main.rs 58.9 KB
Newer Older
1
use clap::{Parser, ValueEnum};
Nicolas Patry's avatar
Nicolas Patry committed
2
3
4
5
use hf_hub::{
    api::sync::{Api, ApiBuilder},
    Repo, RepoType,
};
6
7
use nix::sys::signal::{self, Signal};
use nix::unistd::Pid;
8
use serde::Deserialize;
Nicolas Patry's avatar
Nicolas Patry committed
9
use std::env;
10
use std::ffi::OsString;
11
use std::io::{BufRead, BufReader, Lines};
12
use std::os::unix::process::{CommandExt, ExitStatusExt};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
13
use std::path::Path;
OlivierDehaene's avatar
OlivierDehaene committed
14
use std::process::{Child, Command, ExitStatus, Stdio};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
15
16
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::TryRecvError;
17
use std::sync::{mpsc, Arc};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
18
19
20
21
use std::thread;
use std::thread::sleep;
use std::time::{Duration, Instant};
use std::{fs, io};
22
use thiserror::Error;
23
use tracing_subscriber::{filter::LevelFilter, EnvFilter};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
24

25
26
mod env_runtime;

27
#[derive(Deserialize)]
28
struct RawConfig {
29
    max_position_embeddings: Option<usize>,
30
    n_positions: Option<usize>,
31
    model_type: Option<String>,
32
33
34
    max_seq_len: Option<usize>,
}

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#[derive(Deserialize)]
struct Config {
    max_position_embeddings: Option<usize>,
}

impl From<RawConfig> for Config {
    fn from(other: RawConfig) -> Self {
        let max_position_embeddings = other
            .max_position_embeddings
            .or(other.max_seq_len)
            .or(other.n_positions);
        Config {
            max_position_embeddings,
        }
    }
}

52
53
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Quantization {
54
    /// 4 bit quantization. Requires a specific AWQ quantized model:
55
    ///   <https://hf.co/models?search=awq>.
56
    /// Should replace GPTQ models wherever possible because of the better latency
57
58
59
    Awq,
    /// 8 bit quantization, doesn't require specific model.
    /// Should be a drop-in replacement to bitsandbytes with much better performance.
60
    /// Kernels are from <https://github.com/NetEase-FuXi/EETQ.git>
61
    Eetq,
62
63
64
65
    /// Variable bit quantization. Requires a specific EXL2 quantized model:
    /// <https://hf.co/models?search=exl2>. Requires exllama2 kernels and does
    /// not support tensor parallelism (num_shard > 1).
    Exl2,
66
    /// 4 bit quantization. Requires a specific GTPQ quantized model: <https://hf.co/models?search=gptq>.
67
    /// text-generation-inference will use exllama (faster) kernels wherever possible, and use
68
69
70
    /// triton kernel (wider support) when it's not.
    /// AWQ has faster kernels.
    Gptq,
71
72
    /// 4 bit quantization. Requires a specific Marlin quantized model: <https://hf.co/models?search=marlin>.
    Marlin,
73
74
75
76
77
78
    /// Bitsandbytes 8bit. Can be applied on any model, will cut the memory requirement in half,
    /// but it is known that the model will be much slower to run than the native f16.
    #[deprecated(
        since = "1.1.0",
        note = "Use `eetq` instead, which provides better latencies overall and is drop-in in most cases"
    )]
79
    Bitsandbytes,
80
81
    /// Bitsandbytes 4bit. Can be applied on any model, will cut the memory requirement by 4x,
    /// but it is known that the model will be much slower to run than the native f16.
Nicolas Patry's avatar
Nicolas Patry committed
82
    BitsandbytesNF4,
83
84
    /// Bitsandbytes 4bit. nf4 should be preferred in most cases but maybe this one has better
    /// perplexity performance for you model
Nicolas Patry's avatar
Nicolas Patry committed
85
    BitsandbytesFP4,
Nicolas Patry's avatar
Nicolas Patry committed
86
87
88
89
90
    /// [FP8](https://developer.nvidia.com/blog/nvidia-arm-and-intel-publish-fp8-specification-for-standardization-as-an-interchange-format-for-ai/) (e4m3) works on H100 and above
    /// This dtype has native ops should be the fastest if available.
    /// This is currently not the fastest because of local unpacking + padding to satisfy matrix
    /// multiplication limitations.
    Fp8,
91
92
93
94
95
96
}

impl std::fmt::Display for Quantization {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
97
98
            #[allow(deprecated)]
            // Use `eetq` instead, which provides better latencies overall and is drop-in in most cases
99
100
101
            Quantization::Bitsandbytes => {
                write!(f, "bitsandbytes")
            }
Nicolas Patry's avatar
Nicolas Patry committed
102
103
104
105
106
107
            Quantization::BitsandbytesNF4 => {
                write!(f, "bitsandbytes-nf4")
            }
            Quantization::BitsandbytesFP4 => {
                write!(f, "bitsandbytes-fp4")
            }
108
109
110
            Quantization::Exl2 => {
                write!(f, "exl2")
            }
111
112
113
            Quantization::Gptq => {
                write!(f, "gptq")
            }
114
115
116
            Quantization::Marlin => {
                write!(f, "marlin")
            }
117
118
119
            Quantization::Awq => {
                write!(f, "awq")
            }
120
121
122
            Quantization::Eetq => {
                write!(f, "eetq")
            }
Nicolas Patry's avatar
Nicolas Patry committed
123
124
125
            Quantization::Fp8 => {
                write!(f, "fp8")
            }
126
127
128
129
        }
    }
}

130
131
132
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Dtype {
    Float16,
133
    #[clap(name = "bfloat16")]
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
    BFloat16,
}

impl std::fmt::Display for Dtype {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            Dtype::Float16 => {
                write!(f, "float16")
            }
            Dtype::BFloat16 => {
                write!(f, "bfloat16")
            }
        }
    }
}

Nicolas Patry's avatar
Nicolas Patry committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#[derive(Clone, Copy, Debug, ValueEnum)]
enum RopeScaling {
    Linear,
    Dynamic,
}

impl std::fmt::Display for RopeScaling {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            RopeScaling::Linear => {
                write!(f, "linear")
            }
            RopeScaling::Dynamic => {
                write!(f, "dynamic")
            }
        }
    }
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
171
172
173
174
/// App Configuration
#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]
struct Args {
175
176
177
178
179
    /// The name of the model to load.
    /// Can be a MODEL_ID as listed on <https://hf.co/models> like
    /// `gpt2` or `OpenAssistant/oasst-sft-1-pythia-12b`.
    /// Or it can be a local directory containing the necessary files
    /// as saved by `save_pretrained(...)` methods of transformers
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
180
    #[clap(default_value = "bigscience/bloom-560m", long, env)]
181
    model_id: String,
182
183
184

    /// The actual revision of the model if you're referring to a model
    /// on the hub. You can use a specific commit id or a branch like `refs/pr/2`.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
185
    #[clap(long, env)]
186
    revision: Option<String>,
187

188
189
190
191
192
    /// The number of tokenizer workers used for payload validation and truncation inside the
    /// router.
    #[clap(default_value = "2", long, env)]
    validation_workers: usize,

193
    /// Whether to shard the model across multiple GPUs
194
195
    /// By default text-generation-inference will use all available GPUs to run
    /// the model. Setting it to `false` deactivates `num_shard`.
196
197
    #[clap(long, env)]
    sharded: Option<bool>,
198
199

    /// The number of shards to use if you don't want to use all GPUs on a given machine.
200
201
    /// You can use `CUDA_VISIBLE_DEVICES=0,1 text-generation-launcher... --num_shard 2`
    /// and `CUDA_VISIBLE_DEVICES=2,3 text-generation-launcher... --num_shard 2` to
202
    /// launch 2 copies with 2 shard each on a given machine with 4 GPUs for instance.
203
204
    #[clap(long, env)]
    num_shard: Option<usize>,
205

206
    /// Whether you want the model to be quantized.
207
208
    #[clap(long, env, value_enum)]
    quantize: Option<Quantization>,
209

Nicolas Patry's avatar
Nicolas Patry committed
210
211
212
213
214
215
216
    /// The number of input_ids to speculate on
    /// If using a medusa model, the heads will be picked up automatically
    /// Other wise, it will use n-gram speculation which is relatively free
    /// in terms of compute, but the speedup heavily depends on the task.
    #[clap(long, env)]
    speculate: Option<usize>,

217
218
219
220
    /// The dtype to be forced upon the model. This option cannot be used with `--quantize`.
    #[clap(long, env, value_enum)]
    dtype: Option<Dtype>,

221
222
223
224
225
226
    /// Whether you want to execute hub modelling code. Explicitly passing a `revision` is
    /// encouraged when loading a model with custom code to ensure no malicious code has been
    /// contributed in a newer revision.
    #[clap(long, env, value_enum)]
    trust_remote_code: bool,

227
228
229
    /// The maximum amount of concurrent requests for this particular deployment.
    /// Having a low limit will refuse clients requests instead of having them
    /// wait for too long and is usually good to handle backpressure correctly.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
230
231
    #[clap(default_value = "128", long, env)]
    max_concurrent_requests: usize,
232
233
234
235

    /// This is the maximum allowed value for clients to set `best_of`.
    /// Best of makes `n` generations at the same time, and return the best
    /// in terms of overall log probability over the entire generated sequence
236
237
    #[clap(default_value = "2", long, env)]
    max_best_of: usize,
238
239
240
241
242
243

    /// This is the maximum allowed value for clients to set `stop_sequences`.
    /// Stop sequences are used to allow the model to stop on more than just
    /// the EOS token, and enable more complex "prompting" where users can preprompt
    /// the model in a specific way and define their "own" stop token aligned with
    /// their prompt.
244
245
    #[clap(default_value = "4", long, env)]
    max_stop_sequences: usize,
246

Nicolas Patry's avatar
Nicolas Patry committed
247
    /// This is the maximum allowed value for clients to set `top_n_tokens`.
248
    /// `top_n_tokens` is used to return information about the the `n` most likely
Nicolas Patry's avatar
Nicolas Patry committed
249
250
251
252
253
254
    /// tokens at each generation step, instead of just the sampled token. This
    /// information can be used for downstream tasks like for classification or
    /// ranking.
    #[clap(default_value = "5", long, env)]
    max_top_n_tokens: u32,

255
256
257
258
    /// This is the maximum allowed input length (expressed in number of tokens)
    /// for users. The larger this value, the longer prompt users can send which
    /// can impact the overall memory required to handle the load.
    /// Please note that some models have a finite range of sequence they can handle.
259
260
261
262
263
264
265
    /// Default to min(max_position_embeddings - 1, 4095)
    #[clap(long, env)]
    max_input_tokens: Option<usize>,

    /// Legacy version of [`Args::max_input_tokens`].
    #[clap(long, env)]
    max_input_length: Option<usize>,
266
267
268
269
270
271
272
273
274

    /// This is the most important value to set as it defines the "memory budget"
    /// of running clients requests.
    /// Clients will send input sequences and ask to generate `max_new_tokens`
    /// on top. with a value of `1512` users can send either a prompt of
    /// `1000` and ask for `512` new tokens, or send a prompt of `1` and ask for
    /// `1511` max_new_tokens.
    /// The larger this value, the larger amount each request will be in your RAM
    /// and the less effective batching can be.
275
276
277
    /// Default to min(max_position_embeddings, 4096)
    #[clap(long, env)]
    max_total_tokens: Option<usize>,
278
279
280
281
282
283
284
285
286
287
288

    /// This represents the ratio of waiting queries vs running queries where
    /// you want to start considering pausing the running queries to include the waiting
    /// ones into the same batch.
    /// `waiting_served_ratio=1.2` Means when 12 queries are waiting and there's
    /// only 10 queries left in the current batch we check if we can fit those 12
    /// waiting queries into the batching strategy, and if yes, then batching happens
    /// delaying the 10 running queries by a `prefill` run.
    ///
    /// This setting is only applied if there is room in the batch
    /// as defined by `max_batch_total_tokens`.
289
    #[clap(default_value = "0.3", long, env)]
290
    waiting_served_ratio: f32,
291

292
293
294
    /// Limits the number of tokens for the prefill operation.
    /// Since this operation take the most memory and is compute bound, it is interesting
    /// to limit the number of requests that can be sent.
295
296
297
    /// Default to `max_input_tokens + 50` to give a bit of room.
    #[clap(long, env)]
    max_batch_prefill_tokens: Option<u32>,
298

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
    /// **IMPORTANT** This is one critical control to allow maximum usage
    /// of the available hardware.
    ///
    /// This represents the total amount of potential tokens within a batch.
    /// When using padding (not recommended) this would be equivalent of
    /// `batch_size` * `max_total_tokens`.
    ///
    /// However in the non-padded (flash attention) version this can be much finer.
    ///
    /// For `max_batch_total_tokens=1000`, you could fit `10` queries of `total_tokens=100`
    /// or a single query of `1000` tokens.
    ///
    /// Overall this number should be the largest possible amount that fits the
    /// remaining memory (after the model is loaded). Since the actual memory overhead
    /// depends on other parameters like if you're using quantization, flash attention
    /// or the model implementation, text-generation-inference cannot infer this number
    /// automatically.
316
317
    #[clap(long, env)]
    max_batch_total_tokens: Option<u32>,
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335

    /// This setting defines how many tokens can be passed before forcing the waiting
    /// queries to be put on the batch (if the size of the batch allows for it).
    /// New queries require 1 `prefill` forward, which is different from `decode`
    /// and therefore you need to pause the running batch in order to run `prefill`
    /// to create the correct values for the waiting queries to be able to join the batch.
    ///
    /// With a value too small, queries will always "steal" the compute to run `prefill`
    /// and running queries will be delayed by a lot.
    ///
    /// With a value too big, waiting queries could wait for a very long time
    /// before being allowed a slot in the running batch. If your server is busy
    /// that means that requests that could run in ~2s on an empty server could
    /// end up running in ~20s because the query had to wait for 18s.
    ///
    /// This number is expressed in number of tokens to make it a bit more
    /// "model" agnostic, but what should really matter is the overall latency
    /// for end users.
336
337
    #[clap(default_value = "20", long, env)]
    max_waiting_tokens: usize,
338

339
340
341
342
343
    /// Enforce a maximum number of requests per batch
    /// Specific flag for hardware targets that do not support unpadded inference
    #[clap(long, env)]
    max_batch_size: Option<usize>,

344
345
    /// Specify the batch sizes to compute cuda graphs for.
    /// Use "0" to disable.
346
347
348
    /// Default = "1,2,4,8,16,32"
    #[clap(long, env, value_delimiter = ',')]
    cuda_graphs: Option<Vec<usize>>,
349

350
351
352
353
    /// The IP address to listen on
    #[clap(default_value = "0.0.0.0", long, env)]
    hostname: String,

354
    /// The port to listen on.
355
    #[clap(default_value = "3000", long, short, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
356
    port: u16,
357
358
359

    /// The name of the socket for gRPC communication between the webserver
    /// and the shards.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
360
361
    #[clap(default_value = "/tmp/text-generation-server", long, env)]
    shard_uds_path: String,
362
363

    /// The address the master shard will listen on. (setting used by torch distributed)
364
    #[clap(default_value = "localhost", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
365
    master_addr: String,
366
367

    /// The address the master port will listen on. (setting used by torch distributed)
368
    #[clap(default_value = "29500", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
369
    master_port: usize,
370
371
372

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
373
    #[clap(long, env)]
374
    huggingface_hub_cache: Option<String>,
375
376
377

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
378
379
    #[clap(long, env)]
    weights_cache_override: Option<String>,
380
381
382
383
384

    /// For some models (like bloom), text-generation-inference implemented custom
    /// cuda kernels to speed up inference. Those kernels were only tested on A100.
    /// Use this flag to disable them if you're running on different hardware and
    /// encounter issues.
385
    #[clap(long, env)]
386
    disable_custom_kernels: bool,
387

388
389
390
391
392
    /// Limit the CUDA available memory.
    /// The allowed value equals the total visible memory multiplied by cuda-memory-fraction.
    #[clap(default_value = "1.0", long, env)]
    cuda_memory_fraction: f32,

Nicolas Patry's avatar
Nicolas Patry committed
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
    /// Rope scaling will only be used for RoPE models
    /// and allow rescaling the position rotary to accomodate for
    /// larger prompts.
    ///
    /// Goes together with `rope_factor`.
    ///
    /// `--rope-factor 2.0` gives linear scaling with a factor of 2.0
    /// `--rope-scaling dynamic` gives dynamic scaling with a factor of 1.0
    /// `--rope-scaling linear` gives linear scaling with a factor of 1.0 (Nothing will be changed
    /// basically)
    ///
    /// `--rope-scaling linear --rope-factor` fully describes the scaling you want
    #[clap(long, env)]
    rope_scaling: Option<RopeScaling>,

    /// Rope scaling will only be used for RoPE models
    /// See `rope_scaling`
    #[clap(long, env)]
    rope_factor: Option<f32>,

413
    /// Outputs the logs in JSON format (useful for telemetry)
414
    #[clap(long, env)]
415
    json_output: bool,
416

417
418
    #[clap(long, env)]
    otlp_endpoint: Option<String>,
419

420
421
422
    #[clap(default_value = "text-generation-inference.router", long, env)]
    otlp_service_name: String,

423
424
    #[clap(long, env)]
    cors_allow_origin: Vec<String>,
425
426
427
428
    #[clap(long, env)]
    watermark_gamma: Option<f32>,
    #[clap(long, env)]
    watermark_delta: Option<f32>,
429

430
431
432
433
434
435
436
437
    /// Enable ngrok tunneling
    #[clap(long, env)]
    ngrok: bool,

    /// ngrok authentication token
    #[clap(long, env)]
    ngrok_authtoken: Option<String>,

438
    /// ngrok edge
439
    #[clap(long, env)]
440
    ngrok_edge: Option<String>,
441

442
443
444
445
446
    /// The path to the tokenizer config file. This path is used to load the tokenizer configuration which may
    /// include a `chat_template`. If not provided, the default config will be used from the model hub.
    #[clap(long, env)]
    tokenizer_config_path: Option<String>,

drbh's avatar
drbh committed
447
448
449
450
451
    /// Disable outlines grammar constrained generation.
    /// This is a feature that allows you to generate text that follows a specific grammar.
    #[clap(long, env)]
    disable_grammar_support: bool,

452
453
454
    /// Display a lot of information about your runtime environment
    #[clap(long, short, action)]
    env: bool,
455
456
457
458

    /// Control the maximum number of inputs that a client can send in a single request
    #[clap(default_value = "4", long, env)]
    max_client_batch_size: usize,
drbh's avatar
drbh committed
459
460
461
462
463

    /// Lora Adapters a list of adapter ids i.e. `repo/adapter1,repo/adapter2` to load during
    /// startup that will be available to callers via the `adapter_id` field in a request.
    #[clap(long, env)]
    lora_adapters: Option<String>,
464
465
466
467
468
469
470
471

    /// Disable sending of all usage statistics
    #[clap(default_value = "false", long, env)]
    disable_usage_stats: bool,

    /// Disable sending of crash reports, but allow anonymous usage statistics
    #[clap(default_value = "false", long, env)]
    disable_crash_reports: bool,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
472
473
}

474
475
476
#[derive(Debug)]
enum ShardStatus {
    Ready,
477
    Failed(usize),
478
}
479

480
481
482
483
#[allow(clippy::too_many_arguments)]
fn shard_manager(
    model_id: String,
    revision: Option<String>,
484
    quantize: Option<Quantization>,
Nicolas Patry's avatar
Nicolas Patry committed
485
    speculate: Option<usize>,
486
    dtype: Option<Dtype>,
487
    trust_remote_code: bool,
488
489
490
491
492
493
494
495
496
497
    uds_path: String,
    rank: usize,
    world_size: usize,
    master_addr: String,
    master_port: usize,
    huggingface_hub_cache: Option<String>,
    weights_cache_override: Option<String>,
    disable_custom_kernels: bool,
    watermark_gamma: Option<f32>,
    watermark_delta: Option<f32>,
498
    cuda_graphs: Vec<usize>,
499
    cuda_memory_fraction: f32,
Nicolas Patry's avatar
Nicolas Patry committed
500
501
    rope_scaling: Option<RopeScaling>,
    rope_factor: Option<f32>,
502
503
    max_total_tokens: usize,
    max_batch_size: Option<usize>,
504
    max_input_tokens: usize,
drbh's avatar
drbh committed
505
    lora_adapters: Option<String>,
506
    otlp_endpoint: Option<String>,
507
    otlp_service_name: String,
508
    log_level: LevelFilter,
509
    status_sender: mpsc::Sender<ShardStatus>,
510
    shutdown: Arc<AtomicBool>,
511
512
    _shutdown_sender: mpsc::Sender<()>,
) {
513
514
515
    // Enter shard-manager tracing span
    let _span = tracing::span!(tracing::Level::INFO, "shard-manager", rank = rank).entered();

516
517
518
519
    // Get UDS path
    let uds_string = format!("{uds_path}-{rank}");
    let uds = Path::new(&uds_string);
    // Clean previous runs
520
521
522
    if uds.exists() {
        fs::remove_file(uds).unwrap();
    }
523
524

    // Process args
OlivierDehaene's avatar
OlivierDehaene committed
525
    let mut shard_args = vec![
526
527
528
529
530
        "serve".to_string(),
        model_id,
        "--uds-path".to_string(),
        uds_path,
        "--logger-level".to_string(),
531
        log_level.to_string().to_uppercase(),
532
533
534
        "--json-output".to_string(),
    ];

535
536
    // Activate trust remote code
    if trust_remote_code {
OlivierDehaene's avatar
OlivierDehaene committed
537
        shard_args.push("--trust-remote-code".to_string());
538
539
    }

540
541
    // Activate tensor parallelism
    if world_size > 1 {
OlivierDehaene's avatar
OlivierDehaene committed
542
        shard_args.push("--sharded".to_string());
543
544
    }

545
    if let Some(quantize) = quantize {
OlivierDehaene's avatar
OlivierDehaene committed
546
547
        shard_args.push("--quantize".to_string());
        shard_args.push(quantize.to_string())
548
    }
549

Nicolas Patry's avatar
Nicolas Patry committed
550
551
552
553
554
    if let Some(speculate) = speculate {
        shard_args.push("--speculate".to_string());
        shard_args.push(speculate.to_string())
    }

555
    if let Some(dtype) = dtype {
OlivierDehaene's avatar
OlivierDehaene committed
556
557
        shard_args.push("--dtype".to_string());
        shard_args.push(dtype.to_string())
558
559
    }

560
561
    // Model optional revision
    if let Some(revision) = revision {
OlivierDehaene's avatar
OlivierDehaene committed
562
563
        shard_args.push("--revision".to_string());
        shard_args.push(revision)
564
    }
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
565

Nicolas Patry's avatar
Nicolas Patry committed
566
567
568
569
570
571
    let rope = match (rope_scaling, rope_factor) {
        (None, None) => None,
        (Some(scaling), None) => Some((scaling, 1.0)),
        (Some(scaling), Some(factor)) => Some((scaling, factor)),
        (None, Some(factor)) => Some((RopeScaling::Linear, factor)),
    };
572

573
    // OpenTelemetry Endpoint
574
    if let Some(otlp_endpoint) = otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
575
576
        shard_args.push("--otlp-endpoint".to_string());
        shard_args.push(otlp_endpoint);
577
578
    }

579
580
581
582
    // OpenTelemetry Service Name
    shard_args.push("--otlp-service-name".to_string());
    shard_args.push(otlp_service_name);

583
584
585
586
    // In case we use sliding window, we may ignore the sliding in flash for some backends depending on the parameter.
    shard_args.push("--max-input-tokens".to_string());
    shard_args.push(max_input_tokens.to_string());

587
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
588
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
589

590
591
592
    // Remove LOG_LEVEL if present
    envs.retain(|(name, _)| name != "LOG_LEVEL");

593
    // Torch Distributed Env vars
OlivierDehaene's avatar
OlivierDehaene committed
594
595
596
597
    envs.push(("RANK".into(), rank.to_string().into()));
    envs.push(("WORLD_SIZE".into(), world_size.to_string().into()));
    envs.push(("MASTER_ADDR".into(), master_addr.into()));
    envs.push(("MASTER_PORT".into(), master_port.to_string().into()));
598
    envs.push(("TORCH_NCCL_AVOID_RECORD_STREAMS".into(), "1".into()));
599

600
601
602
603
604
605
    // CUDA memory fraction
    envs.push((
        "CUDA_MEMORY_FRACTION".into(),
        cuda_memory_fraction.to_string().into(),
    ));

606
    // Safetensors load fast
OlivierDehaene's avatar
OlivierDehaene committed
607
    envs.push(("SAFETENSORS_FAST_GPU".into(), "1".into()));
608

609
610
611
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

612
613
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
614
    envs.push((
615
616
617
618
619
620
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));

    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
621
        envs.push(("HF_TOKEN".into(), api_token.into()))
622
623
    };

Nicolas Patry's avatar
Nicolas Patry committed
624
625
626
627
628
629
630
631
632
    // Detect rope scaling
    // Sending as env instead of CLI args to not bloat everything
    // those only can be used by RoPE models, so passing information around
    // for all models will complexify code unnecessarily
    if let Some((scaling, factor)) = rope {
        envs.push(("ROPE_SCALING".into(), scaling.to_string().into()));
        envs.push(("ROPE_FACTOR".into(), factor.to_string().into()));
    }

633
634
635
636
637
638
639
640
    envs.push((
        "MAX_TOTAL_TOKENS".into(),
        max_total_tokens.to_string().into(),
    ));
    if let Some(max_batch_size) = max_batch_size {
        envs.push(("MAX_BATCH_SIZE".into(), max_batch_size.to_string().into()));
    }

drbh's avatar
drbh committed
641
642
643
644
645
    // Lora Adapters
    if let Some(lora_adapters) = lora_adapters {
        envs.push(("LORA_ADAPTERS".into(), lora_adapters.into()));
    }

646
647
648
    // If huggingface_hub_cache is some, pass it to the shard
    // Useful when running inside a docker container
    if let Some(huggingface_hub_cache) = huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
649
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
650
651
652
653
654
    };

    // If weights_cache_override is some, pass it to the shard
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
655
        envs.push((
656
657
658
659
660
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

661
    // Enable experimental support for cuda graphs
662
663
664
665
666
667
668
669
670
671
    if !cuda_graphs.is_empty() {
        envs.push((
            "CUDA_GRAPHS".into(),
            cuda_graphs
                .into_iter()
                .map(|c| c.to_string())
                .collect::<Vec<_>>()
                .join(",")
                .into(),
        ));
672
673
    }

674
675
    // If disable_custom_kernels is true, pass it to the shard as an env var
    if disable_custom_kernels {
OlivierDehaene's avatar
OlivierDehaene committed
676
        envs.push(("DISABLE_CUSTOM_KERNELS".into(), "True".into()))
677
678
679
680
    }

    // Watermark Gamma
    if let Some(watermark_gamma) = watermark_gamma {
OlivierDehaene's avatar
OlivierDehaene committed
681
        envs.push(("WATERMARK_GAMMA".into(), watermark_gamma.to_string().into()))
682
683
684
685
    }

    // Watermark Delta
    if let Some(watermark_delta) = watermark_delta {
OlivierDehaene's avatar
OlivierDehaene committed
686
        envs.push(("WATERMARK_DELTA".into(), watermark_delta.to_string().into()))
687
688
689
    }

    // Start process
690
    tracing::info!("Starting shard");
691
    let mut p = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
692
        .args(shard_args)
693
        .env_clear()
OlivierDehaene's avatar
OlivierDehaene committed
694
        .envs(envs)
695
696
697
698
699
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
700
701
        Ok(p) => p,
        Err(err) => {
702
703
704
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
705
706
            }
            {
707
                tracing::error!("{}", err);
708
            }
709

710
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
711
712
713
714
715
            return;
        }
    };

    // Redirect STDOUT to the console
716
    let shard_stdout_reader = BufReader::new(p.stdout.take().unwrap());
717
    let shard_stderr_reader = BufReader::new(p.stderr.take().unwrap());
718

719
    //stdout tracing thread
720
    thread::spawn(move || {
721
        log_lines(shard_stdout_reader.lines());
722
    });
723
724
725
    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
OlivierDehaene's avatar
OlivierDehaene committed
726
        for line in shard_stderr_reader.lines().map_while(Result::ok) {
727
728
729
            err_sender.send(line).unwrap_or(());
        }
    });
730
731
732
733
734
735

    let mut ready = false;
    let start_time = Instant::now();
    let mut wait_time = Instant::now();
    loop {
        // Process exited
736
        if let Some(exit_status) = p.try_wait().unwrap() {
737
738
739
740
            let mut err = String::new();
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }
741

742
            tracing::error!("Shard complete standard error output:\n{err}");
743

744
            if let Some(signal) = exit_status.signal() {
745
746
747
                tracing::error!("Shard process was signaled to shutdown with signal {signal}");
            }

748
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
749
750
751
752
            return;
        }

        // We received a shutdown signal
753
        if shutdown.load(Ordering::SeqCst) {
754
            terminate("shard", p, Duration::from_secs(90)).unwrap();
755
756
757
758
759
            return;
        }

        // Shard is ready
        if uds.exists() && !ready {
760
            tracing::info!("Shard ready in {:?}", start_time.elapsed());
761
762
763
            status_sender.send(ShardStatus::Ready).unwrap();
            ready = true;
        } else if !ready && wait_time.elapsed() > Duration::from_secs(10) {
764
            tracing::info!("Waiting for shard to be ready...");
765
766
767
768
769
770
            wait_time = Instant::now();
        }
        sleep(Duration::from_millis(100));
    }
}

771
fn shutdown_shards(shutdown: Arc<AtomicBool>, shutdown_receiver: &mpsc::Receiver<()>) {
772
773
774
    tracing::info!("Shutting down shards");
    // Update shutdown value to true
    // This will be picked up by the shard manager
775
    shutdown.store(true, Ordering::SeqCst);
776
777
778
779
780
781
782

    // Wait for shards to shutdown
    // This will block till all shutdown_sender are dropped
    let _ = shutdown_receiver.recv();
}

fn num_cuda_devices() -> Option<usize> {
783
784
    let devices = match env::var("CUDA_VISIBLE_DEVICES") {
        Ok(devices) => devices,
785
786
787
        Err(_) => match env::var("NVIDIA_VISIBLE_DEVICES") {
            Ok(devices) => devices,
            Err(_) => env::var("ZE_AFFINITY_MASK").ok()?,
Nicolas Patry's avatar
Nicolas Patry committed
788
        },
789
    };
790
791
    let n_devices = devices.split(',').count();
    Some(n_devices)
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
}

#[derive(Deserialize)]
#[serde(rename_all = "UPPERCASE")]
enum PythonLogLevelEnum {
    Trace,
    Debug,
    Info,
    Success,
    Warning,
    Error,
    Critical,
}

#[derive(Deserialize)]
struct PythonLogLevel {
    name: PythonLogLevelEnum,
}

#[derive(Deserialize)]
struct PythonLogRecord {
    level: PythonLogLevel,
}

#[derive(Deserialize)]
struct PythonLogMessage {
    text: String,
    record: PythonLogRecord,
}

impl PythonLogMessage {
    fn trace(&self) {
        match self.record.level.name {
825
826
827
828
829
830
831
            PythonLogLevelEnum::Trace => tracing::trace!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Debug => tracing::debug!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Info => tracing::info!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Success => tracing::info!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Warning => tracing::warn!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Error => tracing::error!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Critical => tracing::error!("{}", self.text.trim_end()),
832
833
834
835
        }
    }
}

836
837
838
839
840
841
842
843
844
impl TryFrom<&String> for PythonLogMessage {
    type Error = serde_json::Error;

    fn try_from(value: &String) -> Result<Self, Self::Error> {
        serde_json::from_str::<Self>(value)
    }
}

fn log_lines<S: Sized + BufRead>(lines: Lines<S>) {
OlivierDehaene's avatar
OlivierDehaene committed
845
    for line in lines.map_while(Result::ok) {
846
847
848
849
850
851
852
        match PythonLogMessage::try_from(&line) {
            Ok(log) => log.trace(),
            Err(_) => tracing::debug!("{line}"),
        }
    }
}

853
854
855
856
fn find_num_shards(
    sharded: Option<bool>,
    num_shard: Option<usize>,
) -> Result<usize, LauncherError> {
857
858
859
860
    // get the number of shards given `sharded` and `num_shard`
    let num_shard = match (sharded, num_shard) {
        (Some(true), None) => {
            // try to default to the number of available GPUs
861
            tracing::info!("Parsing num_shard from CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES/ZE_AFFINITY_MASK");
862
            let n_devices = num_cuda_devices()
863
                .expect("--num-shard and CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES/ZE_AFFINITY_MASK are not set");
864
            if n_devices <= 1 {
865
866
867
                return Err(LauncherError::NotEnoughCUDADevices(format!(
                    "`sharded` is true but only found {n_devices} CUDA devices"
                )));
868
            }
869
            n_devices
870
        }
871
872
873
        (Some(true), Some(num_shard)) => {
            // we can't have only one shard while sharded
            if num_shard <= 1 {
874
875
876
                return Err(LauncherError::ArgumentValidation(
                    "`sharded` is true but `num_shard` <= 1".to_string(),
                ));
877
878
            }
            num_shard
879
        }
880
881
882
883
        (Some(false), Some(num_shard)) => num_shard,
        (Some(false), None) => 1,
        (None, None) => num_cuda_devices().unwrap_or(1),
        (None, Some(num_shard)) => num_shard,
884
    };
885
    if num_shard < 1 {
886
887
888
        return Err(LauncherError::ArgumentValidation(
            "`num_shard` cannot be < 1".to_string(),
        ));
889
    }
890
    Ok(num_shard)
891
}
892

893
#[derive(Debug, Error)]
894
enum LauncherError {
895
    #[error("Invalid argument: {0}")]
896
    ArgumentValidation(String),
897
    #[error("not enough cuda devices: {0}")]
898
    NotEnoughCUDADevices(String),
899
    #[error("Download error")]
900
    DownloadError,
901
    #[error("Shard cannot start")]
902
    ShardCannotStart,
903
    #[error("Shard disconnected")]
904
    ShardDisconnected,
905
    #[error("Shard failed")]
906
    ShardFailed,
907
    #[error("Webserver failed")]
908
    WebserverFailed,
909
    #[error("Webserver cannot start")]
910
911
    WebserverCannotStart,
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
912

913
914
915
916
917
918
919
920
fn download_convert_model(
    model_id: &str,
    revision: Option<&str>,
    trust_remote_code: bool,
    huggingface_hub_cache: Option<&str>,
    weights_cache_override: Option<&str>,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
921
922
923
    // Enter download tracing span
    let _span = tracing::span!(tracing::Level::INFO, "download").entered();

OlivierDehaene's avatar
OlivierDehaene committed
924
    let mut download_args = vec![
925
        "download-weights".to_string(),
926
        model_id.to_string(),
927
928
929
930
931
932
        "--extension".to_string(),
        ".safetensors".to_string(),
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];
933

934
    // Model optional revision
935
    if let Some(revision) = &revision {
OlivierDehaene's avatar
OlivierDehaene committed
936
937
        download_args.push("--revision".to_string());
        download_args.push(revision.to_string())
938
    }
939

940
    // Trust remote code for automatic peft fusion
941
    if trust_remote_code {
942
943
944
        download_args.push("--trust-remote-code".to_string());
    }

945
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
946
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
947

948
949
950
    // Remove LOG_LEVEL if present
    envs.retain(|(name, _)| name != "LOG_LEVEL");

951
952
953
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

954
    // If huggingface_hub_cache is set, pass it to the download process
955
    // Useful when running inside a docker container
956
    if let Some(ref huggingface_hub_cache) = huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
957
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
958
    };
959

960
961
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
962
    envs.push((
963
964
965
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));
966

967
968
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
969
        envs.push(("HF_TOKEN".into(), api_token.into()))
970
    };
971

972
973
    // If args.weights_cache_override is some, pass it to the download process
    // Useful when running inside a HuggingFace Inference Endpoint
974
    if let Some(weights_cache_override) = &weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
975
        envs.push((
976
977
978
979
980
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

981
    // Start process
982
    tracing::info!("Starting check and download process for {model_id}");
983
    let mut download_process = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
984
        .args(download_args)
985
        .env_clear()
OlivierDehaene's avatar
OlivierDehaene committed
986
        .envs(envs)
987
988
989
990
991
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
992
993
        Ok(p) => p,
        Err(err) => {
994
995
996
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
997
998
            } else {
                tracing::error!("{}", err);
999
            }
1000

1001
1002
1003
            return Err(LauncherError::DownloadError);
        }
    };
1004

1005
    let download_stdout = BufReader::new(download_process.stdout.take().unwrap());
1006

1007
    thread::spawn(move || {
1008
1009
1010
1011
1012
1013
1014
1015
        log_lines(download_stdout.lines());
    });

    let download_stderr = BufReader::new(download_process.stderr.take().unwrap());

    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
OlivierDehaene's avatar
OlivierDehaene committed
1016
        for line in download_stderr.lines().map_while(Result::ok) {
1017
1018
            err_sender.send(line).unwrap_or(());
        }
1019
    });
1020

1021
    loop {
1022
1023
        if let Some(status) = download_process.try_wait().unwrap() {
            if status.success() {
1024
                tracing::info!("Successfully downloaded weights for {model_id}");
1025
                break;
1026
            }
1027
1028

            let mut err = String::new();
1029
1030
1031
1032
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }

1033
1034
1035
1036
1037
1038
1039
1040
1041
            if let Some(signal) = status.signal() {
                tracing::error!(
                    "Download process was signaled to shutdown with signal {signal}: {err}"
                );
            } else {
                tracing::error!("Download encountered an error: {err}");
            }

            return Err(LauncherError::DownloadError);
1042
        }
1043
        if !running.load(Ordering::SeqCst) {
OlivierDehaene's avatar
OlivierDehaene committed
1044
            terminate("download", download_process, Duration::from_secs(10)).unwrap();
1045
1046
1047
            return Ok(());
        }
        sleep(Duration::from_millis(100));
1048
    }
1049
1050
    Ok(())
}
1051

1052
#[allow(clippy::too_many_arguments)]
1053
1054
1055
fn spawn_shards(
    num_shard: usize,
    args: &Args,
1056
    cuda_graphs: Vec<usize>,
1057
    max_total_tokens: usize,
1058
    max_input_tokens: usize,
1059
    max_log_level: LevelFilter,
1060
    shutdown: Arc<AtomicBool>,
1061
1062
1063
1064
1065
1066
    shutdown_receiver: &mpsc::Receiver<()>,
    shutdown_sender: mpsc::Sender<()>,
    status_receiver: &mpsc::Receiver<ShardStatus>,
    status_sender: mpsc::Sender<ShardStatus>,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1067
1068
    // Start shard processes
    for rank in 0..num_shard {
1069
1070
1071
1072
1073
1074
        let model_id = args.model_id.clone();
        let revision = args.revision.clone();
        let uds_path = args.shard_uds_path.clone();
        let master_addr = args.master_addr.clone();
        let huggingface_hub_cache = args.huggingface_hub_cache.clone();
        let weights_cache_override = args.weights_cache_override.clone();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1075
1076
1077
        let status_sender = status_sender.clone();
        let shutdown = shutdown.clone();
        let shutdown_sender = shutdown_sender.clone();
1078
        let otlp_endpoint = args.otlp_endpoint.clone();
1079
        let otlp_service_name = args.otlp_service_name.clone();
1080
        let quantize = args.quantize;
Nicolas Patry's avatar
Nicolas Patry committed
1081
        let speculate = args.speculate;
1082
        let dtype = args.dtype;
1083
        let trust_remote_code = args.trust_remote_code;
1084
1085
1086
1087
        let master_port = args.master_port;
        let disable_custom_kernels = args.disable_custom_kernels;
        let watermark_gamma = args.watermark_gamma;
        let watermark_delta = args.watermark_delta;
1088
        let cuda_graphs_clone = cuda_graphs.clone();
1089
        let cuda_memory_fraction = args.cuda_memory_fraction;
Nicolas Patry's avatar
Nicolas Patry committed
1090
1091
        let rope_scaling = args.rope_scaling;
        let rope_factor = args.rope_factor;
1092
        let max_batch_size = args.max_batch_size;
drbh's avatar
drbh committed
1093
        let lora_adapters = args.lora_adapters.clone();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1094
1095
        thread::spawn(move || {
            shard_manager(
1096
                model_id,
1097
                revision,
1098
                quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1099
                speculate,
1100
                dtype,
1101
                trust_remote_code,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1102
1103
1104
1105
1106
                uds_path,
                rank,
                num_shard,
                master_addr,
                master_port,
1107
1108
                huggingface_hub_cache,
                weights_cache_override,
1109
                disable_custom_kernels,
1110
1111
                watermark_gamma,
                watermark_delta,
1112
                cuda_graphs_clone,
1113
                cuda_memory_fraction,
Nicolas Patry's avatar
Nicolas Patry committed
1114
1115
                rope_scaling,
                rope_factor,
1116
1117
                max_total_tokens,
                max_batch_size,
1118
                max_input_tokens,
drbh's avatar
drbh committed
1119
                lora_adapters,
1120
                otlp_endpoint,
1121
                otlp_service_name,
1122
                max_log_level,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
                status_sender,
                shutdown,
                shutdown_sender,
            )
        });
    }
    drop(shutdown_sender);

    // Wait for shard to start
    let mut shard_ready = 0;
    while running.load(Ordering::SeqCst) {
        match status_receiver.try_recv() {
            Ok(ShardStatus::Ready) => {
                shard_ready += 1;
                if shard_ready == num_shard {
                    break;
                }
            }
            Err(TryRecvError::Empty) => {
                sleep(Duration::from_millis(100));
            }
1144
            Ok(ShardStatus::Failed(rank)) => {
1145
                tracing::error!("Shard {rank} failed to start");
1146
                shutdown_shards(shutdown, shutdown_receiver);
1147
                return Err(LauncherError::ShardCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1148
1149
1150
            }
            Err(TryRecvError::Disconnected) => {
                tracing::error!("Shard status channel disconnected");
1151
                shutdown_shards(shutdown, shutdown_receiver);
1152
                return Err(LauncherError::ShardDisconnected);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1153
1154
1155
            }
        }
    }
1156
1157
    Ok(())
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1158

1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
fn compute_type(num_shard: usize) -> Option<String> {
    let output = Command::new("nvidia-smi")
        .args(["--query-gpu=gpu_name", "--format=csv"])
        .output()
        .ok()?;
    let output = String::from_utf8(output.stdout).ok()?;
    let fullname = output.split('\n').nth(1)?;
    let cardname = fullname.replace(' ', "-").to_lowercase();
    let compute_type = format!("{num_shard}-{cardname}");
    Some(compute_type)
}

1171
fn spawn_webserver(
1172
    num_shard: usize,
1173
    args: Args,
1174
1175
1176
    max_input_tokens: usize,
    max_total_tokens: usize,
    max_batch_prefill_tokens: u32,
1177
    shutdown: Arc<AtomicBool>,
1178
    shutdown_receiver: &mpsc::Receiver<()>,
1179
) -> Result<Child, LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1180
1181
1182
    // All shard started
    // Start webserver
    tracing::info!("Starting Webserver");
OlivierDehaene's avatar
OlivierDehaene committed
1183
    let mut router_args = vec![
1184
1185
        "--max-client-batch-size".to_string(),
        args.max_client_batch_size.to_string(),
1186
        "--max-concurrent-requests".to_string(),
1187
        args.max_concurrent_requests.to_string(),
1188
        "--max-best-of".to_string(),
1189
        args.max_best_of.to_string(),
1190
        "--max-stop-sequences".to_string(),
1191
        args.max_stop_sequences.to_string(),
Nicolas Patry's avatar
Nicolas Patry committed
1192
1193
        "--max-top-n-tokens".to_string(),
        args.max_top_n_tokens.to_string(),
1194
1195
        "--max-input-tokens".to_string(),
        max_input_tokens.to_string(),
1196
        "--max-total-tokens".to_string(),
1197
        max_total_tokens.to_string(),
1198
        "--max-batch-prefill-tokens".to_string(),
1199
        max_batch_prefill_tokens.to_string(),
1200
        "--waiting-served-ratio".to_string(),
1201
        args.waiting_served_ratio.to_string(),
1202
        "--max-waiting-tokens".to_string(),
1203
        args.max_waiting_tokens.to_string(),
1204
1205
        "--validation-workers".to_string(),
        args.validation_workers.to_string(),
1206
1207
        "--hostname".to_string(),
        args.hostname.to_string(),
1208
        "--port".to_string(),
1209
        args.port.to_string(),
1210
        "--master-shard-uds-path".to_string(),
1211
        format!("{}-0", args.shard_uds_path),
1212
        "--tokenizer-name".to_string(),
1213
        args.model_id,
1214
1215
    ];

1216
1217
1218
1219
1220
1221
1222
1223
    // Pass usage stats flags to router
    if args.disable_usage_stats {
        router_args.push("--disable-usage-stats".to_string());
    }
    if args.disable_crash_reports {
        router_args.push("--disable-crash-reports".to_string());
    }

drbh's avatar
drbh committed
1224
1225
1226
1227
1228
    // Grammar support
    if args.disable_grammar_support {
        router_args.push("--disable-grammar-support".to_string());
    }

1229
1230
1231
1232
1233
1234
    // Tokenizer config path
    if let Some(ref tokenizer_config_path) = args.tokenizer_config_path {
        router_args.push("--tokenizer-config-path".to_string());
        router_args.push(tokenizer_config_path.to_string());
    }

1235
1236
1237
1238
1239
1240
    // Model optional max batch total tokens
    if let Some(max_batch_total_tokens) = args.max_batch_total_tokens {
        router_args.push("--max-batch-total-tokens".to_string());
        router_args.push(max_batch_total_tokens.to_string());
    }

1241
1242
1243
1244
1245
1246
    // Router optional max batch size
    if let Some(max_batch_size) = args.max_batch_size {
        router_args.push("--max-batch-size".to_string());
        router_args.push(max_batch_size.to_string());
    }

1247
1248
    // Model optional revision
    if let Some(ref revision) = args.revision {
OlivierDehaene's avatar
OlivierDehaene committed
1249
1250
        router_args.push("--revision".to_string());
        router_args.push(revision.to_string())
1251
1252
    }

1253
    if args.json_output {
OlivierDehaene's avatar
OlivierDehaene committed
1254
        router_args.push("--json-output".to_string());
1255
1256
    }

1257
    // OpenTelemetry
1258
    if let Some(otlp_endpoint) = args.otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
1259
1260
        router_args.push("--otlp-endpoint".to_string());
        router_args.push(otlp_endpoint);
1261
1262
    }

1263
1264
1265
1266
1267
    // OpenTelemetry
    let otlp_service_name = args.otlp_service_name;
    router_args.push("--otlp-service-name".to_string());
    router_args.push(otlp_service_name);

1268
1269
    // CORS origins
    for origin in args.cors_allow_origin.into_iter() {
OlivierDehaene's avatar
OlivierDehaene committed
1270
1271
        router_args.push("--cors-allow-origin".to_string());
        router_args.push(origin);
1272
1273
    }

1274
1275
    // Ngrok
    if args.ngrok {
OlivierDehaene's avatar
OlivierDehaene committed
1276
1277
        router_args.push("--ngrok".to_string());
        router_args.push("--ngrok-authtoken".to_string());
1278
1279
1280
        router_args.push(args.ngrok_authtoken.unwrap());
        router_args.push("--ngrok-edge".to_string());
        router_args.push(args.ngrok_edge.unwrap());
1281
1282
    }

1283
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
1284
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
1285

1286
1287
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
1288
        envs.push(("HF_TOKEN".into(), api_token.into()))
1289
    };
1290

1291
1292
1293
1294
1295
1296
1297
    // Parse Compute type
    if let Ok(compute_type) = env::var("COMPUTE_TYPE") {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    } else if let Some(compute_type) = compute_type(num_shard) {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    }

1298
    let mut webserver = match Command::new("text-generation-router")
OlivierDehaene's avatar
OlivierDehaene committed
1299
1300
        .args(router_args)
        .envs(envs)
1301
1302
1303
1304
1305
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1306
1307
        Ok(p) => p,
        Err(err) => {
1308
            tracing::error!("Failed to start webserver: {}", err);
1309
1310
1311
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-router not found in PATH");
                tracing::error!("Please install it with `make install-router`")
1312
1313
            } else {
                tracing::error!("{}", err);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1314
            }
1315

1316
            shutdown_shards(shutdown, shutdown_receiver);
1317
            return Err(LauncherError::WebserverCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1318
1319
1320
        }
    };

1321
1322
1323
    // Redirect STDOUT and STDERR to the console
    let webserver_stdout = webserver.stdout.take().unwrap();
    let webserver_stderr = webserver.stderr.take().unwrap();
1324
1325

    thread::spawn(move || {
1326
1327
        let stdout = BufReader::new(webserver_stdout);
        let stderr = BufReader::new(webserver_stderr);
1328
        for line in stdout.lines() {
1329
            println!("{}", line.unwrap());
1330
        }
1331
1332
        for line in stderr.lines() {
            println!("{}", line.unwrap());
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1333
        }
1334
1335
1336
    });
    Ok(webserver)
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1337

OlivierDehaene's avatar
OlivierDehaene committed
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
fn terminate(process_name: &str, mut process: Child, timeout: Duration) -> io::Result<ExitStatus> {
    tracing::info!("Terminating {process_name}");

    let terminate_time = Instant::now();
    signal::kill(Pid::from_raw(process.id() as i32), Signal::SIGTERM).unwrap();

    tracing::info!("Waiting for {process_name} to gracefully shutdown");
    while terminate_time.elapsed() < timeout {
        if let Some(status) = process.try_wait()? {
            tracing::info!("{process_name} terminated");
            return Ok(status);
        }
        sleep(Duration::from_millis(100));
    }
    tracing::info!("Killing {process_name}");

    process.kill()?;
    let exit_status = process.wait()?;

    tracing::info!("{process_name} killed");
    Ok(exit_status)
}

1361
1362
fn main() -> Result<(), LauncherError> {
    // Pattern match configuration
1363
    let args: Args = Args::parse();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1364

1365
    // Filter events with LOG_LEVEL
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
    let varname = "LOG_LEVEL";
    let env_filter = if let Ok(log_level) = std::env::var(varname) {
        // Override to avoid simple logs to be spammed with tokio level informations
        let log_level = match &log_level[..] {
            "warn" => "text_generation_launcher=warn,text_generation_router=warn",
            "info" => "text_generation_launcher=info,text_generation_router=info",
            "debug" => "text_generation_launcher=debug,text_generation_router=debug",
            log_level => log_level,
        };
        EnvFilter::builder()
            .with_default_directive(LevelFilter::INFO.into())
            .parse_lossy(log_level)
    } else {
        EnvFilter::new("info")
    };
    let max_log_level = env_filter.max_level_hint().unwrap_or(LevelFilter::INFO);
1382

1383
    if args.json_output {
1384
1385
1386
1387
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .json()
            .init();
1388
    } else {
1389
1390
1391
1392
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .compact()
            .init();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1393
1394
    }

1395
1396
1397
1398
1399
    if args.env {
        let env_runtime = env_runtime::Env::new();
        tracing::info!("{}", env_runtime);
    }

Nicolas Patry's avatar
Nicolas Patry committed
1400
    tracing::info!("{:#?}", args);
1401

1402
1403
1404
1405
1406
    let get_max_position_embeddings = || -> Result<usize, Box<dyn std::error::Error>> {
        let model_id = args.model_id.clone();
        let mut path = std::path::Path::new(&args.model_id).to_path_buf();
        let filename = if !path.exists() {
            // Assume it's a hub id
Nicolas Patry's avatar
Nicolas Patry committed
1407
1408
1409
1410
1411
1412
1413

            let api = if let Ok(token) = std::env::var("HF_TOKEN") {
                // env variable has precedence over on file token.
                ApiBuilder::new().with_token(Some(token)).build()?
            } else {
                Api::new()?
            };
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
            let repo = if let Some(ref revision) = args.revision {
                api.repo(Repo::with_revision(
                    model_id,
                    RepoType::Model,
                    revision.to_string(),
                ))
            } else {
                api.model(model_id)
            };
            repo.get("config.json")?
        } else {
            path.push("config.json");
            path
        };

        let content = std::fs::read_to_string(filename)?;
1430
        let config: RawConfig = serde_json::from_str(&content)?;
1431
1432
1433
1434
1435

        if config.model_type == Some("gemma2".to_string()) {
            tracing::info!("Forcing flash decoding because of softcap usage");
            std::env::set_var("FLASH_DECODING", "1");
        }
1436
        let config: Config = config.into();
1437
1438
1439
1440

        // Quantization usually means you're even more RAM constrained.
        let max_default = 4096;

1441
1442
1443
1444
1445
1446
1447
1448
        if let Some(max_position_embeddings) = config.max_position_embeddings {
            if max_position_embeddings > max_default {
                let max = max_position_embeddings;
                if args.max_input_tokens.is_none()
                    && args.max_total_tokens.is_none()
                    && args.max_batch_prefill_tokens.is_none()
                {
                    tracing::info!("Model supports up to {max} but tgi will now set its default to {max_default} instead. This is to save VRAM by refusing large prompts in order to allow more users on the same hardware. You can increase that size using `--max-batch-prefill-tokens={} --max-total-tokens={max} --max-input-tokens={}`.", max + 50, max - 1);
1449
                }
1450
1451
1452
                Ok(max_default)
            } else {
                Ok(max_position_embeddings)
1453
            }
1454
1455
1456
1457
1458
        } else {
            Err(Box::new(LauncherError::ArgumentValidation(
                "no max defined".to_string(),
            )))
        }
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
    };
    let max_position_embeddings: usize = get_max_position_embeddings().unwrap_or(4096);

    let max_input_tokens = {
        match (args.max_input_tokens, args.max_input_length) {
            (Some(max_input_tokens), Some(max_input_length)) => {
                return Err(LauncherError::ArgumentValidation(
                    format!("Both `max_input_tokens` ({max_input_tokens}) and `max_input_length` ({max_input_length}) are set. Please define only `max_input_tokens` as `max_input_length is deprecated for naming consistency.",
                )));
            }
            (Some(max_input_tokens), None) | (None, Some(max_input_tokens)) => max_input_tokens,
            (None, None) => {
                let value = max_position_embeddings - 1;
                tracing::info!("Default `max_input_tokens` to {value}");
                value
            }
        }
    };
    let max_total_tokens = {
        match args.max_total_tokens {
            Some(max_total_tokens) => max_total_tokens,
            None => {
                let value = max_position_embeddings;
                tracing::info!("Default `max_total_tokens` to {value}");
                value
            }
        }
    };
    let max_batch_prefill_tokens = {
        match args.max_batch_prefill_tokens {
            Some(max_batch_prefill_tokens) => max_batch_prefill_tokens,
            None => {
                let value: u32 = if let Some(max_batch_size) = args.max_batch_size {
                    max_batch_size * max_input_tokens
                } else {
                    // Adding some edge in order to account for potential block_size alignement
                    // issue.
                    max_input_tokens + 50
                } as u32;
                tracing::info!("Default `max_batch_prefill_tokens` to {value}");
                value
            }
        }
    };

1504
    // Validate args
1505
    if max_input_tokens >= max_total_tokens {
1506
        return Err(LauncherError::ArgumentValidation(
1507
            "`max_input_tokens must be < `max_total_tokens`".to_string(),
1508
1509
        ));
    }
1510
    if max_input_tokens as u32 > max_batch_prefill_tokens {
1511
        return Err(LauncherError::ArgumentValidation(format!(
1512
1513
            "`max_batch_prefill_tokens` must be >= `max_input_tokens`. Given: {} and {}",
            max_batch_prefill_tokens, max_input_tokens
1514
1515
        )));
    }
1516

1517
    let cuda_graphs = match (&args.cuda_graphs, &args.quantize) {
Nicolas Patry's avatar
Nicolas Patry committed
1518
        (Some(cuda_graphs), _) => cuda_graphs.iter().cloned().filter(|&c| c > 0).collect(),
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
        #[allow(deprecated)]
        (
            None,
            Some(
                Quantization::Bitsandbytes
                | Quantization::BitsandbytesNF4
                | Quantization::BitsandbytesFP4,
            ),
        ) => {
            tracing::info!("Bitsandbytes doesn't work with cuda graphs, deactivating them");
            vec![]
        }
        _ => {
            let cuda_graphs = vec![1, 2, 4, 8, 16, 32];
            tracing::info!("Using default cuda graphs {cuda_graphs:?}");
            cuda_graphs
        }
    };

1538
1539
1540
1541
1542
    if args.validation_workers == 0 {
        return Err(LauncherError::ArgumentValidation(
            "`validation_workers` must be > 0".to_string(),
        ));
    }
1543
1544
1545
1546
1547
1548
    if args.trust_remote_code {
        tracing::warn!(
            "`trust_remote_code` is set. Trusting that model `{}` do not contain malicious code.",
            args.model_id
        );
    }
1549
1550

    let num_shard = find_num_shards(args.sharded, args.num_shard)?;
1551
    if num_shard > 1 {
1552
1553
1554
1555
1556
        if matches!(args.quantize, Some(Quantization::Exl2)) {
            return Err(LauncherError::ArgumentValidation(
                "Sharding is currently not supported with `exl2` quantization".into(),
            ));
        }
1557
        tracing::info!("Sharding model on {num_shard} processes");
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1558
1559
    }

1560
    if let Some(ref max_batch_total_tokens) = args.max_batch_total_tokens {
1561
        if max_batch_prefill_tokens > *max_batch_total_tokens {
1562
1563
            return Err(LauncherError::ArgumentValidation(format!(
                "`max_batch_prefill_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
1564
                max_batch_prefill_tokens, max_batch_total_tokens
1565
1566
            )));
        }
1567
        if max_total_tokens as u32 > *max_batch_total_tokens {
1568
1569
            return Err(LauncherError::ArgumentValidation(format!(
                "`max_total_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
1570
                max_total_tokens, max_batch_total_tokens
1571
1572
1573
1574
            )));
        }
    }

1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
    if args.ngrok {
        if args.ngrok_authtoken.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-authtoken` must be set when using ngrok tunneling".to_string(),
            ));
        }

        if args.ngrok_edge.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-edge` must be set when using ngrok tunneling".to_string(),
            ));
        }
    }

1589
1590
1591
1592
1593
1594
1595
    // Signal handler
    let running = Arc::new(AtomicBool::new(true));
    let r = running.clone();
    ctrlc::set_handler(move || {
        r.store(false, Ordering::SeqCst);
    })
    .expect("Error setting Ctrl-C handler");
1596

1597
    // Download and convert model weights
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
    download_convert_model(
        &args.model_id,
        args.revision.as_deref(),
        args.trust_remote_code,
        args.huggingface_hub_cache.as_deref(),
        args.weights_cache_override.as_deref(),
        running.clone(),
    )?;

    // Download and convert lora adapters if any
    if let Some(lora_adapters) = &args.lora_adapters {
        for adapter in lora_adapters.split(',') {
1610
1611
1612
1613
            // skip download if a path is provided
            if adapter.contains('=') {
                continue;
            }
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
            download_convert_model(
                adapter,
                None,
                args.trust_remote_code,
                args.huggingface_hub_cache.as_deref(),
                args.weights_cache_override.as_deref(),
                running.clone(),
            )?;
        }
    }
1624

OlivierDehaene's avatar
OlivierDehaene committed
1625
1626
1627
1628
1629
    if !running.load(Ordering::SeqCst) {
        // Launcher was asked to stop
        return Ok(());
    }

1630
    // Shared shutdown bool
1631
    let shutdown = Arc::new(AtomicBool::new(false));
1632
1633
1634
    // Shared shutdown channel
    // When shutting down, the main thread will wait for all senders to be dropped
    let (shutdown_sender, shutdown_receiver) = mpsc::channel();
1635

1636
1637
    // Shared channel to track shard status
    let (status_sender, status_receiver) = mpsc::channel();
1638

1639
1640
1641
    spawn_shards(
        num_shard,
        &args,
1642
        cuda_graphs,
1643
        max_total_tokens,
1644
        max_input_tokens,
1645
        max_log_level,
1646
1647
1648
1649
1650
1651
1652
        shutdown.clone(),
        &shutdown_receiver,
        shutdown_sender,
        &status_receiver,
        status_sender,
        running.clone(),
    )?;
1653

1654
1655
1656
1657
1658
    // We might have received a termination signal
    if !running.load(Ordering::SeqCst) {
        shutdown_shards(shutdown, &shutdown_receiver);
        return Ok(());
    }
1659

1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
    let mut webserver = spawn_webserver(
        num_shard,
        args,
        max_input_tokens,
        max_total_tokens,
        max_batch_prefill_tokens,
        shutdown.clone(),
        &shutdown_receiver,
    )
    .map_err(|err| {
        shutdown_shards(shutdown.clone(), &shutdown_receiver);
        err
    })?;
1673
1674
1675
1676
1677

    // Default exit code
    let mut exit_code = Ok(());

    while running.load(Ordering::SeqCst) {
1678
        if let Ok(ShardStatus::Failed(rank)) = status_receiver.try_recv() {
OlivierDehaene's avatar
OlivierDehaene committed
1679
            tracing::error!("Shard {rank} crashed");
1680
1681
1682
1683
            exit_code = Err(LauncherError::ShardFailed);
            break;
        };

1684
        match webserver.try_wait().unwrap() {
1685
1686
1687
1688
1689
1690
1691
1692
1693
            Some(_) => {
                tracing::error!("Webserver Crashed");
                shutdown_shards(shutdown, &shutdown_receiver);
                return Err(LauncherError::WebserverFailed);
            }
            None => {
                sleep(Duration::from_millis(100));
            }
        };
1694
    }
1695
1696

    // Graceful termination
OlivierDehaene's avatar
OlivierDehaene committed
1697
    terminate("webserver", webserver, Duration::from_secs(90)).unwrap();
1698
1699
1700
    shutdown_shards(shutdown, &shutdown_receiver);

    exit_code
1701
}