main.rs 58.3 KB
Newer Older
1
use clap::{Parser, ValueEnum};
2
use hf_hub::{api::sync::Api, Repo, RepoType};
3
4
use nix::sys::signal::{self, Signal};
use nix::unistd::Pid;
5
use serde::Deserialize;
Nicolas Patry's avatar
Nicolas Patry committed
6
use std::env;
7
use std::ffi::OsString;
8
use std::io::{BufRead, BufReader, Lines};
9
use std::os::unix::process::{CommandExt, ExitStatusExt};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
10
use std::path::Path;
OlivierDehaene's avatar
OlivierDehaene committed
11
use std::process::{Child, Command, ExitStatus, Stdio};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
12
13
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::TryRecvError;
14
use std::sync::{mpsc, Arc};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
15
16
17
18
use std::thread;
use std::thread::sleep;
use std::time::{Duration, Instant};
use std::{fs, io};
19
use thiserror::Error;
20
use tracing_subscriber::{filter::LevelFilter, EnvFilter};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
21

22
23
mod env_runtime;

24
#[derive(Deserialize)]
25
struct RawConfig {
26
    max_position_embeddings: Option<usize>,
27
    n_positions: Option<usize>,
28
29
30
    max_seq_len: Option<usize>,
}

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#[derive(Deserialize)]
struct Config {
    max_position_embeddings: Option<usize>,
}

impl From<RawConfig> for Config {
    fn from(other: RawConfig) -> Self {
        let max_position_embeddings = other
            .max_position_embeddings
            .or(other.max_seq_len)
            .or(other.n_positions);
        Config {
            max_position_embeddings,
        }
    }
}

48
49
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Quantization {
50
    /// 4 bit quantization. Requires a specific AWQ quantized model:
51
    ///   <https://hf.co/models?search=awq>.
52
    /// Should replace GPTQ models wherever possible because of the better latency
53
54
55
    Awq,
    /// 8 bit quantization, doesn't require specific model.
    /// Should be a drop-in replacement to bitsandbytes with much better performance.
56
    /// Kernels are from <https://github.com/NetEase-FuXi/EETQ.git>
57
    Eetq,
58
59
60
61
    /// Variable bit quantization. Requires a specific EXL2 quantized model:
    /// <https://hf.co/models?search=exl2>. Requires exllama2 kernels and does
    /// not support tensor parallelism (num_shard > 1).
    Exl2,
62
    /// 4 bit quantization. Requires a specific GTPQ quantized model: <https://hf.co/models?search=gptq>.
63
    /// text-generation-inference will use exllama (faster) kernels wherever possible, and use
64
65
66
    /// triton kernel (wider support) when it's not.
    /// AWQ has faster kernels.
    Gptq,
67
68
    /// 4 bit quantization. Requires a specific Marlin quantized model: <https://hf.co/models?search=marlin>.
    Marlin,
69
70
71
72
73
74
    /// Bitsandbytes 8bit. Can be applied on any model, will cut the memory requirement in half,
    /// but it is known that the model will be much slower to run than the native f16.
    #[deprecated(
        since = "1.1.0",
        note = "Use `eetq` instead, which provides better latencies overall and is drop-in in most cases"
    )]
75
    Bitsandbytes,
76
77
    /// Bitsandbytes 4bit. Can be applied on any model, will cut the memory requirement by 4x,
    /// but it is known that the model will be much slower to run than the native f16.
Nicolas Patry's avatar
Nicolas Patry committed
78
    BitsandbytesNF4,
79
80
    /// Bitsandbytes 4bit. nf4 should be preferred in most cases but maybe this one has better
    /// perplexity performance for you model
Nicolas Patry's avatar
Nicolas Patry committed
81
    BitsandbytesFP4,
Nicolas Patry's avatar
Nicolas Patry committed
82
83
84
85
86
    /// [FP8](https://developer.nvidia.com/blog/nvidia-arm-and-intel-publish-fp8-specification-for-standardization-as-an-interchange-format-for-ai/) (e4m3) works on H100 and above
    /// This dtype has native ops should be the fastest if available.
    /// This is currently not the fastest because of local unpacking + padding to satisfy matrix
    /// multiplication limitations.
    Fp8,
87
88
89
90
91
92
}

impl std::fmt::Display for Quantization {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
93
94
            #[allow(deprecated)]
            // Use `eetq` instead, which provides better latencies overall and is drop-in in most cases
95
96
97
            Quantization::Bitsandbytes => {
                write!(f, "bitsandbytes")
            }
Nicolas Patry's avatar
Nicolas Patry committed
98
99
100
101
102
103
            Quantization::BitsandbytesNF4 => {
                write!(f, "bitsandbytes-nf4")
            }
            Quantization::BitsandbytesFP4 => {
                write!(f, "bitsandbytes-fp4")
            }
104
105
106
            Quantization::Exl2 => {
                write!(f, "exl2")
            }
107
108
109
            Quantization::Gptq => {
                write!(f, "gptq")
            }
110
111
112
            Quantization::Marlin => {
                write!(f, "marlin")
            }
113
114
115
            Quantization::Awq => {
                write!(f, "awq")
            }
116
117
118
            Quantization::Eetq => {
                write!(f, "eetq")
            }
Nicolas Patry's avatar
Nicolas Patry committed
119
120
121
            Quantization::Fp8 => {
                write!(f, "fp8")
            }
122
123
124
125
        }
    }
}

126
127
128
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Dtype {
    Float16,
129
    #[clap(name = "bfloat16")]
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
    BFloat16,
}

impl std::fmt::Display for Dtype {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            Dtype::Float16 => {
                write!(f, "float16")
            }
            Dtype::BFloat16 => {
                write!(f, "bfloat16")
            }
        }
    }
}

Nicolas Patry's avatar
Nicolas Patry committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#[derive(Clone, Copy, Debug, ValueEnum)]
enum RopeScaling {
    Linear,
    Dynamic,
}

impl std::fmt::Display for RopeScaling {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            RopeScaling::Linear => {
                write!(f, "linear")
            }
            RopeScaling::Dynamic => {
                write!(f, "dynamic")
            }
        }
    }
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
167
168
169
170
/// App Configuration
#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]
struct Args {
171
172
173
174
175
    /// The name of the model to load.
    /// Can be a MODEL_ID as listed on <https://hf.co/models> like
    /// `gpt2` or `OpenAssistant/oasst-sft-1-pythia-12b`.
    /// Or it can be a local directory containing the necessary files
    /// as saved by `save_pretrained(...)` methods of transformers
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
176
    #[clap(default_value = "bigscience/bloom-560m", long, env)]
177
    model_id: String,
178
179
180

    /// The actual revision of the model if you're referring to a model
    /// on the hub. You can use a specific commit id or a branch like `refs/pr/2`.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
181
    #[clap(long, env)]
182
    revision: Option<String>,
183

184
185
186
187
188
    /// The number of tokenizer workers used for payload validation and truncation inside the
    /// router.
    #[clap(default_value = "2", long, env)]
    validation_workers: usize,

189
    /// Whether to shard the model across multiple GPUs
190
191
    /// By default text-generation-inference will use all available GPUs to run
    /// the model. Setting it to `false` deactivates `num_shard`.
192
193
    #[clap(long, env)]
    sharded: Option<bool>,
194
195

    /// The number of shards to use if you don't want to use all GPUs on a given machine.
196
197
    /// You can use `CUDA_VISIBLE_DEVICES=0,1 text-generation-launcher... --num_shard 2`
    /// and `CUDA_VISIBLE_DEVICES=2,3 text-generation-launcher... --num_shard 2` to
198
    /// launch 2 copies with 2 shard each on a given machine with 4 GPUs for instance.
199
200
    #[clap(long, env)]
    num_shard: Option<usize>,
201

202
    /// Whether you want the model to be quantized.
203
204
    #[clap(long, env, value_enum)]
    quantize: Option<Quantization>,
205

Nicolas Patry's avatar
Nicolas Patry committed
206
207
208
209
210
211
212
    /// The number of input_ids to speculate on
    /// If using a medusa model, the heads will be picked up automatically
    /// Other wise, it will use n-gram speculation which is relatively free
    /// in terms of compute, but the speedup heavily depends on the task.
    #[clap(long, env)]
    speculate: Option<usize>,

213
214
215
216
    /// The dtype to be forced upon the model. This option cannot be used with `--quantize`.
    #[clap(long, env, value_enum)]
    dtype: Option<Dtype>,

217
218
219
220
221
222
    /// Whether you want to execute hub modelling code. Explicitly passing a `revision` is
    /// encouraged when loading a model with custom code to ensure no malicious code has been
    /// contributed in a newer revision.
    #[clap(long, env, value_enum)]
    trust_remote_code: bool,

223
224
225
    /// The maximum amount of concurrent requests for this particular deployment.
    /// Having a low limit will refuse clients requests instead of having them
    /// wait for too long and is usually good to handle backpressure correctly.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
226
227
    #[clap(default_value = "128", long, env)]
    max_concurrent_requests: usize,
228
229
230
231

    /// This is the maximum allowed value for clients to set `best_of`.
    /// Best of makes `n` generations at the same time, and return the best
    /// in terms of overall log probability over the entire generated sequence
232
233
    #[clap(default_value = "2", long, env)]
    max_best_of: usize,
234
235
236
237
238
239

    /// This is the maximum allowed value for clients to set `stop_sequences`.
    /// Stop sequences are used to allow the model to stop on more than just
    /// the EOS token, and enable more complex "prompting" where users can preprompt
    /// the model in a specific way and define their "own" stop token aligned with
    /// their prompt.
240
241
    #[clap(default_value = "4", long, env)]
    max_stop_sequences: usize,
242

Nicolas Patry's avatar
Nicolas Patry committed
243
    /// This is the maximum allowed value for clients to set `top_n_tokens`.
244
    /// `top_n_tokens` is used to return information about the the `n` most likely
Nicolas Patry's avatar
Nicolas Patry committed
245
246
247
248
249
250
    /// tokens at each generation step, instead of just the sampled token. This
    /// information can be used for downstream tasks like for classification or
    /// ranking.
    #[clap(default_value = "5", long, env)]
    max_top_n_tokens: u32,

251
252
253
254
    /// This is the maximum allowed input length (expressed in number of tokens)
    /// for users. The larger this value, the longer prompt users can send which
    /// can impact the overall memory required to handle the load.
    /// Please note that some models have a finite range of sequence they can handle.
255
256
257
258
259
260
261
    /// Default to min(max_position_embeddings - 1, 4095)
    #[clap(long, env)]
    max_input_tokens: Option<usize>,

    /// Legacy version of [`Args::max_input_tokens`].
    #[clap(long, env)]
    max_input_length: Option<usize>,
262
263
264
265
266
267
268
269
270

    /// This is the most important value to set as it defines the "memory budget"
    /// of running clients requests.
    /// Clients will send input sequences and ask to generate `max_new_tokens`
    /// on top. with a value of `1512` users can send either a prompt of
    /// `1000` and ask for `512` new tokens, or send a prompt of `1` and ask for
    /// `1511` max_new_tokens.
    /// The larger this value, the larger amount each request will be in your RAM
    /// and the less effective batching can be.
271
272
273
    /// Default to min(max_position_embeddings, 4096)
    #[clap(long, env)]
    max_total_tokens: Option<usize>,
274
275
276
277
278
279
280
281
282
283
284

    /// This represents the ratio of waiting queries vs running queries where
    /// you want to start considering pausing the running queries to include the waiting
    /// ones into the same batch.
    /// `waiting_served_ratio=1.2` Means when 12 queries are waiting and there's
    /// only 10 queries left in the current batch we check if we can fit those 12
    /// waiting queries into the batching strategy, and if yes, then batching happens
    /// delaying the 10 running queries by a `prefill` run.
    ///
    /// This setting is only applied if there is room in the batch
    /// as defined by `max_batch_total_tokens`.
285
    #[clap(default_value = "0.3", long, env)]
286
    waiting_served_ratio: f32,
287

288
289
290
    /// Limits the number of tokens for the prefill operation.
    /// Since this operation take the most memory and is compute bound, it is interesting
    /// to limit the number of requests that can be sent.
291
292
293
    /// Default to `max_input_tokens + 50` to give a bit of room.
    #[clap(long, env)]
    max_batch_prefill_tokens: Option<u32>,
294

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
    /// **IMPORTANT** This is one critical control to allow maximum usage
    /// of the available hardware.
    ///
    /// This represents the total amount of potential tokens within a batch.
    /// When using padding (not recommended) this would be equivalent of
    /// `batch_size` * `max_total_tokens`.
    ///
    /// However in the non-padded (flash attention) version this can be much finer.
    ///
    /// For `max_batch_total_tokens=1000`, you could fit `10` queries of `total_tokens=100`
    /// or a single query of `1000` tokens.
    ///
    /// Overall this number should be the largest possible amount that fits the
    /// remaining memory (after the model is loaded). Since the actual memory overhead
    /// depends on other parameters like if you're using quantization, flash attention
    /// or the model implementation, text-generation-inference cannot infer this number
    /// automatically.
312
313
    #[clap(long, env)]
    max_batch_total_tokens: Option<u32>,
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331

    /// This setting defines how many tokens can be passed before forcing the waiting
    /// queries to be put on the batch (if the size of the batch allows for it).
    /// New queries require 1 `prefill` forward, which is different from `decode`
    /// and therefore you need to pause the running batch in order to run `prefill`
    /// to create the correct values for the waiting queries to be able to join the batch.
    ///
    /// With a value too small, queries will always "steal" the compute to run `prefill`
    /// and running queries will be delayed by a lot.
    ///
    /// With a value too big, waiting queries could wait for a very long time
    /// before being allowed a slot in the running batch. If your server is busy
    /// that means that requests that could run in ~2s on an empty server could
    /// end up running in ~20s because the query had to wait for 18s.
    ///
    /// This number is expressed in number of tokens to make it a bit more
    /// "model" agnostic, but what should really matter is the overall latency
    /// for end users.
332
333
    #[clap(default_value = "20", long, env)]
    max_waiting_tokens: usize,
334

335
336
337
338
339
    /// Enforce a maximum number of requests per batch
    /// Specific flag for hardware targets that do not support unpadded inference
    #[clap(long, env)]
    max_batch_size: Option<usize>,

340
341
    /// Specify the batch sizes to compute cuda graphs for.
    /// Use "0" to disable.
342
343
344
    /// Default = "1,2,4,8,16,32"
    #[clap(long, env, value_delimiter = ',')]
    cuda_graphs: Option<Vec<usize>>,
345

346
347
348
349
    /// The IP address to listen on
    #[clap(default_value = "0.0.0.0", long, env)]
    hostname: String,

350
    /// The port to listen on.
351
    #[clap(default_value = "3000", long, short, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
352
    port: u16,
353
354
355

    /// The name of the socket for gRPC communication between the webserver
    /// and the shards.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
356
357
    #[clap(default_value = "/tmp/text-generation-server", long, env)]
    shard_uds_path: String,
358
359

    /// The address the master shard will listen on. (setting used by torch distributed)
360
    #[clap(default_value = "localhost", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
361
    master_addr: String,
362
363

    /// The address the master port will listen on. (setting used by torch distributed)
364
    #[clap(default_value = "29500", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
365
    master_port: usize,
366
367
368

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
369
    #[clap(long, env)]
370
    huggingface_hub_cache: Option<String>,
371
372
373

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
374
375
    #[clap(long, env)]
    weights_cache_override: Option<String>,
376
377
378
379
380

    /// For some models (like bloom), text-generation-inference implemented custom
    /// cuda kernels to speed up inference. Those kernels were only tested on A100.
    /// Use this flag to disable them if you're running on different hardware and
    /// encounter issues.
381
    #[clap(long, env)]
382
    disable_custom_kernels: bool,
383

384
385
386
387
388
    /// Limit the CUDA available memory.
    /// The allowed value equals the total visible memory multiplied by cuda-memory-fraction.
    #[clap(default_value = "1.0", long, env)]
    cuda_memory_fraction: f32,

Nicolas Patry's avatar
Nicolas Patry committed
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
    /// Rope scaling will only be used for RoPE models
    /// and allow rescaling the position rotary to accomodate for
    /// larger prompts.
    ///
    /// Goes together with `rope_factor`.
    ///
    /// `--rope-factor 2.0` gives linear scaling with a factor of 2.0
    /// `--rope-scaling dynamic` gives dynamic scaling with a factor of 1.0
    /// `--rope-scaling linear` gives linear scaling with a factor of 1.0 (Nothing will be changed
    /// basically)
    ///
    /// `--rope-scaling linear --rope-factor` fully describes the scaling you want
    #[clap(long, env)]
    rope_scaling: Option<RopeScaling>,

    /// Rope scaling will only be used for RoPE models
    /// See `rope_scaling`
    #[clap(long, env)]
    rope_factor: Option<f32>,

409
    /// Outputs the logs in JSON format (useful for telemetry)
410
    #[clap(long, env)]
411
    json_output: bool,
412

413
414
    #[clap(long, env)]
    otlp_endpoint: Option<String>,
415

416
417
418
    #[clap(default_value = "text-generation-inference.router", long, env)]
    otlp_service_name: String,

419
420
    #[clap(long, env)]
    cors_allow_origin: Vec<String>,
421
422
423
424
    #[clap(long, env)]
    watermark_gamma: Option<f32>,
    #[clap(long, env)]
    watermark_delta: Option<f32>,
425

426
427
428
429
430
431
432
433
    /// Enable ngrok tunneling
    #[clap(long, env)]
    ngrok: bool,

    /// ngrok authentication token
    #[clap(long, env)]
    ngrok_authtoken: Option<String>,

434
    /// ngrok edge
435
    #[clap(long, env)]
436
    ngrok_edge: Option<String>,
437

438
439
440
441
442
    /// The path to the tokenizer config file. This path is used to load the tokenizer configuration which may
    /// include a `chat_template`. If not provided, the default config will be used from the model hub.
    #[clap(long, env)]
    tokenizer_config_path: Option<String>,

drbh's avatar
drbh committed
443
444
445
446
447
    /// Disable outlines grammar constrained generation.
    /// This is a feature that allows you to generate text that follows a specific grammar.
    #[clap(long, env)]
    disable_grammar_support: bool,

448
449
450
    /// Display a lot of information about your runtime environment
    #[clap(long, short, action)]
    env: bool,
451
452
453
454

    /// Control the maximum number of inputs that a client can send in a single request
    #[clap(default_value = "4", long, env)]
    max_client_batch_size: usize,
drbh's avatar
drbh committed
455
456
457
458
459

    /// Lora Adapters a list of adapter ids i.e. `repo/adapter1,repo/adapter2` to load during
    /// startup that will be available to callers via the `adapter_id` field in a request.
    #[clap(long, env)]
    lora_adapters: Option<String>,
460
461
462
463
464
465
466
467

    /// Disable sending of all usage statistics
    #[clap(default_value = "false", long, env)]
    disable_usage_stats: bool,

    /// Disable sending of crash reports, but allow anonymous usage statistics
    #[clap(default_value = "false", long, env)]
    disable_crash_reports: bool,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
468
469
}

470
471
472
#[derive(Debug)]
enum ShardStatus {
    Ready,
473
    Failed(usize),
474
}
475

476
477
478
479
#[allow(clippy::too_many_arguments)]
fn shard_manager(
    model_id: String,
    revision: Option<String>,
480
    quantize: Option<Quantization>,
Nicolas Patry's avatar
Nicolas Patry committed
481
    speculate: Option<usize>,
482
    dtype: Option<Dtype>,
483
    trust_remote_code: bool,
484
485
486
487
488
489
490
491
492
493
    uds_path: String,
    rank: usize,
    world_size: usize,
    master_addr: String,
    master_port: usize,
    huggingface_hub_cache: Option<String>,
    weights_cache_override: Option<String>,
    disable_custom_kernels: bool,
    watermark_gamma: Option<f32>,
    watermark_delta: Option<f32>,
494
    cuda_graphs: Vec<usize>,
495
    cuda_memory_fraction: f32,
Nicolas Patry's avatar
Nicolas Patry committed
496
497
    rope_scaling: Option<RopeScaling>,
    rope_factor: Option<f32>,
498
499
    max_total_tokens: usize,
    max_batch_size: Option<usize>,
500
    max_input_tokens: usize,
drbh's avatar
drbh committed
501
    lora_adapters: Option<String>,
502
    otlp_endpoint: Option<String>,
503
    otlp_service_name: String,
504
    log_level: LevelFilter,
505
    status_sender: mpsc::Sender<ShardStatus>,
506
    shutdown: Arc<AtomicBool>,
507
508
    _shutdown_sender: mpsc::Sender<()>,
) {
509
510
511
    // Enter shard-manager tracing span
    let _span = tracing::span!(tracing::Level::INFO, "shard-manager", rank = rank).entered();

512
513
514
515
    // Get UDS path
    let uds_string = format!("{uds_path}-{rank}");
    let uds = Path::new(&uds_string);
    // Clean previous runs
516
517
518
    if uds.exists() {
        fs::remove_file(uds).unwrap();
    }
519
520

    // Process args
OlivierDehaene's avatar
OlivierDehaene committed
521
    let mut shard_args = vec![
522
523
524
525
526
        "serve".to_string(),
        model_id,
        "--uds-path".to_string(),
        uds_path,
        "--logger-level".to_string(),
527
        log_level.to_string().to_uppercase(),
528
529
530
        "--json-output".to_string(),
    ];

531
532
    // Activate trust remote code
    if trust_remote_code {
OlivierDehaene's avatar
OlivierDehaene committed
533
        shard_args.push("--trust-remote-code".to_string());
534
535
    }

536
537
    // Activate tensor parallelism
    if world_size > 1 {
OlivierDehaene's avatar
OlivierDehaene committed
538
        shard_args.push("--sharded".to_string());
539
540
    }

541
    if let Some(quantize) = quantize {
OlivierDehaene's avatar
OlivierDehaene committed
542
543
        shard_args.push("--quantize".to_string());
        shard_args.push(quantize.to_string())
544
    }
545

Nicolas Patry's avatar
Nicolas Patry committed
546
547
548
549
550
    if let Some(speculate) = speculate {
        shard_args.push("--speculate".to_string());
        shard_args.push(speculate.to_string())
    }

551
    if let Some(dtype) = dtype {
OlivierDehaene's avatar
OlivierDehaene committed
552
553
        shard_args.push("--dtype".to_string());
        shard_args.push(dtype.to_string())
554
555
    }

556
557
    // Model optional revision
    if let Some(revision) = revision {
OlivierDehaene's avatar
OlivierDehaene committed
558
559
        shard_args.push("--revision".to_string());
        shard_args.push(revision)
560
    }
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
561

Nicolas Patry's avatar
Nicolas Patry committed
562
563
564
565
566
567
    let rope = match (rope_scaling, rope_factor) {
        (None, None) => None,
        (Some(scaling), None) => Some((scaling, 1.0)),
        (Some(scaling), Some(factor)) => Some((scaling, factor)),
        (None, Some(factor)) => Some((RopeScaling::Linear, factor)),
    };
568

569
    // OpenTelemetry Endpoint
570
    if let Some(otlp_endpoint) = otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
571
572
        shard_args.push("--otlp-endpoint".to_string());
        shard_args.push(otlp_endpoint);
573
574
    }

575
576
577
578
    // OpenTelemetry Service Name
    shard_args.push("--otlp-service-name".to_string());
    shard_args.push(otlp_service_name);

579
580
581
582
    // In case we use sliding window, we may ignore the sliding in flash for some backends depending on the parameter.
    shard_args.push("--max-input-tokens".to_string());
    shard_args.push(max_input_tokens.to_string());

583
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
584
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
585

586
587
588
    // Remove LOG_LEVEL if present
    envs.retain(|(name, _)| name != "LOG_LEVEL");

589
    // Torch Distributed Env vars
OlivierDehaene's avatar
OlivierDehaene committed
590
591
592
593
    envs.push(("RANK".into(), rank.to_string().into()));
    envs.push(("WORLD_SIZE".into(), world_size.to_string().into()));
    envs.push(("MASTER_ADDR".into(), master_addr.into()));
    envs.push(("MASTER_PORT".into(), master_port.to_string().into()));
594
    envs.push(("TORCH_NCCL_AVOID_RECORD_STREAMS".into(), "1".into()));
595

596
597
598
599
600
601
    // CUDA memory fraction
    envs.push((
        "CUDA_MEMORY_FRACTION".into(),
        cuda_memory_fraction.to_string().into(),
    ));

602
    // Safetensors load fast
OlivierDehaene's avatar
OlivierDehaene committed
603
    envs.push(("SAFETENSORS_FAST_GPU".into(), "1".into()));
604

605
606
607
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

608
609
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
610
    envs.push((
611
612
613
614
615
616
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));

    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
617
        envs.push(("HF_TOKEN".into(), api_token.into()))
618
619
    };

Nicolas Patry's avatar
Nicolas Patry committed
620
621
622
623
624
625
626
627
628
    // Detect rope scaling
    // Sending as env instead of CLI args to not bloat everything
    // those only can be used by RoPE models, so passing information around
    // for all models will complexify code unnecessarily
    if let Some((scaling, factor)) = rope {
        envs.push(("ROPE_SCALING".into(), scaling.to_string().into()));
        envs.push(("ROPE_FACTOR".into(), factor.to_string().into()));
    }

629
630
631
632
633
634
635
636
    envs.push((
        "MAX_TOTAL_TOKENS".into(),
        max_total_tokens.to_string().into(),
    ));
    if let Some(max_batch_size) = max_batch_size {
        envs.push(("MAX_BATCH_SIZE".into(), max_batch_size.to_string().into()));
    }

drbh's avatar
drbh committed
637
638
639
640
641
    // Lora Adapters
    if let Some(lora_adapters) = lora_adapters {
        envs.push(("LORA_ADAPTERS".into(), lora_adapters.into()));
    }

642
643
644
    // If huggingface_hub_cache is some, pass it to the shard
    // Useful when running inside a docker container
    if let Some(huggingface_hub_cache) = huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
645
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
646
647
648
649
650
    };

    // If weights_cache_override is some, pass it to the shard
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
651
        envs.push((
652
653
654
655
656
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

657
    // Enable experimental support for cuda graphs
658
659
660
661
662
663
664
665
666
667
    if !cuda_graphs.is_empty() {
        envs.push((
            "CUDA_GRAPHS".into(),
            cuda_graphs
                .into_iter()
                .map(|c| c.to_string())
                .collect::<Vec<_>>()
                .join(",")
                .into(),
        ));
668
669
    }

670
671
    // If disable_custom_kernels is true, pass it to the shard as an env var
    if disable_custom_kernels {
OlivierDehaene's avatar
OlivierDehaene committed
672
        envs.push(("DISABLE_CUSTOM_KERNELS".into(), "True".into()))
673
674
675
676
    }

    // Watermark Gamma
    if let Some(watermark_gamma) = watermark_gamma {
OlivierDehaene's avatar
OlivierDehaene committed
677
        envs.push(("WATERMARK_GAMMA".into(), watermark_gamma.to_string().into()))
678
679
680
681
    }

    // Watermark Delta
    if let Some(watermark_delta) = watermark_delta {
OlivierDehaene's avatar
OlivierDehaene committed
682
        envs.push(("WATERMARK_DELTA".into(), watermark_delta.to_string().into()))
683
684
685
    }

    // Start process
686
    tracing::info!("Starting shard");
687
    let mut p = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
688
        .args(shard_args)
689
        .env_clear()
OlivierDehaene's avatar
OlivierDehaene committed
690
        .envs(envs)
691
692
693
694
695
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
696
697
        Ok(p) => p,
        Err(err) => {
698
699
700
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
701
702
            }
            {
703
                tracing::error!("{}", err);
704
            }
705

706
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
707
708
709
710
711
            return;
        }
    };

    // Redirect STDOUT to the console
712
    let shard_stdout_reader = BufReader::new(p.stdout.take().unwrap());
713
    let shard_stderr_reader = BufReader::new(p.stderr.take().unwrap());
714

715
    //stdout tracing thread
716
    thread::spawn(move || {
717
        log_lines(shard_stdout_reader.lines());
718
    });
719
720
721
    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
OlivierDehaene's avatar
OlivierDehaene committed
722
        for line in shard_stderr_reader.lines().map_while(Result::ok) {
723
724
725
            err_sender.send(line).unwrap_or(());
        }
    });
726
727
728
729
730
731

    let mut ready = false;
    let start_time = Instant::now();
    let mut wait_time = Instant::now();
    loop {
        // Process exited
732
        if let Some(exit_status) = p.try_wait().unwrap() {
733
734
735
736
            let mut err = String::new();
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }
737

738
            tracing::error!("Shard complete standard error output:\n{err}");
739

740
            if let Some(signal) = exit_status.signal() {
741
742
743
                tracing::error!("Shard process was signaled to shutdown with signal {signal}");
            }

744
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
745
746
747
748
            return;
        }

        // We received a shutdown signal
749
        if shutdown.load(Ordering::SeqCst) {
750
            terminate("shard", p, Duration::from_secs(90)).unwrap();
751
752
753
754
755
            return;
        }

        // Shard is ready
        if uds.exists() && !ready {
756
            tracing::info!("Shard ready in {:?}", start_time.elapsed());
757
758
759
            status_sender.send(ShardStatus::Ready).unwrap();
            ready = true;
        } else if !ready && wait_time.elapsed() > Duration::from_secs(10) {
760
            tracing::info!("Waiting for shard to be ready...");
761
762
763
764
765
766
            wait_time = Instant::now();
        }
        sleep(Duration::from_millis(100));
    }
}

767
fn shutdown_shards(shutdown: Arc<AtomicBool>, shutdown_receiver: &mpsc::Receiver<()>) {
768
769
770
    tracing::info!("Shutting down shards");
    // Update shutdown value to true
    // This will be picked up by the shard manager
771
    shutdown.store(true, Ordering::SeqCst);
772
773
774
775
776
777
778

    // Wait for shards to shutdown
    // This will block till all shutdown_sender are dropped
    let _ = shutdown_receiver.recv();
}

fn num_cuda_devices() -> Option<usize> {
779
780
    let devices = match env::var("CUDA_VISIBLE_DEVICES") {
        Ok(devices) => devices,
781
782
783
        Err(_) => match env::var("NVIDIA_VISIBLE_DEVICES") {
            Ok(devices) => devices,
            Err(_) => env::var("ZE_AFFINITY_MASK").ok()?,
Nicolas Patry's avatar
Nicolas Patry committed
784
        },
785
    };
786
787
    let n_devices = devices.split(',').count();
    Some(n_devices)
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
}

#[derive(Deserialize)]
#[serde(rename_all = "UPPERCASE")]
enum PythonLogLevelEnum {
    Trace,
    Debug,
    Info,
    Success,
    Warning,
    Error,
    Critical,
}

#[derive(Deserialize)]
struct PythonLogLevel {
    name: PythonLogLevelEnum,
}

#[derive(Deserialize)]
struct PythonLogRecord {
    level: PythonLogLevel,
}

#[derive(Deserialize)]
struct PythonLogMessage {
    text: String,
    record: PythonLogRecord,
}

impl PythonLogMessage {
    fn trace(&self) {
        match self.record.level.name {
821
822
823
824
825
826
827
            PythonLogLevelEnum::Trace => tracing::trace!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Debug => tracing::debug!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Info => tracing::info!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Success => tracing::info!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Warning => tracing::warn!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Error => tracing::error!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Critical => tracing::error!("{}", self.text.trim_end()),
828
829
830
831
        }
    }
}

832
833
834
835
836
837
838
839
840
impl TryFrom<&String> for PythonLogMessage {
    type Error = serde_json::Error;

    fn try_from(value: &String) -> Result<Self, Self::Error> {
        serde_json::from_str::<Self>(value)
    }
}

fn log_lines<S: Sized + BufRead>(lines: Lines<S>) {
OlivierDehaene's avatar
OlivierDehaene committed
841
    for line in lines.map_while(Result::ok) {
842
843
844
845
846
847
848
        match PythonLogMessage::try_from(&line) {
            Ok(log) => log.trace(),
            Err(_) => tracing::debug!("{line}"),
        }
    }
}

849
850
851
852
fn find_num_shards(
    sharded: Option<bool>,
    num_shard: Option<usize>,
) -> Result<usize, LauncherError> {
853
854
855
856
    // get the number of shards given `sharded` and `num_shard`
    let num_shard = match (sharded, num_shard) {
        (Some(true), None) => {
            // try to default to the number of available GPUs
857
            tracing::info!("Parsing num_shard from CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES/ZE_AFFINITY_MASK");
858
            let n_devices = num_cuda_devices()
859
                .expect("--num-shard and CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES/ZE_AFFINITY_MASK are not set");
860
            if n_devices <= 1 {
861
862
863
                return Err(LauncherError::NotEnoughCUDADevices(format!(
                    "`sharded` is true but only found {n_devices} CUDA devices"
                )));
864
            }
865
            n_devices
866
        }
867
868
869
        (Some(true), Some(num_shard)) => {
            // we can't have only one shard while sharded
            if num_shard <= 1 {
870
871
872
                return Err(LauncherError::ArgumentValidation(
                    "`sharded` is true but `num_shard` <= 1".to_string(),
                ));
873
874
            }
            num_shard
875
        }
876
877
878
879
        (Some(false), Some(num_shard)) => num_shard,
        (Some(false), None) => 1,
        (None, None) => num_cuda_devices().unwrap_or(1),
        (None, Some(num_shard)) => num_shard,
880
    };
881
    if num_shard < 1 {
882
883
884
        return Err(LauncherError::ArgumentValidation(
            "`num_shard` cannot be < 1".to_string(),
        ));
885
    }
886
    Ok(num_shard)
887
}
888

889
#[derive(Debug, Error)]
890
enum LauncherError {
891
    #[error("Invalid argument: {0}")]
892
    ArgumentValidation(String),
893
    #[error("not enough cuda devices: {0}")]
894
    NotEnoughCUDADevices(String),
895
    #[error("Download error")]
896
    DownloadError,
897
    #[error("Shard cannot start")]
898
    ShardCannotStart,
899
    #[error("Shard disconnected")]
900
    ShardDisconnected,
901
    #[error("Shard failed")]
902
    ShardFailed,
903
    #[error("Webserver failed")]
904
    WebserverFailed,
905
    #[error("Webserver cannot start")]
906
907
    WebserverCannotStart,
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
908

909
910
911
912
913
914
915
916
fn download_convert_model(
    model_id: &str,
    revision: Option<&str>,
    trust_remote_code: bool,
    huggingface_hub_cache: Option<&str>,
    weights_cache_override: Option<&str>,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
917
918
919
    // Enter download tracing span
    let _span = tracing::span!(tracing::Level::INFO, "download").entered();

OlivierDehaene's avatar
OlivierDehaene committed
920
    let mut download_args = vec![
921
        "download-weights".to_string(),
922
        model_id.to_string(),
923
924
925
926
927
928
        "--extension".to_string(),
        ".safetensors".to_string(),
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];
929

930
    // Model optional revision
931
    if let Some(revision) = &revision {
OlivierDehaene's avatar
OlivierDehaene committed
932
933
        download_args.push("--revision".to_string());
        download_args.push(revision.to_string())
934
    }
935

936
    // Trust remote code for automatic peft fusion
937
    if trust_remote_code {
938
939
940
        download_args.push("--trust-remote-code".to_string());
    }

941
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
942
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
943

944
945
946
    // Remove LOG_LEVEL if present
    envs.retain(|(name, _)| name != "LOG_LEVEL");

947
948
949
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

950
    // If huggingface_hub_cache is set, pass it to the download process
951
    // Useful when running inside a docker container
952
    if let Some(ref huggingface_hub_cache) = huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
953
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
954
    };
955

956
957
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
958
    envs.push((
959
960
961
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));
962

963
964
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
965
        envs.push(("HF_TOKEN".into(), api_token.into()))
966
    };
967

968
969
    // If args.weights_cache_override is some, pass it to the download process
    // Useful when running inside a HuggingFace Inference Endpoint
970
    if let Some(weights_cache_override) = &weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
971
        envs.push((
972
973
974
975
976
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

977
    // Start process
978
    tracing::info!("Starting check and download process for {model_id}");
979
    let mut download_process = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
980
        .args(download_args)
981
        .env_clear()
OlivierDehaene's avatar
OlivierDehaene committed
982
        .envs(envs)
983
984
985
986
987
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
988
989
        Ok(p) => p,
        Err(err) => {
990
991
992
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
993
994
            } else {
                tracing::error!("{}", err);
995
            }
996

997
998
999
            return Err(LauncherError::DownloadError);
        }
    };
1000

1001
    let download_stdout = BufReader::new(download_process.stdout.take().unwrap());
1002

1003
    thread::spawn(move || {
1004
1005
1006
1007
1008
1009
1010
1011
        log_lines(download_stdout.lines());
    });

    let download_stderr = BufReader::new(download_process.stderr.take().unwrap());

    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
OlivierDehaene's avatar
OlivierDehaene committed
1012
        for line in download_stderr.lines().map_while(Result::ok) {
1013
1014
            err_sender.send(line).unwrap_or(());
        }
1015
    });
1016

1017
    loop {
1018
1019
        if let Some(status) = download_process.try_wait().unwrap() {
            if status.success() {
1020
                tracing::info!("Successfully downloaded weights for {model_id}");
1021
                break;
1022
            }
1023
1024

            let mut err = String::new();
1025
1026
1027
1028
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }

1029
1030
1031
1032
1033
1034
1035
1036
1037
            if let Some(signal) = status.signal() {
                tracing::error!(
                    "Download process was signaled to shutdown with signal {signal}: {err}"
                );
            } else {
                tracing::error!("Download encountered an error: {err}");
            }

            return Err(LauncherError::DownloadError);
1038
        }
1039
        if !running.load(Ordering::SeqCst) {
OlivierDehaene's avatar
OlivierDehaene committed
1040
            terminate("download", download_process, Duration::from_secs(10)).unwrap();
1041
1042
1043
            return Ok(());
        }
        sleep(Duration::from_millis(100));
1044
    }
1045
1046
    Ok(())
}
1047

1048
#[allow(clippy::too_many_arguments)]
1049
1050
1051
fn spawn_shards(
    num_shard: usize,
    args: &Args,
1052
    cuda_graphs: Vec<usize>,
1053
    max_total_tokens: usize,
1054
    max_input_tokens: usize,
1055
    max_log_level: LevelFilter,
1056
    shutdown: Arc<AtomicBool>,
1057
1058
1059
1060
1061
1062
    shutdown_receiver: &mpsc::Receiver<()>,
    shutdown_sender: mpsc::Sender<()>,
    status_receiver: &mpsc::Receiver<ShardStatus>,
    status_sender: mpsc::Sender<ShardStatus>,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1063
1064
    // Start shard processes
    for rank in 0..num_shard {
1065
1066
1067
1068
1069
1070
        let model_id = args.model_id.clone();
        let revision = args.revision.clone();
        let uds_path = args.shard_uds_path.clone();
        let master_addr = args.master_addr.clone();
        let huggingface_hub_cache = args.huggingface_hub_cache.clone();
        let weights_cache_override = args.weights_cache_override.clone();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1071
1072
1073
        let status_sender = status_sender.clone();
        let shutdown = shutdown.clone();
        let shutdown_sender = shutdown_sender.clone();
1074
        let otlp_endpoint = args.otlp_endpoint.clone();
1075
        let otlp_service_name = args.otlp_service_name.clone();
1076
        let quantize = args.quantize;
Nicolas Patry's avatar
Nicolas Patry committed
1077
        let speculate = args.speculate;
1078
        let dtype = args.dtype;
1079
        let trust_remote_code = args.trust_remote_code;
1080
1081
1082
1083
        let master_port = args.master_port;
        let disable_custom_kernels = args.disable_custom_kernels;
        let watermark_gamma = args.watermark_gamma;
        let watermark_delta = args.watermark_delta;
1084
        let cuda_graphs_clone = cuda_graphs.clone();
1085
        let cuda_memory_fraction = args.cuda_memory_fraction;
Nicolas Patry's avatar
Nicolas Patry committed
1086
1087
        let rope_scaling = args.rope_scaling;
        let rope_factor = args.rope_factor;
1088
        let max_batch_size = args.max_batch_size;
drbh's avatar
drbh committed
1089
        let lora_adapters = args.lora_adapters.clone();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1090
1091
        thread::spawn(move || {
            shard_manager(
1092
                model_id,
1093
                revision,
1094
                quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1095
                speculate,
1096
                dtype,
1097
                trust_remote_code,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1098
1099
1100
1101
1102
                uds_path,
                rank,
                num_shard,
                master_addr,
                master_port,
1103
1104
                huggingface_hub_cache,
                weights_cache_override,
1105
                disable_custom_kernels,
1106
1107
                watermark_gamma,
                watermark_delta,
1108
                cuda_graphs_clone,
1109
                cuda_memory_fraction,
Nicolas Patry's avatar
Nicolas Patry committed
1110
1111
                rope_scaling,
                rope_factor,
1112
1113
                max_total_tokens,
                max_batch_size,
1114
                max_input_tokens,
drbh's avatar
drbh committed
1115
                lora_adapters,
1116
                otlp_endpoint,
1117
                otlp_service_name,
1118
                max_log_level,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
                status_sender,
                shutdown,
                shutdown_sender,
            )
        });
    }
    drop(shutdown_sender);

    // Wait for shard to start
    let mut shard_ready = 0;
    while running.load(Ordering::SeqCst) {
        match status_receiver.try_recv() {
            Ok(ShardStatus::Ready) => {
                shard_ready += 1;
                if shard_ready == num_shard {
                    break;
                }
            }
            Err(TryRecvError::Empty) => {
                sleep(Duration::from_millis(100));
            }
1140
            Ok(ShardStatus::Failed(rank)) => {
1141
                tracing::error!("Shard {rank} failed to start");
1142
                shutdown_shards(shutdown, shutdown_receiver);
1143
                return Err(LauncherError::ShardCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1144
1145
1146
            }
            Err(TryRecvError::Disconnected) => {
                tracing::error!("Shard status channel disconnected");
1147
                shutdown_shards(shutdown, shutdown_receiver);
1148
                return Err(LauncherError::ShardDisconnected);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1149
1150
1151
            }
        }
    }
1152
1153
    Ok(())
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1154

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
fn compute_type(num_shard: usize) -> Option<String> {
    let output = Command::new("nvidia-smi")
        .args(["--query-gpu=gpu_name", "--format=csv"])
        .output()
        .ok()?;
    let output = String::from_utf8(output.stdout).ok()?;
    let fullname = output.split('\n').nth(1)?;
    let cardname = fullname.replace(' ', "-").to_lowercase();
    let compute_type = format!("{num_shard}-{cardname}");
    Some(compute_type)
}

1167
fn spawn_webserver(
1168
    num_shard: usize,
1169
    args: Args,
1170
1171
1172
    max_input_tokens: usize,
    max_total_tokens: usize,
    max_batch_prefill_tokens: u32,
1173
    shutdown: Arc<AtomicBool>,
1174
    shutdown_receiver: &mpsc::Receiver<()>,
1175
) -> Result<Child, LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1176
1177
1178
    // All shard started
    // Start webserver
    tracing::info!("Starting Webserver");
OlivierDehaene's avatar
OlivierDehaene committed
1179
    let mut router_args = vec![
1180
1181
        "--max-client-batch-size".to_string(),
        args.max_client_batch_size.to_string(),
1182
        "--max-concurrent-requests".to_string(),
1183
        args.max_concurrent_requests.to_string(),
1184
        "--max-best-of".to_string(),
1185
        args.max_best_of.to_string(),
1186
        "--max-stop-sequences".to_string(),
1187
        args.max_stop_sequences.to_string(),
Nicolas Patry's avatar
Nicolas Patry committed
1188
1189
        "--max-top-n-tokens".to_string(),
        args.max_top_n_tokens.to_string(),
1190
1191
        "--max-input-tokens".to_string(),
        max_input_tokens.to_string(),
1192
        "--max-total-tokens".to_string(),
1193
        max_total_tokens.to_string(),
1194
        "--max-batch-prefill-tokens".to_string(),
1195
        max_batch_prefill_tokens.to_string(),
1196
        "--waiting-served-ratio".to_string(),
1197
        args.waiting_served_ratio.to_string(),
1198
        "--max-waiting-tokens".to_string(),
1199
        args.max_waiting_tokens.to_string(),
1200
1201
        "--validation-workers".to_string(),
        args.validation_workers.to_string(),
1202
1203
        "--hostname".to_string(),
        args.hostname.to_string(),
1204
        "--port".to_string(),
1205
        args.port.to_string(),
1206
        "--master-shard-uds-path".to_string(),
1207
        format!("{}-0", args.shard_uds_path),
1208
        "--tokenizer-name".to_string(),
1209
        args.model_id,
1210
1211
    ];

1212
1213
1214
1215
1216
1217
1218
1219
    // Pass usage stats flags to router
    if args.disable_usage_stats {
        router_args.push("--disable-usage-stats".to_string());
    }
    if args.disable_crash_reports {
        router_args.push("--disable-crash-reports".to_string());
    }

drbh's avatar
drbh committed
1220
1221
1222
1223
1224
    // Grammar support
    if args.disable_grammar_support {
        router_args.push("--disable-grammar-support".to_string());
    }

1225
1226
1227
1228
1229
1230
    // Tokenizer config path
    if let Some(ref tokenizer_config_path) = args.tokenizer_config_path {
        router_args.push("--tokenizer-config-path".to_string());
        router_args.push(tokenizer_config_path.to_string());
    }

1231
1232
1233
1234
1235
1236
    // Model optional max batch total tokens
    if let Some(max_batch_total_tokens) = args.max_batch_total_tokens {
        router_args.push("--max-batch-total-tokens".to_string());
        router_args.push(max_batch_total_tokens.to_string());
    }

1237
1238
1239
1240
1241
1242
    // Router optional max batch size
    if let Some(max_batch_size) = args.max_batch_size {
        router_args.push("--max-batch-size".to_string());
        router_args.push(max_batch_size.to_string());
    }

1243
1244
    // Model optional revision
    if let Some(ref revision) = args.revision {
OlivierDehaene's avatar
OlivierDehaene committed
1245
1246
        router_args.push("--revision".to_string());
        router_args.push(revision.to_string())
1247
1248
    }

1249
    if args.json_output {
OlivierDehaene's avatar
OlivierDehaene committed
1250
        router_args.push("--json-output".to_string());
1251
1252
    }

1253
    // OpenTelemetry
1254
    if let Some(otlp_endpoint) = args.otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
1255
1256
        router_args.push("--otlp-endpoint".to_string());
        router_args.push(otlp_endpoint);
1257
1258
    }

1259
1260
1261
1262
1263
    // OpenTelemetry
    let otlp_service_name = args.otlp_service_name;
    router_args.push("--otlp-service-name".to_string());
    router_args.push(otlp_service_name);

1264
1265
    // CORS origins
    for origin in args.cors_allow_origin.into_iter() {
OlivierDehaene's avatar
OlivierDehaene committed
1266
1267
        router_args.push("--cors-allow-origin".to_string());
        router_args.push(origin);
1268
1269
    }

1270
1271
    // Ngrok
    if args.ngrok {
OlivierDehaene's avatar
OlivierDehaene committed
1272
1273
        router_args.push("--ngrok".to_string());
        router_args.push("--ngrok-authtoken".to_string());
1274
1275
1276
        router_args.push(args.ngrok_authtoken.unwrap());
        router_args.push("--ngrok-edge".to_string());
        router_args.push(args.ngrok_edge.unwrap());
1277
1278
    }

1279
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
1280
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
1281

1282
1283
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
1284
        envs.push(("HF_TOKEN".into(), api_token.into()))
1285
    };
1286

1287
1288
1289
1290
1291
1292
1293
    // Parse Compute type
    if let Ok(compute_type) = env::var("COMPUTE_TYPE") {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    } else if let Some(compute_type) = compute_type(num_shard) {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    }

1294
    let mut webserver = match Command::new("text-generation-router")
OlivierDehaene's avatar
OlivierDehaene committed
1295
1296
        .args(router_args)
        .envs(envs)
1297
1298
1299
1300
1301
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1302
1303
        Ok(p) => p,
        Err(err) => {
1304
            tracing::error!("Failed to start webserver: {}", err);
1305
1306
1307
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-router not found in PATH");
                tracing::error!("Please install it with `make install-router`")
1308
1309
            } else {
                tracing::error!("{}", err);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1310
            }
1311

1312
            shutdown_shards(shutdown, shutdown_receiver);
1313
            return Err(LauncherError::WebserverCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1314
1315
1316
        }
    };

1317
1318
1319
    // Redirect STDOUT and STDERR to the console
    let webserver_stdout = webserver.stdout.take().unwrap();
    let webserver_stderr = webserver.stderr.take().unwrap();
1320
1321

    thread::spawn(move || {
1322
1323
        let stdout = BufReader::new(webserver_stdout);
        let stderr = BufReader::new(webserver_stderr);
1324
        for line in stdout.lines() {
1325
            println!("{}", line.unwrap());
1326
        }
1327
1328
        for line in stderr.lines() {
            println!("{}", line.unwrap());
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1329
        }
1330
1331
1332
    });
    Ok(webserver)
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1333

OlivierDehaene's avatar
OlivierDehaene committed
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
fn terminate(process_name: &str, mut process: Child, timeout: Duration) -> io::Result<ExitStatus> {
    tracing::info!("Terminating {process_name}");

    let terminate_time = Instant::now();
    signal::kill(Pid::from_raw(process.id() as i32), Signal::SIGTERM).unwrap();

    tracing::info!("Waiting for {process_name} to gracefully shutdown");
    while terminate_time.elapsed() < timeout {
        if let Some(status) = process.try_wait()? {
            tracing::info!("{process_name} terminated");
            return Ok(status);
        }
        sleep(Duration::from_millis(100));
    }
    tracing::info!("Killing {process_name}");

    process.kill()?;
    let exit_status = process.wait()?;

    tracing::info!("{process_name} killed");
    Ok(exit_status)
}

1357
1358
fn main() -> Result<(), LauncherError> {
    // Pattern match configuration
1359
    let args: Args = Args::parse();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1360

1361
    // Filter events with LOG_LEVEL
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
    let varname = "LOG_LEVEL";
    let env_filter = if let Ok(log_level) = std::env::var(varname) {
        // Override to avoid simple logs to be spammed with tokio level informations
        let log_level = match &log_level[..] {
            "warn" => "text_generation_launcher=warn,text_generation_router=warn",
            "info" => "text_generation_launcher=info,text_generation_router=info",
            "debug" => "text_generation_launcher=debug,text_generation_router=debug",
            log_level => log_level,
        };
        EnvFilter::builder()
            .with_default_directive(LevelFilter::INFO.into())
            .parse_lossy(log_level)
    } else {
        EnvFilter::new("info")
    };
    let max_log_level = env_filter.max_level_hint().unwrap_or(LevelFilter::INFO);
1378

1379
    if args.json_output {
1380
1381
1382
1383
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .json()
            .init();
1384
    } else {
1385
1386
1387
1388
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .compact()
            .init();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1389
1390
    }

1391
1392
1393
1394
1395
    if args.env {
        let env_runtime = env_runtime::Env::new();
        tracing::info!("{}", env_runtime);
    }

Nicolas Patry's avatar
Nicolas Patry committed
1396
    tracing::info!("{:#?}", args);
1397

1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
    let get_max_position_embeddings = || -> Result<usize, Box<dyn std::error::Error>> {
        let model_id = args.model_id.clone();
        let mut path = std::path::Path::new(&args.model_id).to_path_buf();
        let filename = if !path.exists() {
            // Assume it's a hub id
            let api = Api::new()?;
            let repo = if let Some(ref revision) = args.revision {
                api.repo(Repo::with_revision(
                    model_id,
                    RepoType::Model,
                    revision.to_string(),
                ))
            } else {
                api.model(model_id)
            };
            repo.get("config.json")?
        } else {
            path.push("config.json");
            path
        };

        let content = std::fs::read_to_string(filename)?;
1420
1421
        let config: RawConfig = serde_json::from_str(&content)?;
        let config: Config = config.into();
1422
1423
1424
1425

        // Quantization usually means you're even more RAM constrained.
        let max_default = 4096;

1426
1427
1428
1429
1430
1431
1432
1433
        if let Some(max_position_embeddings) = config.max_position_embeddings {
            if max_position_embeddings > max_default {
                let max = max_position_embeddings;
                if args.max_input_tokens.is_none()
                    && args.max_total_tokens.is_none()
                    && args.max_batch_prefill_tokens.is_none()
                {
                    tracing::info!("Model supports up to {max} but tgi will now set its default to {max_default} instead. This is to save VRAM by refusing large prompts in order to allow more users on the same hardware. You can increase that size using `--max-batch-prefill-tokens={} --max-total-tokens={max} --max-input-tokens={}`.", max + 50, max - 1);
1434
                }
1435
1436
1437
                Ok(max_default)
            } else {
                Ok(max_position_embeddings)
1438
            }
1439
1440
1441
1442
1443
        } else {
            Err(Box::new(LauncherError::ArgumentValidation(
                "no max defined".to_string(),
            )))
        }
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
    };
    let max_position_embeddings: usize = get_max_position_embeddings().unwrap_or(4096);

    let max_input_tokens = {
        match (args.max_input_tokens, args.max_input_length) {
            (Some(max_input_tokens), Some(max_input_length)) => {
                return Err(LauncherError::ArgumentValidation(
                    format!("Both `max_input_tokens` ({max_input_tokens}) and `max_input_length` ({max_input_length}) are set. Please define only `max_input_tokens` as `max_input_length is deprecated for naming consistency.",
                )));
            }
            (Some(max_input_tokens), None) | (None, Some(max_input_tokens)) => max_input_tokens,
            (None, None) => {
                let value = max_position_embeddings - 1;
                tracing::info!("Default `max_input_tokens` to {value}");
                value
            }
        }
    };
    let max_total_tokens = {
        match args.max_total_tokens {
            Some(max_total_tokens) => max_total_tokens,
            None => {
                let value = max_position_embeddings;
                tracing::info!("Default `max_total_tokens` to {value}");
                value
            }
        }
    };
    let max_batch_prefill_tokens = {
        match args.max_batch_prefill_tokens {
            Some(max_batch_prefill_tokens) => max_batch_prefill_tokens,
            None => {
                let value: u32 = if let Some(max_batch_size) = args.max_batch_size {
                    max_batch_size * max_input_tokens
                } else {
                    // Adding some edge in order to account for potential block_size alignement
                    // issue.
                    max_input_tokens + 50
                } as u32;
                tracing::info!("Default `max_batch_prefill_tokens` to {value}");
                value
            }
        }
    };

1489
    // Validate args
1490
    if max_input_tokens >= max_total_tokens {
1491
        return Err(LauncherError::ArgumentValidation(
1492
            "`max_input_tokens must be < `max_total_tokens`".to_string(),
1493
1494
        ));
    }
1495
    if max_input_tokens as u32 > max_batch_prefill_tokens {
1496
        return Err(LauncherError::ArgumentValidation(format!(
1497
1498
            "`max_batch_prefill_tokens` must be >= `max_input_tokens`. Given: {} and {}",
            max_batch_prefill_tokens, max_input_tokens
1499
1500
        )));
    }
1501

1502
    let cuda_graphs = match (&args.cuda_graphs, &args.quantize) {
Nicolas Patry's avatar
Nicolas Patry committed
1503
        (Some(cuda_graphs), _) => cuda_graphs.iter().cloned().filter(|&c| c > 0).collect(),
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
        #[allow(deprecated)]
        (
            None,
            Some(
                Quantization::Bitsandbytes
                | Quantization::BitsandbytesNF4
                | Quantization::BitsandbytesFP4,
            ),
        ) => {
            tracing::info!("Bitsandbytes doesn't work with cuda graphs, deactivating them");
            vec![]
        }
        _ => {
            let cuda_graphs = vec![1, 2, 4, 8, 16, 32];
            tracing::info!("Using default cuda graphs {cuda_graphs:?}");
            cuda_graphs
        }
    };

1523
1524
1525
1526
1527
    if args.validation_workers == 0 {
        return Err(LauncherError::ArgumentValidation(
            "`validation_workers` must be > 0".to_string(),
        ));
    }
1528
1529
1530
1531
1532
1533
    if args.trust_remote_code {
        tracing::warn!(
            "`trust_remote_code` is set. Trusting that model `{}` do not contain malicious code.",
            args.model_id
        );
    }
1534
1535

    let num_shard = find_num_shards(args.sharded, args.num_shard)?;
1536
    if num_shard > 1 {
1537
1538
1539
1540
1541
        if matches!(args.quantize, Some(Quantization::Exl2)) {
            return Err(LauncherError::ArgumentValidation(
                "Sharding is currently not supported with `exl2` quantization".into(),
            ));
        }
1542
        tracing::info!("Sharding model on {num_shard} processes");
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1543
1544
    }

1545
    if let Some(ref max_batch_total_tokens) = args.max_batch_total_tokens {
1546
        if max_batch_prefill_tokens > *max_batch_total_tokens {
1547
1548
            return Err(LauncherError::ArgumentValidation(format!(
                "`max_batch_prefill_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
1549
                max_batch_prefill_tokens, max_batch_total_tokens
1550
1551
            )));
        }
1552
        if max_total_tokens as u32 > *max_batch_total_tokens {
1553
1554
            return Err(LauncherError::ArgumentValidation(format!(
                "`max_total_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
1555
                max_total_tokens, max_batch_total_tokens
1556
1557
1558
1559
            )));
        }
    }

1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
    if args.ngrok {
        if args.ngrok_authtoken.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-authtoken` must be set when using ngrok tunneling".to_string(),
            ));
        }

        if args.ngrok_edge.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-edge` must be set when using ngrok tunneling".to_string(),
            ));
        }
    }

1574
1575
1576
1577
1578
1579
1580
    // Signal handler
    let running = Arc::new(AtomicBool::new(true));
    let r = running.clone();
    ctrlc::set_handler(move || {
        r.store(false, Ordering::SeqCst);
    })
    .expect("Error setting Ctrl-C handler");
1581

1582
    // Download and convert model weights
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
    download_convert_model(
        &args.model_id,
        args.revision.as_deref(),
        args.trust_remote_code,
        args.huggingface_hub_cache.as_deref(),
        args.weights_cache_override.as_deref(),
        running.clone(),
    )?;

    // Download and convert lora adapters if any
    if let Some(lora_adapters) = &args.lora_adapters {
        for adapter in lora_adapters.split(',') {
            download_convert_model(
                adapter,
                None,
                args.trust_remote_code,
                args.huggingface_hub_cache.as_deref(),
                args.weights_cache_override.as_deref(),
                running.clone(),
            )?;
        }
    }
1605

OlivierDehaene's avatar
OlivierDehaene committed
1606
1607
1608
1609
1610
    if !running.load(Ordering::SeqCst) {
        // Launcher was asked to stop
        return Ok(());
    }

1611
    // Shared shutdown bool
1612
    let shutdown = Arc::new(AtomicBool::new(false));
1613
1614
1615
    // Shared shutdown channel
    // When shutting down, the main thread will wait for all senders to be dropped
    let (shutdown_sender, shutdown_receiver) = mpsc::channel();
1616

1617
1618
    // Shared channel to track shard status
    let (status_sender, status_receiver) = mpsc::channel();
1619

1620
1621
1622
    spawn_shards(
        num_shard,
        &args,
1623
        cuda_graphs,
1624
        max_total_tokens,
1625
        max_input_tokens,
1626
        max_log_level,
1627
1628
1629
1630
1631
1632
1633
        shutdown.clone(),
        &shutdown_receiver,
        shutdown_sender,
        &status_receiver,
        status_sender,
        running.clone(),
    )?;
1634

1635
1636
1637
1638
1639
    // We might have received a termination signal
    if !running.load(Ordering::SeqCst) {
        shutdown_shards(shutdown, &shutdown_receiver);
        return Ok(());
    }
1640

1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
    let mut webserver = spawn_webserver(
        num_shard,
        args,
        max_input_tokens,
        max_total_tokens,
        max_batch_prefill_tokens,
        shutdown.clone(),
        &shutdown_receiver,
    )
    .map_err(|err| {
        shutdown_shards(shutdown.clone(), &shutdown_receiver);
        err
    })?;
1654
1655
1656
1657
1658

    // Default exit code
    let mut exit_code = Ok(());

    while running.load(Ordering::SeqCst) {
1659
        if let Ok(ShardStatus::Failed(rank)) = status_receiver.try_recv() {
OlivierDehaene's avatar
OlivierDehaene committed
1660
            tracing::error!("Shard {rank} crashed");
1661
1662
1663
1664
            exit_code = Err(LauncherError::ShardFailed);
            break;
        };

1665
        match webserver.try_wait().unwrap() {
1666
1667
1668
1669
1670
1671
1672
1673
1674
            Some(_) => {
                tracing::error!("Webserver Crashed");
                shutdown_shards(shutdown, &shutdown_receiver);
                return Err(LauncherError::WebserverFailed);
            }
            None => {
                sleep(Duration::from_millis(100));
            }
        };
1675
    }
1676
1677

    // Graceful termination
OlivierDehaene's avatar
OlivierDehaene committed
1678
    terminate("webserver", webserver, Duration::from_secs(90)).unwrap();
1679
1680
1681
    shutdown_shards(shutdown, &shutdown_receiver);

    exit_code
1682
}