router`")
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
877
                }
878
879
            } else {
                tracing::error!("{}", err);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
880
            }
881

882
            shutdown_shards(shutdown, shutdown_receiver);
883
            return Err(LauncherError::WebserverCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
884
885
886
        }
    };

887
888
889
    // Redirect STDOUT and STDERR to the console
    let webserver_stdout = webserver.stdout.take().unwrap();
    let webserver_stderr = webserver.stderr.take().unwrap();
890
891

    thread::spawn(move || {
892
893
        let stdout = BufReader::new(webserver_stdout);
        let stderr = BufReader::new(webserver_stderr);
894
        for line in stdout.lines() {
895
            println!("{}", line.unwrap());
896
        }
897
898
        for line in stderr.lines() {
            println!("{}", line.unwrap());
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
899
        }
900
901
902
    });
    Ok(webserver)
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
903

904
905
906
fn main() -> Result<(), LauncherError> {
    // Pattern match configuration
    let args = Args::parse();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
907

908
909
910
911
    if args.json_output {
        tracing_subscriber::fmt().json().init();
    } else {
        tracing_subscriber::fmt().compact().init();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
912
913
    }

914
915
916
917
918
    if args.env {
        let env_runtime = env_runtime::Env::new();
        tracing::info!("{}", env_runtime);
    }

919
920
921
922
923
    tracing::info!("{:?}", args);

    let num_shard = find_num_shards(args.sharded, args.num_shard);
    if num_shard > 1 {
        tracing::info!("Sharding model on {num_shard} processes");
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
924
925
    }

926
927
928
929
930
931
932
    // Signal handler
    let running = Arc::new(AtomicBool::new(true));
    let r = running.clone();
    ctrlc::set_handler(move || {
        r.store(false, Ordering::SeqCst);
    })
    .expect("Error setting Ctrl-C handler");
933

934
935
936
937
938
    // auto_convert is only needed for sharded models as we do not require safetensors in
    // single shard mode
    let auto_convert = num_shard > 1;
    // Download and convert model weights
    download_convert_model(&args, auto_convert, running.clone())?;
939

940
941
942
943
944
    // Shared shutdown bool
    let shutdown = Arc::new(Mutex::new(false));
    // Shared shutdown channel
    // When shutting down, the main thread will wait for all senders to be dropped
    let (shutdown_sender, shutdown_receiver) = mpsc::channel();
945

946
947
    // Shared channel to track shard status
    let (status_sender, status_receiver) = mpsc::channel();
948

949
950
951
952
953
954
955
956
957
958
    spawn_shards(
        num_shard,
        &args,
        shutdown.clone(),
        &shutdown_receiver,
        shutdown_sender,
        &status_receiver,
        status_sender,
        running.clone(),
    )?;
959

960
961
962
963
964
    // We might have received a termination signal
    if !running.load(Ordering::SeqCst) {
        shutdown_shards(shutdown, &shutdown_receiver);
        return Ok(());
    }
965

966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
    let mut webserver = spawn_webserver(args, shutdown.clone(), &shutdown_receiver)?;

    // Default exit code
    let mut exit_code = Ok(());

    while running.load(Ordering::SeqCst) {
        if let Ok(ShardStatus::Failed((rank, err))) = status_receiver.try_recv() {
            tracing::error!("Shard {rank} failed:\n{err}");
            exit_code = Err(LauncherError::ShardFailed);
            break;
        };

        match webserver.poll() {
            Some(_) => {
                tracing::error!("Webserver Crashed");
                shutdown_shards(shutdown, &shutdown_receiver);
                return Err(LauncherError::WebserverFailed);
            }
            None => {
                sleep(Duration::from_millis(100));
            }
        };
988
    }
989
990
991
992
993
994
995
996
997

    // Graceful termination
    webserver.terminate().unwrap();
    tracing::info!("Waiting for webserver to gracefully shutdown");
    webserver.wait_timeout(Duration::from_secs(90)).unwrap();
    tracing::info!("Webserver terminated");
    shutdown_shards(shutdown, &shutdown_receiver);

    exit_code
998
}