"tests/unit_tests/tensor_parallel/test_data.py" did not exist on "95f872f5beca63900b6ac96763826d2e48b48e05"
main.rs 36.1 KB
Newer Older
1
use clap::{Parser, ValueEnum};
2
use serde::Deserialize;
Nicolas Patry's avatar
Nicolas Patry committed
3
use std::env;
4
use std::ffi::OsString;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
5
6
7
8
9
10
11
12
13
14
use std::io::{BufRead, BufReader, Read};
use std::path::Path;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::TryRecvError;
use std::sync::Arc;
use std::sync::{mpsc, Mutex};
use std::thread;
use std::thread::sleep;
use std::time::{Duration, Instant};
use std::{fs, io};
15
use subprocess::{ExitStatus, Popen, PopenConfig, PopenError, Redirection};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
16

17
18
mod env_runtime;

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Quantization {
    Bitsandbytes,
    Gptq,
}

impl std::fmt::Display for Quantization {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            Quantization::Bitsandbytes => {
                write!(f, "bitsandbytes")
            }
            Quantization::Gptq => {
                write!(f, "gptq")
            }
        }
    }
}

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Dtype {
    Float16,
    BFloat16,
}

impl std::fmt::Display for Dtype {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            Dtype::Float16 => {
                write!(f, "float16")
            }
            Dtype::BFloat16 => {
                write!(f, "bfloat16")
            }
        }
    }
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
59
60
61
62
/// App Configuration
#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]
struct Args {
63
64
65
66
67
    /// The name of the model to load.
    /// Can be a MODEL_ID as listed on <https://hf.co/models> like
    /// `gpt2` or `OpenAssistant/oasst-sft-1-pythia-12b`.
    /// Or it can be a local directory containing the necessary files
    /// as saved by `save_pretrained(...)` methods of transformers
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
68
    #[clap(default_value = "bigscience/bloom-560m", long, env)]
69
    model_id: String,
70
71
72

    /// The actual revision of the model if you're referring to a model
    /// on the hub. You can use a specific commit id or a branch like `refs/pr/2`.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
73
    #[clap(long, env)]
74
    revision: Option<String>,
75

76
    /// Whether to shard the model across multiple GPUs
77
78
    /// By default text-generation-inference will use all available GPUs to run
    /// the model. Setting it to `false` deactivates `num_shard`.
79
80
    #[clap(long, env)]
    sharded: Option<bool>,
81
82

    /// The number of shards to use if you don't want to use all GPUs on a given machine.
83
84
    /// You can use `CUDA_VISIBLE_DEVICES=0,1 text-generation-launcher... --num_shard 2`
    /// and `CUDA_VISIBLE_DEVICES=2,3 text-generation-launcher... --num_shard 2` to
85
    /// launch 2 copies with 2 shard each on a given machine with 4 GPUs for instance.
86
87
    #[clap(long, env)]
    num_shard: Option<usize>,
88

89
    /// Whether you want the model to be quantized. This will use `bitsandbytes` for
90
91
92
    /// quantization on the fly, or `gptq`.
    #[clap(long, env, value_enum)]
    quantize: Option<Quantization>,
93

94
95
96
97
    /// The dtype to be forced upon the model. This option cannot be used with `--quantize`.
    #[clap(long, env, value_enum)]
    dtype: Option<Dtype>,

98
99
100
101
102
103
    /// Whether you want to execute hub modelling code. Explicitly passing a `revision` is
    /// encouraged when loading a model with custom code to ensure no malicious code has been
    /// contributed in a newer revision.
    #[clap(long, env, value_enum)]
    trust_remote_code: bool,

104
105
106
    /// The maximum amount of concurrent requests for this particular deployment.
    /// Having a low limit will refuse clients requests instead of having them
    /// wait for too long and is usually good to handle backpressure correctly.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
107
108
    #[clap(default_value = "128", long, env)]
    max_concurrent_requests: usize,
109
110
111
112

    /// This is the maximum allowed value for clients to set `best_of`.
    /// Best of makes `n` generations at the same time, and return the best
    /// in terms of overall log probability over the entire generated sequence
113
114
    #[clap(default_value = "2", long, env)]
    max_best_of: usize,
115
116
117
118
119
120

    /// This is the maximum allowed value for clients to set `stop_sequences`.
    /// Stop sequences are used to allow the model to stop on more than just
    /// the EOS token, and enable more complex "prompting" where users can preprompt
    /// the model in a specific way and define their "own" stop token aligned with
    /// their prompt.
121
122
    #[clap(default_value = "4", long, env)]
    max_stop_sequences: usize,
123
124
125
126
127

    /// This is the maximum allowed input length (expressed in number of tokens)
    /// for users. The larger this value, the longer prompt users can send which
    /// can impact the overall memory required to handle the load.
    /// Please note that some models have a finite range of sequence they can handle.
128
    #[clap(default_value = "1024", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
129
    max_input_length: usize,
130
131
132
133
134
135
136
137
138

    /// This is the most important value to set as it defines the "memory budget"
    /// of running clients requests.
    /// Clients will send input sequences and ask to generate `max_new_tokens`
    /// on top. with a value of `1512` users can send either a prompt of
    /// `1000` and ask for `512` new tokens, or send a prompt of `1` and ask for
    /// `1511` max_new_tokens.
    /// The larger this value, the larger amount each request will be in your RAM
    /// and the less effective batching can be.
139
    #[clap(default_value = "2048", long, env)]
140
    max_total_tokens: usize,
141
142
143
144
145
146
147
148
149
150
151

    /// This represents the ratio of waiting queries vs running queries where
    /// you want to start considering pausing the running queries to include the waiting
    /// ones into the same batch.
    /// `waiting_served_ratio=1.2` Means when 12 queries are waiting and there's
    /// only 10 queries left in the current batch we check if we can fit those 12
    /// waiting queries into the batching strategy, and if yes, then batching happens
    /// delaying the 10 running queries by a `prefill` run.
    ///
    /// This setting is only applied if there is room in the batch
    /// as defined by `max_batch_total_tokens`.
152
153
    #[clap(default_value = "1.2", long, env)]
    waiting_served_ratio: f32,
154

155
156
157
158
159
160
    /// Limits the number of tokens for the prefill operation.
    /// Since this operation take the most memory and is compute bound, it is interesting
    /// to limit the number of requests that can be sent.
    #[clap(default_value = "4096", long, env)]
    max_batch_prefill_tokens: u32,

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
    /// **IMPORTANT** This is one critical control to allow maximum usage
    /// of the available hardware.
    ///
    /// This represents the total amount of potential tokens within a batch.
    /// When using padding (not recommended) this would be equivalent of
    /// `batch_size` * `max_total_tokens`.
    ///
    /// However in the non-padded (flash attention) version this can be much finer.
    ///
    /// For `max_batch_total_tokens=1000`, you could fit `10` queries of `total_tokens=100`
    /// or a single query of `1000` tokens.
    ///
    /// Overall this number should be the largest possible amount that fits the
    /// remaining memory (after the model is loaded). Since the actual memory overhead
    /// depends on other parameters like if you're using quantization, flash attention
    /// or the model implementation, text-generation-inference cannot infer this number
    /// automatically.
178
    #[clap(default_value = "16000", long, env)]
179
    max_batch_total_tokens: u32,
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

    /// This setting defines how many tokens can be passed before forcing the waiting
    /// queries to be put on the batch (if the size of the batch allows for it).
    /// New queries require 1 `prefill` forward, which is different from `decode`
    /// and therefore you need to pause the running batch in order to run `prefill`
    /// to create the correct values for the waiting queries to be able to join the batch.
    ///
    /// With a value too small, queries will always "steal" the compute to run `prefill`
    /// and running queries will be delayed by a lot.
    ///
    /// With a value too big, waiting queries could wait for a very long time
    /// before being allowed a slot in the running batch. If your server is busy
    /// that means that requests that could run in ~2s on an empty server could
    /// end up running in ~20s because the query had to wait for 18s.
    ///
    /// This number is expressed in number of tokens to make it a bit more
    /// "model" agnostic, but what should really matter is the overall latency
    /// for end users.
198
199
    #[clap(default_value = "20", long, env)]
    max_waiting_tokens: usize,
200
201

    /// The port to listen on.
202
    #[clap(default_value = "3000", long, short, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
203
    port: u16,
204
205
206

    /// The name of the socket for gRPC communication between the webserver
    /// and the shards.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
207
208
    #[clap(default_value = "/tmp/text-generation-server", long, env)]
    shard_uds_path: String,
209
210

    /// The address the master shard will listen on. (setting used by torch distributed)
211
    #[clap(default_value = "localhost", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
212
    master_addr: String,
213
214

    /// The address the master port will listen on. (setting used by torch distributed)
215
    #[clap(default_value = "29500", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
216
    master_port: usize,
217
218
219

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
220
    #[clap(long, env)]
221
    huggingface_hub_cache: Option<String>,
222
223
224

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
225
226
    #[clap(long, env)]
    weights_cache_override: Option<String>,
227
228
229
230
231

    /// For some models (like bloom), text-generation-inference implemented custom
    /// cuda kernels to speed up inference. Those kernels were only tested on A100.
    /// Use this flag to disable them if you're running on different hardware and
    /// encounter issues.
232
    #[clap(long, env)]
233
    disable_custom_kernels: bool,
234
235

    /// Outputs the logs in JSON format (useful for telemetry)
236
    #[clap(long, env)]
237
    json_output: bool,
238

239
240
    #[clap(long, env)]
    otlp_endpoint: Option<String>,
241

242
243
    #[clap(long, env)]
    cors_allow_origin: Vec<String>,
244
245
246
247
    #[clap(long, env)]
    watermark_gamma: Option<f32>,
    #[clap(long, env)]
    watermark_delta: Option<f32>,
248

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
    /// Enable ngrok tunneling
    #[clap(long, env)]
    ngrok: bool,

    /// ngrok authentication token
    #[clap(long, env)]
    ngrok_authtoken: Option<String>,

    /// ngrok domain name where the axum webserver will be available at
    #[clap(long, env)]
    ngrok_domain: Option<String>,

    /// ngrok basic auth username
    #[clap(long, env)]
    ngrok_username: Option<String>,

    /// ngrok basic auth password
    #[clap(long, env)]
    ngrok_password: Option<String>,

269
270
271
    /// Display a lot of information about your runtime environment
    #[clap(long, short, action)]
    env: bool,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
272
273
}

274
275
276
277
278
#[derive(Debug)]
enum ShardStatus {
    Ready,
    Failed((usize, String)),
}
279

280
281
282
283
#[allow(clippy::too_many_arguments)]
fn shard_manager(
    model_id: String,
    revision: Option<String>,
284
    quantize: Option<Quantization>,
285
    dtype: Option<Dtype>,
286
    trust_remote_code: bool,
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
    uds_path: String,
    rank: usize,
    world_size: usize,
    master_addr: String,
    master_port: usize,
    huggingface_hub_cache: Option<String>,
    weights_cache_override: Option<String>,
    disable_custom_kernels: bool,
    watermark_gamma: Option<f32>,
    watermark_delta: Option<f32>,
    otlp_endpoint: Option<String>,
    status_sender: mpsc::Sender<ShardStatus>,
    shutdown: Arc<Mutex<bool>>,
    _shutdown_sender: mpsc::Sender<()>,
) {
    // Get UDS path
    let uds_string = format!("{uds_path}-{rank}");
    let uds = Path::new(&uds_string);
    // Clean previous runs
    fs::remove_file(uds).unwrap_or_default();

    // Process args
    let mut shard_argv = vec![
        "text-generation-server".to_string(),
        "serve".to_string(),
        model_id,
        "--uds-path".to_string(),
        uds_path,
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];

320
321
322
323
324
    // Activate trust remote code
    if trust_remote_code {
        shard_argv.push("--trust-remote-code".to_string());
    }

325
326
327
    // Activate tensor parallelism
    if world_size > 1 {
        shard_argv.push("--sharded".to_string());
328
329
    }

330
331
332
    if let Some(quantize) = quantize {
        shard_argv.push("--quantize".to_string());
        shard_argv.push(quantize.to_string())
333
    }
334

335
336
337
338
339
    if let Some(dtype) = dtype {
        shard_argv.push("--dtype".to_string());
        shard_argv.push(dtype.to_string())
    }

340
341
342
343
344
    // Model optional revision
    if let Some(revision) = revision {
        shard_argv.push("--revision".to_string());
        shard_argv.push(revision)
    }
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
345

346
347
348
349
350
351
352
353
354
    // OpenTelemetry
    if let Some(otlp_endpoint) = otlp_endpoint {
        shard_argv.push("--otlp-endpoint".to_string());
        shard_argv.push(otlp_endpoint);
    }

    // Copy current process env
    let mut env: Vec<(OsString, OsString)> = env::vars_os().collect();

355
356
357
358
359
360
    // Use cuda allocator. It leads to less memory fragmentation
    env.push((
        "PYTORCH_CUDA_ALLOC_CONF".into(),
        "backend:cudaMallocAsync".into(),
    ));

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
    // Torch Distributed Env vars
    env.push(("RANK".into(), rank.to_string().into()));
    env.push(("WORLD_SIZE".into(), world_size.to_string().into()));
    env.push(("MASTER_ADDR".into(), master_addr.into()));
    env.push(("MASTER_PORT".into(), master_port.to_string().into()));
    env.push(("NCCL_ASYNC_ERROR_HANDLING".into(), "1".into()));

    // Safetensors load fast
    env.push(("SAFETENSORS_FAST_GPU".into(), "1".into()));

    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
    env.push((
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));

    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
        env.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
    };

    // If huggingface_hub_cache is some, pass it to the shard
    // Useful when running inside a docker container
    if let Some(huggingface_hub_cache) = huggingface_hub_cache {
        env.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
    };

    // If weights_cache_override is some, pass it to the shard
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = weights_cache_override {
        env.push((
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

    // If disable_custom_kernels is true, pass it to the shard as an env var
    if disable_custom_kernels {
        env.push(("DISABLE_CUSTOM_KERNELS".into(), "True".into()))
    }

    // Watermark Gamma
    if let Some(watermark_gamma) = watermark_gamma {
        env.push(("WATERMARK_GAMMA".into(), watermark_gamma.to_string().into()))
    }

    // Watermark Delta
    if let Some(watermark_delta) = watermark_delta {
        env.push(("WATERMARK_DELTA".into(), watermark_delta.to_string().into()))
    }

    // Start process
    tracing::info!("Starting shard {rank}");
    let mut p = match Popen::create(
        &shard_argv,
        PopenConfig {
            stdout: Redirection::Pipe,
            stderr: Redirection::Pipe,
            // Needed for the shutdown procedure
            setpgid: true,
            // NCCL env vars
            env: Some(env),
            ..Default::default()
        },
    ) {
        Ok(p) => p,
        Err(err) => {
            if let PopenError::IoError(ref err) = err {
                if err.kind() == io::ErrorKind::NotFound {
                    tracing::error!("text-generation-server not found in PATH");
                    tracing::error!("Please install it with `make install-server`")
433
434
                }
            }
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
            status_sender
                .send(ShardStatus::Failed((rank, err.to_string())))
                .unwrap();
            return;
        }
    };

    // Redirect STDOUT to the console
    let shard_stdout = p.stdout.take().unwrap();

    thread::spawn(move || {
        // Enter shard-manager tracing span
        let stdout = BufReader::new(shard_stdout);
        let _span = tracing::span!(tracing::Level::INFO, "shard-manager", rank = rank).entered();
        for line in stdout.lines() {
            // Parse loguru logs
            if let Ok(log) = serde_json::from_str::<PythonLogMessage>(&line.unwrap()) {
                log.trace();
            }
        }
    });

    let mut ready = false;
    let start_time = Instant::now();
    let mut wait_time = Instant::now();
    loop {
        // Process exited
462
        if let Some(exit_status) = p.poll() {
463
464
            let mut err = String::new();
            p.stderr.take().unwrap().read_to_string(&mut err).unwrap();
465
466
467
468
469

            if let ExitStatus::Signaled(signal) = exit_status {
                tracing::error!("Shard process was signaled to shutdown with signal {signal}");
            }

470
471
472
473
474
475
476
477
            status_sender
                .send(ShardStatus::Failed((rank, err)))
                .unwrap();
            return;
        }

        // We received a shutdown signal
        if *shutdown.lock().unwrap() {
478
            p.kill().unwrap();
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
            let _ = p.wait_timeout(Duration::from_secs(90));
            tracing::info!("Shard {rank} terminated");
            return;
        }

        // Shard is ready
        if uds.exists() && !ready {
            tracing::info!("Shard {rank} ready in {:?}", start_time.elapsed());
            status_sender.send(ShardStatus::Ready).unwrap();
            ready = true;
        } else if !ready && wait_time.elapsed() > Duration::from_secs(10) {
            tracing::info!("Waiting for shard {rank} to be ready...");
            wait_time = Instant::now();
        }
        sleep(Duration::from_millis(100));
    }
}

fn shutdown_shards(shutdown: Arc<Mutex<bool>>, shutdown_receiver: &mpsc::Receiver<()>) {
    tracing::info!("Shutting down shards");
    // Update shutdown value to true
    // This will be picked up by the shard manager
    {
        let mut shutdown = shutdown.lock().unwrap();
        *shutdown = true;
    }

    // Wait for shards to shutdown
    // This will block till all shutdown_sender are dropped
    let _ = shutdown_receiver.recv();
}

fn num_cuda_devices() -> Option<usize> {
512
513
514
515
    let devices = match env::var("CUDA_VISIBLE_DEVICES") {
        Ok(devices) => devices,
        Err(_) => env::var("NVIDIA_VISIBLE_DEVICES").ok()?,
    };
516
517
    let n_devices = devices.split(',').count();
    Some(n_devices)
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
}

#[derive(Deserialize)]
#[serde(rename_all = "UPPERCASE")]
enum PythonLogLevelEnum {
    Trace,
    Debug,
    Info,
    Success,
    Warning,
    Error,
    Critical,
}

#[derive(Deserialize)]
struct PythonLogLevel {
    name: PythonLogLevelEnum,
}

#[derive(Deserialize)]
struct PythonLogRecord {
    level: PythonLogLevel,
}

#[derive(Deserialize)]
struct PythonLogMessage {
    text: String,
    record: PythonLogRecord,
}

impl PythonLogMessage {
    fn trace(&self) {
        match self.record.level.name {
            PythonLogLevelEnum::Trace => tracing::trace!("{}", self.text),
            PythonLogLevelEnum::Debug => tracing::debug!("{}", self.text),
            PythonLogLevelEnum::Info => tracing::info!("{}", self.text),
            PythonLogLevelEnum::Success => tracing::info!("{}", self.text),
            PythonLogLevelEnum::Warning => tracing::warn!("{}", self.text),
            PythonLogLevelEnum::Error => tracing::error!("{}", self.text),
            PythonLogLevelEnum::Critical => tracing::error!("{}", self.text),
        }
    }
}

fn find_num_shards(sharded: Option<bool>, num_shard: Option<usize>) -> usize {
    // get the number of shards given `sharded` and `num_shard`
    let num_shard = match (sharded, num_shard) {
        (Some(true), None) => {
            // try to default to the number of available GPUs
567
568
569
            tracing::info!("Parsing num_shard from CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES");
            let n_devices = num_cuda_devices()
                .expect("--num-shard and CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES are not set");
570
571
            if n_devices <= 1 {
                panic!("`sharded` is true but only found {n_devices} CUDA devices");
572
            }
573
            n_devices
574
        }
575
576
577
578
579
580
        (Some(true), Some(num_shard)) => {
            // we can't have only one shard while sharded
            if num_shard <= 1 {
                panic!("`sharded` is true but `num_shard` <= 1");
            }
            num_shard
581
        }
582
583
584
585
        (Some(false), Some(num_shard)) => num_shard,
        (Some(false), None) => 1,
        (None, None) => num_cuda_devices().unwrap_or(1),
        (None, Some(num_shard)) => num_shard,
586
    };
587
588
589
    if num_shard < 1 {
        panic!("`num_shard` cannot be < 1");
    }
590
591
    num_shard
}
592

593
594
595
596
597
598
599
600
601
#[derive(Debug)]
enum LauncherError {
    DownloadError,
    ShardCannotStart,
    ShardDisconnected,
    ShardFailed,
    WebserverFailed,
    WebserverCannotStart,
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
602

603
fn download_convert_model(args: &Args, running: Arc<AtomicBool>) -> Result<(), LauncherError> {
604
605
606
607
608
609
610
611
612
613
    let mut download_argv = vec![
        "text-generation-server".to_string(),
        "download-weights".to_string(),
        args.model_id.to_string(),
        "--extension".to_string(),
        ".safetensors".to_string(),
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];
614

615
616
617
618
619
    // Model optional revision
    if let Some(revision) = &args.revision {
        download_argv.push("--revision".to_string());
        download_argv.push(revision.to_string())
    }
620

621
622
    // Copy current process env
    let mut env: Vec<(OsString, OsString)> = env::vars_os().collect();
623

624
    // If huggingface_hub_cache is set, pass it to the download process
625
626
627
628
    // Useful when running inside a docker container
    if let Some(ref huggingface_hub_cache) = args.huggingface_hub_cache {
        env.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
    };
629

630
631
632
633
634
635
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
    env.push((
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));
636

637
638
639
640
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
        env.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
    };
641

642
643
644
645
646
647
648
649
650
    // If args.weights_cache_override is some, pass it to the download process
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = &args.weights_cache_override {
        env.push((
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
    // Start process
    tracing::info!("Starting download process.");
    let mut download_process = match Popen::create(
        &download_argv,
        PopenConfig {
            stdout: Redirection::Pipe,
            stderr: Redirection::Pipe,
            // Needed for the shutdown procedure
            setpgid: true,
            env: Some(env),
            ..Default::default()
        },
    ) {
        Ok(p) => p,
        Err(err) => {
            if let PopenError::IoError(ref err) = err {
                if err.kind() == io::ErrorKind::NotFound {
                    tracing::error!("text-generation-server not found in PATH");
                    tracing::error!("Please install it with `make install-server`")
670
671
                }
            }
672
673
674
            return Err(LauncherError::DownloadError);
        }
    };
675

676
677
678
679
680
681
682
683
684
685
    // Redirect STDOUT to the console
    let download_stdout = download_process.stdout.take().unwrap();
    thread::spawn(move || {
        // Enter download tracing span
        let stdout = BufReader::new(download_stdout);
        let _span = tracing::span!(tracing::Level::INFO, "download").entered();
        for line in stdout.lines() {
            // Parse loguru logs
            if let Ok(log) = serde_json::from_str::<PythonLogMessage>(&line.unwrap()) {
                log.trace();
686
            }
687
688
        }
    });
689

690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
    loop {
        if let Some(status) = download_process.poll() {
            match status {
                ExitStatus::Exited(exit_code) => {
                    if exit_code == 0 {
                        tracing::info!("Successfully downloaded weights.");
                        break;
                    } else {
                        let mut err = String::new();
                        download_process
                            .stderr
                            .take()
                            .unwrap()
                            .read_to_string(&mut err)
                            .unwrap();
                        tracing::error!("Download encountered an error: {err}");
                        return Err(LauncherError::DownloadError);
707
708
                    }
                }
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
                ExitStatus::Signaled(signal) => {
                    let mut err = String::new();
                    download_process
                        .stderr
                        .take()
                        .unwrap()
                        .read_to_string(&mut err)
                        .unwrap();
                    tracing::error!(
                        "Download process was signaled to shutdown with signal {signal}: {err}"
                    );
                    return Err(LauncherError::DownloadError);
                }
                e => {
                    tracing::error!("Download process exited with an unknown status.: {e:?}");
724
725
                    return Err(LauncherError::DownloadError);
                }
726
727
            }
        }
728
729
730
731
732
733
734
735
736
737
        if !running.load(Ordering::SeqCst) {
            download_process.terminate().unwrap();
            tracing::info!("Waiting for download process to gracefully shutdown");
            download_process
                .wait_timeout(Duration::from_secs(90))
                .unwrap();
            tracing::info!("Download process terminated");
            return Ok(());
        }
        sleep(Duration::from_millis(100));
738
    }
739
740
    Ok(())
}
741

742
#[allow(clippy::too_many_arguments)]
743
744
745
746
747
748
749
750
751
752
fn spawn_shards(
    num_shard: usize,
    args: &Args,
    shutdown: Arc<Mutex<bool>>,
    shutdown_receiver: &mpsc::Receiver<()>,
    shutdown_sender: mpsc::Sender<()>,
    status_receiver: &mpsc::Receiver<ShardStatus>,
    status_sender: mpsc::Sender<ShardStatus>,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
753
754
755
756
757
758
759
760
761
762
    if args.trust_remote_code {
        tracing::warn!(
            "`trust_remote_code` is set. Trusting that model `{}` do not contain malicious code.",
            args.model_id
        );
        if args.revision.is_none() {
            tracing::warn!("Explicitly passing a `revision` is encouraged when loading a model with custom code to ensure no malicious code has been contributed in a newer revision.");
        }
    }

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
763
764
    // Start shard processes
    for rank in 0..num_shard {
765
766
767
768
769
770
        let model_id = args.model_id.clone();
        let revision = args.revision.clone();
        let uds_path = args.shard_uds_path.clone();
        let master_addr = args.master_addr.clone();
        let huggingface_hub_cache = args.huggingface_hub_cache.clone();
        let weights_cache_override = args.weights_cache_override.clone();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
771
772
773
        let status_sender = status_sender.clone();
        let shutdown = shutdown.clone();
        let shutdown_sender = shutdown_sender.clone();
774
        let otlp_endpoint = args.otlp_endpoint.clone();
775
        let quantize = args.quantize;
776
        let dtype = args.dtype;
777
        let trust_remote_code = args.trust_remote_code;
778
779
780
781
        let master_port = args.master_port;
        let disable_custom_kernels = args.disable_custom_kernels;
        let watermark_gamma = args.watermark_gamma;
        let watermark_delta = args.watermark_delta;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
782
783
        thread::spawn(move || {
            shard_manager(
784
                model_id,
785
                revision,
786
                quantize,
787
                dtype,
788
                trust_remote_code,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
789
790
791
792
793
                uds_path,
                rank,
                num_shard,
                master_addr,
                master_port,
794
795
                huggingface_hub_cache,
                weights_cache_override,
796
                disable_custom_kernels,
797
798
                watermark_gamma,
                watermark_delta,
799
                otlp_endpoint,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
                status_sender,
                shutdown,
                shutdown_sender,
            )
        });
    }
    drop(shutdown_sender);

    // Wait for shard to start
    let mut shard_ready = 0;
    while running.load(Ordering::SeqCst) {
        match status_receiver.try_recv() {
            Ok(ShardStatus::Ready) => {
                shard_ready += 1;
                if shard_ready == num_shard {
                    break;
                }
            }
            Err(TryRecvError::Empty) => {
                sleep(Duration::from_millis(100));
            }
821
822
            Ok(ShardStatus::Failed((rank, err))) => {
                tracing::error!("Shard {} failed to start:\n{}", rank, err);
823
                shutdown_shards(shutdown, shutdown_receiver);
824
                return Err(LauncherError::ShardCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
825
826
827
            }
            Err(TryRecvError::Disconnected) => {
                tracing::error!("Shard status channel disconnected");
828
                shutdown_shards(shutdown, shutdown_receiver);
829
                return Err(LauncherError::ShardDisconnected);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
830
831
832
            }
        }
    }
833
834
    Ok(())
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
835

836
837
838
839
840
fn spawn_webserver(
    args: Args,
    shutdown: Arc<Mutex<bool>>,
    shutdown_receiver: &mpsc::Receiver<()>,
) -> Result<Popen, LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
841
842
843
    // All shard started
    // Start webserver
    tracing::info!("Starting Webserver");
844
845
846
    let mut argv = vec![
        "text-generation-router".to_string(),
        "--max-concurrent-requests".to_string(),
847
        args.max_concurrent_requests.to_string(),
848
        "--max-best-of".to_string(),
849
        args.max_best_of.to_string(),
850
        "--max-stop-sequences".to_string(),
851
        args.max_stop_sequences.to_string(),
852
        "--max-input-length".to_string(),
853
        args.max_input_length.to_string(),
854
        "--max-total-tokens".to_string(),
855
        args.max_total_tokens.to_string(),
856
857
858
859
        "--max-batch-prefill-tokens".to_string(),
        args.max_batch_prefill_tokens.to_string(),
        "--max-batch-total-tokens".to_string(),
        args.max_batch_total_tokens.to_string(),
860
        "--waiting-served-ratio".to_string(),
861
        args.waiting_served_ratio.to_string(),
862
        "--max-waiting-tokens".to_string(),
863
        args.max_waiting_tokens.to_string(),
864
        "--port".to_string(),
865
        args.port.to_string(),
866
        "--master-shard-uds-path".to_string(),
867
        format!("{}-0", args.shard_uds_path),
868
        "--tokenizer-name".to_string(),
869
        args.model_id,
870
871
    ];

872
873
874
875
    // Model optional revision
    if let Some(ref revision) = args.revision {
        argv.push("--revision".to_string());
        argv.push(revision.to_string())
876
877
    }

878
879
    if args.json_output {
        argv.push("--json-output".to_string());
880
881
    }

882
    // OpenTelemetry
883
884
885
886
887
888
889
890
891
    if let Some(otlp_endpoint) = args.otlp_endpoint {
        argv.push("--otlp-endpoint".to_string());
        argv.push(otlp_endpoint);
    }

    // CORS origins
    for origin in args.cors_allow_origin.into_iter() {
        argv.push("--cors-allow-origin".to_string());
        argv.push(origin);
892
893
    }

894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
    // Ngrok
    if args.ngrok {
        let authtoken = args.ngrok_authtoken.ok_or_else(|| {
            tracing::error!("`ngrok-authtoken` must be set when using ngrok tunneling");
            LauncherError::WebserverCannotStart
        })?;

        argv.push("--ngrok".to_string());
        argv.push("--ngrok-authtoken".to_string());
        argv.push(authtoken);

        if let Some(domain) = args.ngrok_domain {
            argv.push("--ngrok-domain".to_string());
            argv.push(domain);
        }

        if let (Some(username), Some(password)) = (args.ngrok_username, args.ngrok_password) {
            argv.push("--ngrok-username".to_string());
            argv.push(username);
            argv.push("--ngrok-password".to_string());
            argv.push(password);
        }
    }

918
919
920
    // Copy current process env
    let mut env: Vec<(OsString, OsString)> = env::vars_os().collect();

921
922
923
924
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
        env.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
    };
925

926
927
    let mut webserver = match Popen::create(
        &argv,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
928
929
930
931
932
        PopenConfig {
            stdout: Redirection::Pipe,
            stderr: Redirection::Pipe,
            // Needed for the shutdown procedure
            setpgid: true,
Nicolas Patry's avatar
Nicolas Patry committed
933
            env: Some(env),
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
934
935
936
937
938
            ..Default::default()
        },
    ) {
        Ok(p) => p,
        Err(err) => {
939
940
            tracing::error!("Failed to start webserver: {}", err);
            if let PopenError::IoError(err) = err {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
941
                if err.kind() == io::ErrorKind::NotFound {
942
943
                    tracing::error!("text-generation-router not found in PATH");
                    tracing::error!("Please install it with `make install-router`")
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
944
                }
945
946
            } else {
                tracing::error!("{}", err);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
947
            }
948

949
            shutdown_shards(shutdown, shutdown_receiver);
950
            return Err(LauncherError::WebserverCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
951
952
953
        }
    };

954
955
956
    // Redirect STDOUT and STDERR to the console
    let webserver_stdout = webserver.stdout.take().unwrap();
    let webserver_stderr = webserver.stderr.take().unwrap();
957
958

    thread::spawn(move || {
959
960
        let stdout = BufReader::new(webserver_stdout);
        let stderr = BufReader::new(webserver_stderr);
961
        for line in stdout.lines() {
962
            println!("{}", line.unwrap());
963
        }
964
965
        for line in stderr.lines() {
            println!("{}", line.unwrap());
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
966
        }
967
968
969
    });
    Ok(webserver)
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
970

971
972
973
fn main() -> Result<(), LauncherError> {
    // Pattern match configuration
    let args = Args::parse();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
974

975
976
977
978
    if args.json_output {
        tracing_subscriber::fmt().json().init();
    } else {
        tracing_subscriber::fmt().compact().init();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
979
980
    }

981
982
983
984
985
    if args.env {
        let env_runtime = env_runtime::Env::new();
        tracing::info!("{}", env_runtime);
    }

986
987
988
989
990
    tracing::info!("{:?}", args);

    let num_shard = find_num_shards(args.sharded, args.num_shard);
    if num_shard > 1 {
        tracing::info!("Sharding model on {num_shard} processes");
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
991
992
    }

993
994
995
996
997
998
999
    // Signal handler
    let running = Arc::new(AtomicBool::new(true));
    let r = running.clone();
    ctrlc::set_handler(move || {
        r.store(false, Ordering::SeqCst);
    })
    .expect("Error setting Ctrl-C handler");
1000

1001
    // Download and convert model weights
1002
    download_convert_model(&args, running.clone())?;
1003

1004
1005
1006
1007
1008
    // Shared shutdown bool
    let shutdown = Arc::new(Mutex::new(false));
    // Shared shutdown channel
    // When shutting down, the main thread will wait for all senders to be dropped
    let (shutdown_sender, shutdown_receiver) = mpsc::channel();
1009

1010
1011
    // Shared channel to track shard status
    let (status_sender, status_receiver) = mpsc::channel();
1012

1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
    spawn_shards(
        num_shard,
        &args,
        shutdown.clone(),
        &shutdown_receiver,
        shutdown_sender,
        &status_receiver,
        status_sender,
        running.clone(),
    )?;
1023

1024
1025
1026
1027
1028
    // We might have received a termination signal
    if !running.load(Ordering::SeqCst) {
        shutdown_shards(shutdown, &shutdown_receiver);
        return Ok(());
    }
1029

1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
    let mut webserver = spawn_webserver(args, shutdown.clone(), &shutdown_receiver)?;

    // Default exit code
    let mut exit_code = Ok(());

    while running.load(Ordering::SeqCst) {
        if let Ok(ShardStatus::Failed((rank, err))) = status_receiver.try_recv() {
            tracing::error!("Shard {rank} failed:\n{err}");
            exit_code = Err(LauncherError::ShardFailed);
            break;
        };

        match webserver.poll() {
            Some(_) => {
                tracing::error!("Webserver Crashed");
                shutdown_shards(shutdown, &shutdown_receiver);
                return Err(LauncherError::WebserverFailed);
            }
            None => {
                sleep(Duration::from_millis(100));
            }
        };
1052
    }
1053
1054
1055
1056
1057
1058
1059
1060
1061

    // Graceful termination
    webserver.terminate().unwrap();
    tracing::info!("Waiting for webserver to gracefully shutdown");
    webserver.wait_timeout(Duration::from_secs(90)).unwrap();
    tracing::info!("Webserver terminated");
    shutdown_shards(shutdown, &shutdown_receiver);

    exit_code
1062
}