main.rs 56.4 KB
Newer Older
1
use clap::{Parser, ValueEnum};
2
use hf_hub::{api::sync::Api, Repo, RepoType};
3
4
use nix::sys::signal::{self, Signal};
use nix::unistd::Pid;
5
use serde::Deserialize;
Nicolas Patry's avatar
Nicolas Patry committed
6
use std::env;
7
use std::ffi::OsString;
8
use std::io::{BufRead, BufReader, Lines};
9
use std::os::unix::process::{CommandExt, ExitStatusExt};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
10
use std::path::Path;
OlivierDehaene's avatar
OlivierDehaene committed
11
use std::process::{Child, Command, ExitStatus, Stdio};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
12
13
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::TryRecvError;
14
use std::sync::{mpsc, Arc};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
15
16
17
18
use std::thread;
use std::thread::sleep;
use std::time::{Duration, Instant};
use std::{fs, io};
19
use thiserror::Error;
20
use tracing_subscriber::{filter::LevelFilter, EnvFilter};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
21

22
23
mod env_runtime;

24
#[derive(Deserialize)]
25
struct RawConfig {
26
    max_position_embeddings: Option<usize>,
27
    n_positions: Option<usize>,
28
29
30
    max_seq_len: Option<usize>,
}

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#[derive(Deserialize)]
struct Config {
    max_position_embeddings: Option<usize>,
}

impl From<RawConfig> for Config {
    fn from(other: RawConfig) -> Self {
        let max_position_embeddings = other
            .max_position_embeddings
            .or(other.max_seq_len)
            .or(other.n_positions);
        Config {
            max_position_embeddings,
        }
    }
}

48
49
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Quantization {
50
    /// 4 bit quantization. Requires a specific AWQ quantized model:
51
    ///   <https://hf.co/models?search=awq>.
52
    /// Should replace GPTQ models wherever possible because of the better latency
53
54
55
    Awq,
    /// 8 bit quantization, doesn't require specific model.
    /// Should be a drop-in replacement to bitsandbytes with much better performance.
56
    /// Kernels are from <https://github.com/NetEase-FuXi/EETQ.git>
57
    Eetq,
58
59
60
61
    /// Variable bit quantization. Requires a specific EXL2 quantized model:
    /// <https://hf.co/models?search=exl2>. Requires exllama2 kernels and does
    /// not support tensor parallelism (num_shard > 1).
    Exl2,
62
    /// 4 bit quantization. Requires a specific GTPQ quantized model: <https://hf.co/models?search=gptq>.
63
    /// text-generation-inference will use exllama (faster) kernels wherever possible, and use
64
65
66
    /// triton kernel (wider support) when it's not.
    /// AWQ has faster kernels.
    Gptq,
67
68
    /// 4 bit quantization. Requires a specific Marlin quantized model: <https://hf.co/models?search=marlin>.
    Marlin,
69
70
71
72
73
74
    /// Bitsandbytes 8bit. Can be applied on any model, will cut the memory requirement in half,
    /// but it is known that the model will be much slower to run than the native f16.
    #[deprecated(
        since = "1.1.0",
        note = "Use `eetq` instead, which provides better latencies overall and is drop-in in most cases"
    )]
75
    Bitsandbytes,
76
77
    /// Bitsandbytes 4bit. Can be applied on any model, will cut the memory requirement by 4x,
    /// but it is known that the model will be much slower to run than the native f16.
Nicolas Patry's avatar
Nicolas Patry committed
78
    BitsandbytesNF4,
79
80
    /// Bitsandbytes 4bit. nf4 should be preferred in most cases but maybe this one has better
    /// perplexity performance for you model
Nicolas Patry's avatar
Nicolas Patry committed
81
    BitsandbytesFP4,
Nicolas Patry's avatar
Nicolas Patry committed
82
83
84
85
86
    /// [FP8](https://developer.nvidia.com/blog/nvidia-arm-and-intel-publish-fp8-specification-for-standardization-as-an-interchange-format-for-ai/) (e4m3) works on H100 and above
    /// This dtype has native ops should be the fastest if available.
    /// This is currently not the fastest because of local unpacking + padding to satisfy matrix
    /// multiplication limitations.
    Fp8,
87
88
89
90
91
92
}

impl std::fmt::Display for Quantization {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
93
94
            #[allow(deprecated)]
            // Use `eetq` instead, which provides better latencies overall and is drop-in in most cases
95
96
97
            Quantization::Bitsandbytes => {
                write!(f, "bitsandbytes")
            }
Nicolas Patry's avatar
Nicolas Patry committed
98
99
100
101
102
103
            Quantization::BitsandbytesNF4 => {
                write!(f, "bitsandbytes-nf4")
            }
            Quantization::BitsandbytesFP4 => {
                write!(f, "bitsandbytes-fp4")
            }
104
105
106
            Quantization::Exl2 => {
                write!(f, "exl2")
            }
107
108
109
            Quantization::Gptq => {
                write!(f, "gptq")
            }
110
111
112
            Quantization::Marlin => {
                write!(f, "marlin")
            }
113
114
115
            Quantization::Awq => {
                write!(f, "awq")
            }
116
117
118
            Quantization::Eetq => {
                write!(f, "eetq")
            }
Nicolas Patry's avatar
Nicolas Patry committed
119
120
121
            Quantization::Fp8 => {
                write!(f, "fp8")
            }
122
123
124
125
        }
    }
}

126
127
128
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Dtype {
    Float16,
129
    #[clap(name = "bfloat16")]
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
    BFloat16,
}

impl std::fmt::Display for Dtype {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            Dtype::Float16 => {
                write!(f, "float16")
            }
            Dtype::BFloat16 => {
                write!(f, "bfloat16")
            }
        }
    }
}

Nicolas Patry's avatar
Nicolas Patry committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#[derive(Clone, Copy, Debug, ValueEnum)]
enum RopeScaling {
    Linear,
    Dynamic,
}

impl std::fmt::Display for RopeScaling {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            RopeScaling::Linear => {
                write!(f, "linear")
            }
            RopeScaling::Dynamic => {
                write!(f, "dynamic")
            }
        }
    }
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
167
168
169
170
/// App Configuration
#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]
struct Args {
171
172
173
174
175
    /// The name of the model to load.
    /// Can be a MODEL_ID as listed on <https://hf.co/models> like
    /// `gpt2` or `OpenAssistant/oasst-sft-1-pythia-12b`.
    /// Or it can be a local directory containing the necessary files
    /// as saved by `save_pretrained(...)` methods of transformers
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
176
    #[clap(default_value = "bigscience/bloom-560m", long, env)]
177
    model_id: String,
178
179
180

    /// The actual revision of the model if you're referring to a model
    /// on the hub. You can use a specific commit id or a branch like `refs/pr/2`.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
181
    #[clap(long, env)]
182
    revision: Option<String>,
183

184
185
186
187
188
    /// The number of tokenizer workers used for payload validation and truncation inside the
    /// router.
    #[clap(default_value = "2", long, env)]
    validation_workers: usize,

189
    /// Whether to shard the model across multiple GPUs
190
191
    /// By default text-generation-inference will use all available GPUs to run
    /// the model. Setting it to `false` deactivates `num_shard`.
192
193
    #[clap(long, env)]
    sharded: Option<bool>,
194
195

    /// The number of shards to use if you don't want to use all GPUs on a given machine.
196
197
    /// You can use `CUDA_VISIBLE_DEVICES=0,1 text-generation-launcher... --num_shard 2`
    /// and `CUDA_VISIBLE_DEVICES=2,3 text-generation-launcher... --num_shard 2` to
198
    /// launch 2 copies with 2 shard each on a given machine with 4 GPUs for instance.
199
200
    #[clap(long, env)]
    num_shard: Option<usize>,
201

202
    /// Whether you want the model to be quantized.
203
204
    #[clap(long, env, value_enum)]
    quantize: Option<Quantization>,
205

Nicolas Patry's avatar
Nicolas Patry committed
206
207
208
209
210
211
212
    /// The number of input_ids to speculate on
    /// If using a medusa model, the heads will be picked up automatically
    /// Other wise, it will use n-gram speculation which is relatively free
    /// in terms of compute, but the speedup heavily depends on the task.
    #[clap(long, env)]
    speculate: Option<usize>,

213
214
215
216
    /// The dtype to be forced upon the model. This option cannot be used with `--quantize`.
    #[clap(long, env, value_enum)]
    dtype: Option<Dtype>,

217
218
219
220
221
222
    /// Whether you want to execute hub modelling code. Explicitly passing a `revision` is
    /// encouraged when loading a model with custom code to ensure no malicious code has been
    /// contributed in a newer revision.
    #[clap(long, env, value_enum)]
    trust_remote_code: bool,

223
224
225
    /// The maximum amount of concurrent requests for this particular deployment.
    /// Having a low limit will refuse clients requests instead of having them
    /// wait for too long and is usually good to handle backpressure correctly.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
226
227
    #[clap(default_value = "128", long, env)]
    max_concurrent_requests: usize,
228
229
230
231

    /// This is the maximum allowed value for clients to set `best_of`.
    /// Best of makes `n` generations at the same time, and return the best
    /// in terms of overall log probability over the entire generated sequence
232
233
    #[clap(default_value = "2", long, env)]
    max_best_of: usize,
234
235
236
237
238
239

    /// This is the maximum allowed value for clients to set `stop_sequences`.
    /// Stop sequences are used to allow the model to stop on more than just
    /// the EOS token, and enable more complex "prompting" where users can preprompt
    /// the model in a specific way and define their "own" stop token aligned with
    /// their prompt.
240
241
    #[clap(default_value = "4", long, env)]
    max_stop_sequences: usize,
242

Nicolas Patry's avatar
Nicolas Patry committed
243
    /// This is the maximum allowed value for clients to set `top_n_tokens`.
244
    /// `top_n_tokens` is used to return information about the the `n` most likely
Nicolas Patry's avatar
Nicolas Patry committed
245
246
247
248
249
250
    /// tokens at each generation step, instead of just the sampled token. This
    /// information can be used for downstream tasks like for classification or
    /// ranking.
    #[clap(default_value = "5", long, env)]
    max_top_n_tokens: u32,

251
252
253
254
    /// This is the maximum allowed input length (expressed in number of tokens)
    /// for users. The larger this value, the longer prompt users can send which
    /// can impact the overall memory required to handle the load.
    /// Please note that some models have a finite range of sequence they can handle.
255
256
257
258
259
260
261
    /// Default to min(max_position_embeddings - 1, 4095)
    #[clap(long, env)]
    max_input_tokens: Option<usize>,

    /// Legacy version of [`Args::max_input_tokens`].
    #[clap(long, env)]
    max_input_length: Option<usize>,
262
263
264
265
266
267
268
269
270

    /// This is the most important value to set as it defines the "memory budget"
    /// of running clients requests.
    /// Clients will send input sequences and ask to generate `max_new_tokens`
    /// on top. with a value of `1512` users can send either a prompt of
    /// `1000` and ask for `512` new tokens, or send a prompt of `1` and ask for
    /// `1511` max_new_tokens.
    /// The larger this value, the larger amount each request will be in your RAM
    /// and the less effective batching can be.
271
272
273
    /// Default to min(max_position_embeddings, 4096)
    #[clap(long, env)]
    max_total_tokens: Option<usize>,
274
275
276
277
278
279
280
281
282
283
284

    /// This represents the ratio of waiting queries vs running queries where
    /// you want to start considering pausing the running queries to include the waiting
    /// ones into the same batch.
    /// `waiting_served_ratio=1.2` Means when 12 queries are waiting and there's
    /// only 10 queries left in the current batch we check if we can fit those 12
    /// waiting queries into the batching strategy, and if yes, then batching happens
    /// delaying the 10 running queries by a `prefill` run.
    ///
    /// This setting is only applied if there is room in the batch
    /// as defined by `max_batch_total_tokens`.
285
    #[clap(default_value = "0.3", long, env)]
286
    waiting_served_ratio: f32,
287

288
289
290
    /// Limits the number of tokens for the prefill operation.
    /// Since this operation take the most memory and is compute bound, it is interesting
    /// to limit the number of requests that can be sent.
291
292
293
    /// Default to `max_input_tokens + 50` to give a bit of room.
    #[clap(long, env)]
    max_batch_prefill_tokens: Option<u32>,
294

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
    /// **IMPORTANT** This is one critical control to allow maximum usage
    /// of the available hardware.
    ///
    /// This represents the total amount of potential tokens within a batch.
    /// When using padding (not recommended) this would be equivalent of
    /// `batch_size` * `max_total_tokens`.
    ///
    /// However in the non-padded (flash attention) version this can be much finer.
    ///
    /// For `max_batch_total_tokens=1000`, you could fit `10` queries of `total_tokens=100`
    /// or a single query of `1000` tokens.
    ///
    /// Overall this number should be the largest possible amount that fits the
    /// remaining memory (after the model is loaded). Since the actual memory overhead
    /// depends on other parameters like if you're using quantization, flash attention
    /// or the model implementation, text-generation-inference cannot infer this number
    /// automatically.
312
313
    #[clap(long, env)]
    max_batch_total_tokens: Option<u32>,
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331

    /// This setting defines how many tokens can be passed before forcing the waiting
    /// queries to be put on the batch (if the size of the batch allows for it).
    /// New queries require 1 `prefill` forward, which is different from `decode`
    /// and therefore you need to pause the running batch in order to run `prefill`
    /// to create the correct values for the waiting queries to be able to join the batch.
    ///
    /// With a value too small, queries will always "steal" the compute to run `prefill`
    /// and running queries will be delayed by a lot.
    ///
    /// With a value too big, waiting queries could wait for a very long time
    /// before being allowed a slot in the running batch. If your server is busy
    /// that means that requests that could run in ~2s on an empty server could
    /// end up running in ~20s because the query had to wait for 18s.
    ///
    /// This number is expressed in number of tokens to make it a bit more
    /// "model" agnostic, but what should really matter is the overall latency
    /// for end users.
332
333
    #[clap(default_value = "20", long, env)]
    max_waiting_tokens: usize,
334

335
336
337
338
339
    /// Enforce a maximum number of requests per batch
    /// Specific flag for hardware targets that do not support unpadded inference
    #[clap(long, env)]
    max_batch_size: Option<usize>,

340
341
    /// Specify the batch sizes to compute cuda graphs for.
    /// Use "0" to disable.
342
343
344
    /// Default = "1,2,4,8,16,32"
    #[clap(long, env, value_delimiter = ',')]
    cuda_graphs: Option<Vec<usize>>,
345

346
347
348
349
    /// The IP address to listen on
    #[clap(default_value = "0.0.0.0", long, env)]
    hostname: String,

350
    /// The port to listen on.
351
    #[clap(default_value = "3000", long, short, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
352
    port: u16,
353
354
355

    /// The name of the socket for gRPC communication between the webserver
    /// and the shards.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
356
357
    #[clap(default_value = "/tmp/text-generation-server", long, env)]
    shard_uds_path: String,
358
359

    /// The address the master shard will listen on. (setting used by torch distributed)
360
    #[clap(default_value = "localhost", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
361
    master_addr: String,
362
363

    /// The address the master port will listen on. (setting used by torch distributed)
364
    #[clap(default_value = "29500", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
365
    master_port: usize,
366
367
368

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
369
    #[clap(long, env)]
370
    huggingface_hub_cache: Option<String>,
371
372
373

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
374
375
    #[clap(long, env)]
    weights_cache_override: Option<String>,
376
377
378
379
380

    /// For some models (like bloom), text-generation-inference implemented custom
    /// cuda kernels to speed up inference. Those kernels were only tested on A100.
    /// Use this flag to disable them if you're running on different hardware and
    /// encounter issues.
381
    #[clap(long, env)]
382
    disable_custom_kernels: bool,
383

384
385
386
387
388
    /// Limit the CUDA available memory.
    /// The allowed value equals the total visible memory multiplied by cuda-memory-fraction.
    #[clap(default_value = "1.0", long, env)]
    cuda_memory_fraction: f32,

Nicolas Patry's avatar
Nicolas Patry committed
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
    /// Rope scaling will only be used for RoPE models
    /// and allow rescaling the position rotary to accomodate for
    /// larger prompts.
    ///
    /// Goes together with `rope_factor`.
    ///
    /// `--rope-factor 2.0` gives linear scaling with a factor of 2.0
    /// `--rope-scaling dynamic` gives dynamic scaling with a factor of 1.0
    /// `--rope-scaling linear` gives linear scaling with a factor of 1.0 (Nothing will be changed
    /// basically)
    ///
    /// `--rope-scaling linear --rope-factor` fully describes the scaling you want
    #[clap(long, env)]
    rope_scaling: Option<RopeScaling>,

    /// Rope scaling will only be used for RoPE models
    /// See `rope_scaling`
    #[clap(long, env)]
    rope_factor: Option<f32>,

409
    /// Outputs the logs in JSON format (useful for telemetry)
410
    #[clap(long, env)]
411
    json_output: bool,
412

413
414
    #[clap(long, env)]
    otlp_endpoint: Option<String>,
415

416
417
418
    #[clap(default_value = "text-generation-inference.router", long, env)]
    otlp_service_name: String,

419
420
    #[clap(long, env)]
    cors_allow_origin: Vec<String>,
421
422
423
424
    #[clap(long, env)]
    watermark_gamma: Option<f32>,
    #[clap(long, env)]
    watermark_delta: Option<f32>,
425

426
427
428
429
430
431
432
433
    /// Enable ngrok tunneling
    #[clap(long, env)]
    ngrok: bool,

    /// ngrok authentication token
    #[clap(long, env)]
    ngrok_authtoken: Option<String>,

434
    /// ngrok edge
435
    #[clap(long, env)]
436
    ngrok_edge: Option<String>,
437

438
439
440
441
442
    /// The path to the tokenizer config file. This path is used to load the tokenizer configuration which may
    /// include a `chat_template`. If not provided, the default config will be used from the model hub.
    #[clap(long, env)]
    tokenizer_config_path: Option<String>,

drbh's avatar
drbh committed
443
444
445
446
447
    /// Disable outlines grammar constrained generation.
    /// This is a feature that allows you to generate text that follows a specific grammar.
    #[clap(long, env)]
    disable_grammar_support: bool,

448
449
450
    /// Display a lot of information about your runtime environment
    #[clap(long, short, action)]
    env: bool,
451
452
453
454

    /// Control the maximum number of inputs that a client can send in a single request
    #[clap(default_value = "4", long, env)]
    max_client_batch_size: usize,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
455
456
}

457
458
459
#[derive(Debug)]
enum ShardStatus {
    Ready,
460
    Failed(usize),
461
}
462

463
464
465
466
#[allow(clippy::too_many_arguments)]
fn shard_manager(
    model_id: String,
    revision: Option<String>,
467
    quantize: Option<Quantization>,
Nicolas Patry's avatar
Nicolas Patry committed
468
    speculate: Option<usize>,
469
    dtype: Option<Dtype>,
470
    trust_remote_code: bool,
471
472
473
474
475
476
477
478
479
480
    uds_path: String,
    rank: usize,
    world_size: usize,
    master_addr: String,
    master_port: usize,
    huggingface_hub_cache: Option<String>,
    weights_cache_override: Option<String>,
    disable_custom_kernels: bool,
    watermark_gamma: Option<f32>,
    watermark_delta: Option<f32>,
481
    cuda_graphs: Vec<usize>,
482
    cuda_memory_fraction: f32,
Nicolas Patry's avatar
Nicolas Patry committed
483
484
    rope_scaling: Option<RopeScaling>,
    rope_factor: Option<f32>,
485
486
    max_total_tokens: usize,
    max_batch_size: Option<usize>,
487
    max_input_tokens: usize,
488
    otlp_endpoint: Option<String>,
489
    otlp_service_name: String,
490
    log_level: LevelFilter,
491
    status_sender: mpsc::Sender<ShardStatus>,
492
    shutdown: Arc<AtomicBool>,
493
494
    _shutdown_sender: mpsc::Sender<()>,
) {
495
496
497
    // Enter shard-manager tracing span
    let _span = tracing::span!(tracing::Level::INFO, "shard-manager", rank = rank).entered();

498
499
500
501
    // Get UDS path
    let uds_string = format!("{uds_path}-{rank}");
    let uds = Path::new(&uds_string);
    // Clean previous runs
502
503
504
    if uds.exists() {
        fs::remove_file(uds).unwrap();
    }
505
506

    // Process args
OlivierDehaene's avatar
OlivierDehaene committed
507
    let mut shard_args = vec![
508
509
510
511
512
        "serve".to_string(),
        model_id,
        "--uds-path".to_string(),
        uds_path,
        "--logger-level".to_string(),
513
        log_level.to_string().to_uppercase(),
514
515
516
        "--json-output".to_string(),
    ];

517
518
    // Activate trust remote code
    if trust_remote_code {
OlivierDehaene's avatar
OlivierDehaene committed
519
        shard_args.push("--trust-remote-code".to_string());
520
521
    }

522
523
    // Activate tensor parallelism
    if world_size > 1 {
OlivierDehaene's avatar
OlivierDehaene committed
524
        shard_args.push("--sharded".to_string());
525
526
    }

527
    if let Some(quantize) = quantize {
OlivierDehaene's avatar
OlivierDehaene committed
528
529
        shard_args.push("--quantize".to_string());
        shard_args.push(quantize.to_string())
530
    }
531

Nicolas Patry's avatar
Nicolas Patry committed
532
533
534
535
536
    if let Some(speculate) = speculate {
        shard_args.push("--speculate".to_string());
        shard_args.push(speculate.to_string())
    }

537
    if let Some(dtype) = dtype {
OlivierDehaene's avatar
OlivierDehaene committed
538
539
        shard_args.push("--dtype".to_string());
        shard_args.push(dtype.to_string())
540
541
    }

542
543
    // Model optional revision
    if let Some(revision) = revision {
OlivierDehaene's avatar
OlivierDehaene committed
544
545
        shard_args.push("--revision".to_string());
        shard_args.push(revision)
546
    }
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
547

Nicolas Patry's avatar
Nicolas Patry committed
548
549
550
551
552
553
    let rope = match (rope_scaling, rope_factor) {
        (None, None) => None,
        (Some(scaling), None) => Some((scaling, 1.0)),
        (Some(scaling), Some(factor)) => Some((scaling, factor)),
        (None, Some(factor)) => Some((RopeScaling::Linear, factor)),
    };
554

555
    // OpenTelemetry Endpoint
556
    if let Some(otlp_endpoint) = otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
557
558
        shard_args.push("--otlp-endpoint".to_string());
        shard_args.push(otlp_endpoint);
559
560
    }

561
562
563
564
    // OpenTelemetry Service Name
    shard_args.push("--otlp-service-name".to_string());
    shard_args.push(otlp_service_name);

565
566
567
568
    // In case we use sliding window, we may ignore the sliding in flash for some backends depending on the parameter.
    shard_args.push("--max-input-tokens".to_string());
    shard_args.push(max_input_tokens.to_string());

569
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
570
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
571

572
573
574
    // Remove LOG_LEVEL if present
    envs.retain(|(name, _)| name != "LOG_LEVEL");

575
    // Torch Distributed Env vars
OlivierDehaene's avatar
OlivierDehaene committed
576
577
578
579
    envs.push(("RANK".into(), rank.to_string().into()));
    envs.push(("WORLD_SIZE".into(), world_size.to_string().into()));
    envs.push(("MASTER_ADDR".into(), master_addr.into()));
    envs.push(("MASTER_PORT".into(), master_port.to_string().into()));
580
    envs.push(("TORCH_NCCL_AVOID_RECORD_STREAMS".into(), "1".into()));
581

582
583
584
585
586
587
    // CUDA memory fraction
    envs.push((
        "CUDA_MEMORY_FRACTION".into(),
        cuda_memory_fraction.to_string().into(),
    ));

588
    // Safetensors load fast
OlivierDehaene's avatar
OlivierDehaene committed
589
    envs.push(("SAFETENSORS_FAST_GPU".into(), "1".into()));
590

591
592
593
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

594
595
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
596
    envs.push((
597
598
599
600
601
602
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));

    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
603
        envs.push(("HF_TOKEN".into(), api_token.into()))
604
605
    };

Nicolas Patry's avatar
Nicolas Patry committed
606
607
608
609
610
611
612
613
614
    // Detect rope scaling
    // Sending as env instead of CLI args to not bloat everything
    // those only can be used by RoPE models, so passing information around
    // for all models will complexify code unnecessarily
    if let Some((scaling, factor)) = rope {
        envs.push(("ROPE_SCALING".into(), scaling.to_string().into()));
        envs.push(("ROPE_FACTOR".into(), factor.to_string().into()));
    }

615
616
617
618
619
620
621
622
    envs.push((
        "MAX_TOTAL_TOKENS".into(),
        max_total_tokens.to_string().into(),
    ));
    if let Some(max_batch_size) = max_batch_size {
        envs.push(("MAX_BATCH_SIZE".into(), max_batch_size.to_string().into()));
    }

623
624
625
    // If huggingface_hub_cache is some, pass it to the shard
    // Useful when running inside a docker container
    if let Some(huggingface_hub_cache) = huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
626
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
627
628
629
630
631
    };

    // If weights_cache_override is some, pass it to the shard
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
632
        envs.push((
633
634
635
636
637
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

638
    // Enable experimental support for cuda graphs
639
640
641
642
643
644
645
646
647
648
    if !cuda_graphs.is_empty() {
        envs.push((
            "CUDA_GRAPHS".into(),
            cuda_graphs
                .into_iter()
                .map(|c| c.to_string())
                .collect::<Vec<_>>()
                .join(",")
                .into(),
        ));
649
650
    }

651
652
    // If disable_custom_kernels is true, pass it to the shard as an env var
    if disable_custom_kernels {
OlivierDehaene's avatar
OlivierDehaene committed
653
        envs.push(("DISABLE_CUSTOM_KERNELS".into(), "True".into()))
654
655
656
657
    }

    // Watermark Gamma
    if let Some(watermark_gamma) = watermark_gamma {
OlivierDehaene's avatar
OlivierDehaene committed
658
        envs.push(("WATERMARK_GAMMA".into(), watermark_gamma.to_string().into()))
659
660
661
662
    }

    // Watermark Delta
    if let Some(watermark_delta) = watermark_delta {
OlivierDehaene's avatar
OlivierDehaene committed
663
        envs.push(("WATERMARK_DELTA".into(), watermark_delta.to_string().into()))
664
665
666
    }

    // Start process
667
    tracing::info!("Starting shard");
668
    let mut p = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
669
        .args(shard_args)
670
        .env_clear()
OlivierDehaene's avatar
OlivierDehaene committed
671
        .envs(envs)
672
673
674
675
676
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
677
678
        Ok(p) => p,
        Err(err) => {
679
680
681
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
682
683
            }
            {
684
                tracing::error!("{}", err);
685
            }
686

687
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
688
689
690
691
692
            return;
        }
    };

    // Redirect STDOUT to the console
693
    let shard_stdout_reader = BufReader::new(p.stdout.take().unwrap());
694
    let shard_stderr_reader = BufReader::new(p.stderr.take().unwrap());
695

696
    //stdout tracing thread
697
    thread::spawn(move || {
698
        log_lines(shard_stdout_reader.lines());
699
    });
700
701
702
    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
OlivierDehaene's avatar
OlivierDehaene committed
703
        for line in shard_stderr_reader.lines().map_while(Result::ok) {
704
705
706
            err_sender.send(line).unwrap_or(());
        }
    });
707
708
709
710
711
712

    let mut ready = false;
    let start_time = Instant::now();
    let mut wait_time = Instant::now();
    loop {
        // Process exited
713
        if let Some(exit_status) = p.try_wait().unwrap() {
714
715
716
717
            let mut err = String::new();
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }
718

719
            tracing::error!("Shard complete standard error output:\n{err}");
720

721
            if let Some(signal) = exit_status.signal() {
722
723
724
                tracing::error!("Shard process was signaled to shutdown with signal {signal}");
            }

725
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
726
727
728
729
            return;
        }

        // We received a shutdown signal
730
        if shutdown.load(Ordering::SeqCst) {
731
            terminate("shard", p, Duration::from_secs(90)).unwrap();
732
733
734
735
736
            return;
        }

        // Shard is ready
        if uds.exists() && !ready {
737
            tracing::info!("Shard ready in {:?}", start_time.elapsed());
738
739
740
            status_sender.send(ShardStatus::Ready).unwrap();
            ready = true;
        } else if !ready && wait_time.elapsed() > Duration::from_secs(10) {
741
            tracing::info!("Waiting for shard to be ready...");
742
743
744
745
746
747
            wait_time = Instant::now();
        }
        sleep(Duration::from_millis(100));
    }
}

748
fn shutdown_shards(shutdown: Arc<AtomicBool>, shutdown_receiver: &mpsc::Receiver<()>) {
749
750
751
    tracing::info!("Shutting down shards");
    // Update shutdown value to true
    // This will be picked up by the shard manager
752
    shutdown.store(true, Ordering::SeqCst);
753
754
755
756
757
758
759

    // Wait for shards to shutdown
    // This will block till all shutdown_sender are dropped
    let _ = shutdown_receiver.recv();
}

fn num_cuda_devices() -> Option<usize> {
760
761
    let devices = match env::var("CUDA_VISIBLE_DEVICES") {
        Ok(devices) => devices,
762
763
764
        Err(_) => match env::var("NVIDIA_VISIBLE_DEVICES") {
            Ok(devices) => devices,
            Err(_) => env::var("ZE_AFFINITY_MASK").ok()?,
Nicolas Patry's avatar
Nicolas Patry committed
765
        },
766
    };
767
768
    let n_devices = devices.split(',').count();
    Some(n_devices)
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
}

#[derive(Deserialize)]
#[serde(rename_all = "UPPERCASE")]
enum PythonLogLevelEnum {
    Trace,
    Debug,
    Info,
    Success,
    Warning,
    Error,
    Critical,
}

#[derive(Deserialize)]
struct PythonLogLevel {
    name: PythonLogLevelEnum,
}

#[derive(Deserialize)]
struct PythonLogRecord {
    level: PythonLogLevel,
}

#[derive(Deserialize)]
struct PythonLogMessage {
    text: String,
    record: PythonLogRecord,
}

impl PythonLogMessage {
    fn trace(&self) {
        match self.record.level.name {
802
803
804
805
806
807
808
            PythonLogLevelEnum::Trace => tracing::trace!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Debug => tracing::debug!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Info => tracing::info!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Success => tracing::info!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Warning => tracing::warn!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Error => tracing::error!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Critical => tracing::error!("{}", self.text.trim_end()),
809
810
811
812
        }
    }
}

813
814
815
816
817
818
819
820
821
impl TryFrom<&String> for PythonLogMessage {
    type Error = serde_json::Error;

    fn try_from(value: &String) -> Result<Self, Self::Error> {
        serde_json::from_str::<Self>(value)
    }
}

fn log_lines<S: Sized + BufRead>(lines: Lines<S>) {
OlivierDehaene's avatar
OlivierDehaene committed
822
    for line in lines.map_while(Result::ok) {
823
824
825
826
827
828
829
        match PythonLogMessage::try_from(&line) {
            Ok(log) => log.trace(),
            Err(_) => tracing::debug!("{line}"),
        }
    }
}

830
831
832
833
fn find_num_shards(
    sharded: Option<bool>,
    num_shard: Option<usize>,
) -> Result<usize, LauncherError> {
834
835
836
837
    // get the number of shards given `sharded` and `num_shard`
    let num_shard = match (sharded, num_shard) {
        (Some(true), None) => {
            // try to default to the number of available GPUs
838
            tracing::info!("Parsing num_shard from CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES/ZE_AFFINITY_MASK");
839
            let n_devices = num_cuda_devices()
840
                .expect("--num-shard and CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES/ZE_AFFINITY_MASK are not set");
841
            if n_devices <= 1 {
842
843
844
                return Err(LauncherError::NotEnoughCUDADevices(format!(
                    "`sharded` is true but only found {n_devices} CUDA devices"
                )));
845
            }
846
            n_devices
847
        }
848
849
850
        (Some(true), Some(num_shard)) => {
            // we can't have only one shard while sharded
            if num_shard <= 1 {
851
852
853
                return Err(LauncherError::ArgumentValidation(
                    "`sharded` is true but `num_shard` <= 1".to_string(),
                ));
854
855
            }
            num_shard
856
        }
857
858
859
860
        (Some(false), Some(num_shard)) => num_shard,
        (Some(false), None) => 1,
        (None, None) => num_cuda_devices().unwrap_or(1),
        (None, Some(num_shard)) => num_shard,
861
    };
862
    if num_shard < 1 {
863
864
865
        return Err(LauncherError::ArgumentValidation(
            "`num_shard` cannot be < 1".to_string(),
        ));
866
    }
867
    Ok(num_shard)
868
}
869

870
#[derive(Debug, Error)]
871
enum LauncherError {
872
    #[error("Invalid argument: {0}")]
873
    ArgumentValidation(String),
874
    #[error("not enough cuda devices: {0}")]
875
    NotEnoughCUDADevices(String),
876
    #[error("Download error")]
877
    DownloadError,
878
    #[error("Shard cannot start")]
879
    ShardCannotStart,
880
    #[error("Shard disconnected")]
881
    ShardDisconnected,
882
    #[error("Shard failed")]
883
    ShardFailed,
884
    #[error("Webserver failed")]
885
    WebserverFailed,
886
    #[error("Webserver cannot start")]
887
888
    WebserverCannotStart,
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
889

890
fn download_convert_model(args: &Args, running: Arc<AtomicBool>) -> Result<(), LauncherError> {
891
892
893
    // Enter download tracing span
    let _span = tracing::span!(tracing::Level::INFO, "download").entered();

OlivierDehaene's avatar
OlivierDehaene committed
894
    let mut download_args = vec![
895
896
897
898
899
900
901
902
        "download-weights".to_string(),
        args.model_id.to_string(),
        "--extension".to_string(),
        ".safetensors".to_string(),
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];
903

904
905
    // Model optional revision
    if let Some(revision) = &args.revision {
OlivierDehaene's avatar
OlivierDehaene committed
906
907
        download_args.push("--revision".to_string());
        download_args.push(revision.to_string())
908
    }
909

910
911
912
913
914
    // Trust remote code for automatic peft fusion
    if args.trust_remote_code {
        download_args.push("--trust-remote-code".to_string());
    }

915
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
916
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
917

918
919
920
    // Remove LOG_LEVEL if present
    envs.retain(|(name, _)| name != "LOG_LEVEL");

921
922
923
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

924
    // If huggingface_hub_cache is set, pass it to the download process
925
926
    // Useful when running inside a docker container
    if let Some(ref huggingface_hub_cache) = args.huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
927
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
928
    };
929

930
931
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
932
    envs.push((
933
934
935
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));
936

937
938
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
939
        envs.push(("HF_TOKEN".into(), api_token.into()))
940
    };
941

942
943
944
    // If args.weights_cache_override is some, pass it to the download process
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = &args.weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
945
        envs.push((
946
947
948
949
950
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

951
952
    // Start process
    tracing::info!("Starting download process.");
953
    let mut download_process = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
954
        .args(download_args)
955
        .env_clear()
OlivierDehaene's avatar
OlivierDehaene committed
956
        .envs(envs)
957
958
959
960
961
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
962
963
        Ok(p) => p,
        Err(err) => {
964
965
966
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
967
968
            } else {
                tracing::error!("{}", err);
969
            }
970

971
972
973
            return Err(LauncherError::DownloadError);
        }
    };
974

975
    let download_stdout = BufReader::new(download_process.stdout.take().unwrap());
976

977
    thread::spawn(move || {
978
979
980
981
982
983
984
985
        log_lines(download_stdout.lines());
    });

    let download_stderr = BufReader::new(download_process.stderr.take().unwrap());

    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
OlivierDehaene's avatar
OlivierDehaene committed
986
        for line in download_stderr.lines().map_while(Result::ok) {
987
988
            err_sender.send(line).unwrap_or(());
        }
989
    });
990

991
    loop {
992
993
994
995
        if let Some(status) = download_process.try_wait().unwrap() {
            if status.success() {
                tracing::info!("Successfully downloaded weights.");
                break;
996
            }
997
998

            let mut err = String::new();
999
1000
1001
1002
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }

1003
1004
1005
1006
1007
1008
1009
1010
1011
            if let Some(signal) = status.signal() {
                tracing::error!(
                    "Download process was signaled to shutdown with signal {signal}: {err}"
                );
            } else {
                tracing::error!("Download encountered an error: {err}");
            }

            return Err(LauncherError::DownloadError);
1012
        }
1013
        if !running.load(Ordering::SeqCst) {
OlivierDehaene's avatar
OlivierDehaene committed
1014
            terminate("download", download_process, Duration::from_secs(10)).unwrap();
1015
1016
1017
            return Ok(());
        }
        sleep(Duration::from_millis(100));
1018
    }
1019
1020
    Ok(())
}
1021

1022
#[allow(clippy::too_many_arguments)]
1023
1024
1025
fn spawn_shards(
    num_shard: usize,
    args: &Args,
1026
    cuda_graphs: Vec<usize>,
1027
    max_total_tokens: usize,
1028
    max_input_tokens: usize,
1029
    max_log_level: LevelFilter,
1030
    shutdown: Arc<AtomicBool>,
1031
1032
1033
1034
1035
1036
    shutdown_receiver: &mpsc::Receiver<()>,
    shutdown_sender: mpsc::Sender<()>,
    status_receiver: &mpsc::Receiver<ShardStatus>,
    status_sender: mpsc::Sender<ShardStatus>,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1037
1038
    // Start shard processes
    for rank in 0..num_shard {
1039
1040
1041
1042
1043
1044
        let model_id = args.model_id.clone();
        let revision = args.revision.clone();
        let uds_path = args.shard_uds_path.clone();
        let master_addr = args.master_addr.clone();
        let huggingface_hub_cache = args.huggingface_hub_cache.clone();
        let weights_cache_override = args.weights_cache_override.clone();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1045
1046
1047
        let status_sender = status_sender.clone();
        let shutdown = shutdown.clone();
        let shutdown_sender = shutdown_sender.clone();
1048
        let otlp_endpoint = args.otlp_endpoint.clone();
1049
        let otlp_service_name = args.otlp_service_name.clone();
1050
        let quantize = args.quantize;
Nicolas Patry's avatar
Nicolas Patry committed
1051
        let speculate = args.speculate;
1052
        let dtype = args.dtype;
1053
        let trust_remote_code = args.trust_remote_code;
1054
1055
1056
1057
        let master_port = args.master_port;
        let disable_custom_kernels = args.disable_custom_kernels;
        let watermark_gamma = args.watermark_gamma;
        let watermark_delta = args.watermark_delta;
1058
        let cuda_graphs_clone = cuda_graphs.clone();
1059
        let cuda_memory_fraction = args.cuda_memory_fraction;
Nicolas Patry's avatar
Nicolas Patry committed
1060
1061
        let rope_scaling = args.rope_scaling;
        let rope_factor = args.rope_factor;
1062
        let max_batch_size = args.max_batch_size;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1063
1064
        thread::spawn(move || {
            shard_manager(
1065
                model_id,
1066
                revision,
1067
                quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1068
                speculate,
1069
                dtype,
1070
                trust_remote_code,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1071
1072
1073
1074
1075
                uds_path,
                rank,
                num_shard,
                master_addr,
                master_port,
1076
1077
                huggingface_hub_cache,
                weights_cache_override,
1078
                disable_custom_kernels,
1079
1080
                watermark_gamma,
                watermark_delta,
1081
                cuda_graphs_clone,
1082
                cuda_memory_fraction,
Nicolas Patry's avatar
Nicolas Patry committed
1083
1084
                rope_scaling,
                rope_factor,
1085
1086
                max_total_tokens,
                max_batch_size,
1087
                max_input_tokens,
1088
                otlp_endpoint,
1089
                otlp_service_name,
1090
                max_log_level,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
                status_sender,
                shutdown,
                shutdown_sender,
            )
        });
    }
    drop(shutdown_sender);

    // Wait for shard to start
    let mut shard_ready = 0;
    while running.load(Ordering::SeqCst) {
        match status_receiver.try_recv() {
            Ok(ShardStatus::Ready) => {
                shard_ready += 1;
                if shard_ready == num_shard {
                    break;
                }
            }
            Err(TryRecvError::Empty) => {
                sleep(Duration::from_millis(100));
            }
1112
            Ok(ShardStatus::Failed(rank)) => {
1113
                tracing::error!("Shard {rank} failed to start");
1114
                shutdown_shards(shutdown, shutdown_receiver);
1115
                return Err(LauncherError::ShardCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1116
1117
1118
            }
            Err(TryRecvError::Disconnected) => {
                tracing::error!("Shard status channel disconnected");
1119
                shutdown_shards(shutdown, shutdown_receiver);
1120
                return Err(LauncherError::ShardDisconnected);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1121
1122
1123
            }
        }
    }
1124
1125
    Ok(())
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1126

1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
fn compute_type(num_shard: usize) -> Option<String> {
    let output = Command::new("nvidia-smi")
        .args(["--query-gpu=gpu_name", "--format=csv"])
        .output()
        .ok()?;
    let output = String::from_utf8(output.stdout).ok()?;
    let fullname = output.split('\n').nth(1)?;
    let cardname = fullname.replace(' ', "-").to_lowercase();
    let compute_type = format!("{num_shard}-{cardname}");
    Some(compute_type)
}

1139
fn spawn_webserver(
1140
    num_shard: usize,
1141
    args: Args,
1142
1143
1144
    max_input_tokens: usize,
    max_total_tokens: usize,
    max_batch_prefill_tokens: u32,
1145
    shutdown: Arc<AtomicBool>,
1146
    shutdown_receiver: &mpsc::Receiver<()>,
1147
) -> Result<Child, LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1148
1149
1150
    // All shard started
    // Start webserver
    tracing::info!("Starting Webserver");
OlivierDehaene's avatar
OlivierDehaene committed
1151
    let mut router_args = vec![
1152
1153
        "--max-client-batch-size".to_string(),
        args.max_client_batch_size.to_string(),
1154
        "--max-concurrent-requests".to_string(),
1155
        args.max_concurrent_requests.to_string(),
1156
        "--max-best-of".to_string(),
1157
        args.max_best_of.to_string(),
1158
        "--max-stop-sequences".to_string(),
1159
        args.max_stop_sequences.to_string(),
Nicolas Patry's avatar
Nicolas Patry committed
1160
1161
        "--max-top-n-tokens".to_string(),
        args.max_top_n_tokens.to_string(),
1162
1163
        "--max-input-tokens".to_string(),
        max_input_tokens.to_string(),
1164
        "--max-total-tokens".to_string(),
1165
        max_total_tokens.to_string(),
1166
        "--max-batch-prefill-tokens".to_string(),
1167
        max_batch_prefill_tokens.to_string(),
1168
        "--waiting-served-ratio".to_string(),
1169
        args.waiting_served_ratio.to_string(),
1170
        "--max-waiting-tokens".to_string(),
1171
        args.max_waiting_tokens.to_string(),
1172
1173
        "--validation-workers".to_string(),
        args.validation_workers.to_string(),
1174
1175
        "--hostname".to_string(),
        args.hostname.to_string(),
1176
        "--port".to_string(),
1177
        args.port.to_string(),
1178
        "--master-shard-uds-path".to_string(),
1179
        format!("{}-0", args.shard_uds_path),
1180
        "--tokenizer-name".to_string(),
1181
        args.model_id,
1182
1183
    ];

drbh's avatar
drbh committed
1184
1185
1186
1187
1188
    // Grammar support
    if args.disable_grammar_support {
        router_args.push("--disable-grammar-support".to_string());
    }

1189
1190
1191
1192
1193
1194
    // Tokenizer config path
    if let Some(ref tokenizer_config_path) = args.tokenizer_config_path {
        router_args.push("--tokenizer-config-path".to_string());
        router_args.push(tokenizer_config_path.to_string());
    }

1195
1196
1197
1198
1199
1200
    // Model optional max batch total tokens
    if let Some(max_batch_total_tokens) = args.max_batch_total_tokens {
        router_args.push("--max-batch-total-tokens".to_string());
        router_args.push(max_batch_total_tokens.to_string());
    }

1201
1202
1203
1204
1205
1206
    // Router optional max batch size
    if let Some(max_batch_size) = args.max_batch_size {
        router_args.push("--max-batch-size".to_string());
        router_args.push(max_batch_size.to_string());
    }

1207
1208
    // Model optional revision
    if let Some(ref revision) = args.revision {
OlivierDehaene's avatar
OlivierDehaene committed
1209
1210
        router_args.push("--revision".to_string());
        router_args.push(revision.to_string())
1211
1212
    }

1213
    if args.json_output {
OlivierDehaene's avatar
OlivierDehaene committed
1214
        router_args.push("--json-output".to_string());
1215
1216
    }

1217
    // OpenTelemetry
1218
    if let Some(otlp_endpoint) = args.otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
1219
1220
        router_args.push("--otlp-endpoint".to_string());
        router_args.push(otlp_endpoint);
1221
1222
    }

1223
1224
1225
1226
1227
    // OpenTelemetry
    let otlp_service_name = args.otlp_service_name;
    router_args.push("--otlp-service-name".to_string());
    router_args.push(otlp_service_name);

1228
1229
    // CORS origins
    for origin in args.cors_allow_origin.into_iter() {
OlivierDehaene's avatar
OlivierDehaene committed
1230
1231
        router_args.push("--cors-allow-origin".to_string());
        router_args.push(origin);
1232
1233
    }

1234
1235
    // Ngrok
    if args.ngrok {
OlivierDehaene's avatar
OlivierDehaene committed
1236
1237
        router_args.push("--ngrok".to_string());
        router_args.push("--ngrok-authtoken".to_string());
1238
1239
1240
        router_args.push(args.ngrok_authtoken.unwrap());
        router_args.push("--ngrok-edge".to_string());
        router_args.push(args.ngrok_edge.unwrap());
1241
1242
    }

1243
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
1244
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
1245

1246
1247
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
1248
        envs.push(("HF_TOKEN".into(), api_token.into()))
1249
    };
1250

1251
1252
1253
1254
1255
1256
1257
    // Parse Compute type
    if let Ok(compute_type) = env::var("COMPUTE_TYPE") {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    } else if let Some(compute_type) = compute_type(num_shard) {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    }

1258
    let mut webserver = match Command::new("text-generation-router")
OlivierDehaene's avatar
OlivierDehaene committed
1259
1260
        .args(router_args)
        .envs(envs)
1261
1262
1263
1264
1265
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1266
1267
        Ok(p) => p,
        Err(err) => {
1268
            tracing::error!("Failed to start webserver: {}", err);
1269
1270
1271
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-router not found in PATH");
                tracing::error!("Please install it with `make install-router`")
1272
1273
            } else {
                tracing::error!("{}", err);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1274
            }
1275

1276
            shutdown_shards(shutdown, shutdown_receiver);
1277
            return Err(LauncherError::WebserverCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1278
1279
1280
        }
    };

1281
1282
1283
    // Redirect STDOUT and STDERR to the console
    let webserver_stdout = webserver.stdout.take().unwrap();
    let webserver_stderr = webserver.stderr.take().unwrap();
1284
1285

    thread::spawn(move || {
1286
1287
        let stdout = BufReader::new(webserver_stdout);
        let stderr = BufReader::new(webserver_stderr);
1288
        for line in stdout.lines() {
1289
            println!("{}", line.unwrap());
1290
        }
1291
1292
        for line in stderr.lines() {
            println!("{}", line.unwrap());
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1293
        }
1294
1295
1296
    });
    Ok(webserver)
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1297

OlivierDehaene's avatar
OlivierDehaene committed
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
fn terminate(process_name: &str, mut process: Child, timeout: Duration) -> io::Result<ExitStatus> {
    tracing::info!("Terminating {process_name}");

    let terminate_time = Instant::now();
    signal::kill(Pid::from_raw(process.id() as i32), Signal::SIGTERM).unwrap();

    tracing::info!("Waiting for {process_name} to gracefully shutdown");
    while terminate_time.elapsed() < timeout {
        if let Some(status) = process.try_wait()? {
            tracing::info!("{process_name} terminated");
            return Ok(status);
        }
        sleep(Duration::from_millis(100));
    }
    tracing::info!("Killing {process_name}");

    process.kill()?;
    let exit_status = process.wait()?;

    tracing::info!("{process_name} killed");
    Ok(exit_status)
}

1321
1322
fn main() -> Result<(), LauncherError> {
    // Pattern match configuration
1323
    let args: Args = Args::parse();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1324

1325
    // Filter events with LOG_LEVEL
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
    let varname = "LOG_LEVEL";
    let env_filter = if let Ok(log_level) = std::env::var(varname) {
        // Override to avoid simple logs to be spammed with tokio level informations
        let log_level = match &log_level[..] {
            "warn" => "text_generation_launcher=warn,text_generation_router=warn",
            "info" => "text_generation_launcher=info,text_generation_router=info",
            "debug" => "text_generation_launcher=debug,text_generation_router=debug",
            log_level => log_level,
        };
        EnvFilter::builder()
            .with_default_directive(LevelFilter::INFO.into())
            .parse_lossy(log_level)
    } else {
        EnvFilter::new("info")
    };
    let max_log_level = env_filter.max_level_hint().unwrap_or(LevelFilter::INFO);
1342

1343
    if args.json_output {
1344
1345
1346
1347
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .json()
            .init();
1348
    } else {
1349
1350
1351
1352
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .compact()
            .init();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1353
1354
    }

1355
1356
1357
1358
1359
    if args.env {
        let env_runtime = env_runtime::Env::new();
        tracing::info!("{}", env_runtime);
    }

Nicolas Patry's avatar
Nicolas Patry committed
1360
    tracing::info!("{:#?}", args);
1361

1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
    let get_max_position_embeddings = || -> Result<usize, Box<dyn std::error::Error>> {
        let model_id = args.model_id.clone();
        let mut path = std::path::Path::new(&args.model_id).to_path_buf();
        let filename = if !path.exists() {
            // Assume it's a hub id
            let api = Api::new()?;
            let repo = if let Some(ref revision) = args.revision {
                api.repo(Repo::with_revision(
                    model_id,
                    RepoType::Model,
                    revision.to_string(),
                ))
            } else {
                api.model(model_id)
            };
            repo.get("config.json")?
        } else {
            path.push("config.json");
            path
        };

        let content = std::fs::read_to_string(filename)?;
1384
1385
        let config: RawConfig = serde_json::from_str(&content)?;
        let config: Config = config.into();
1386
1387
1388
1389

        // Quantization usually means you're even more RAM constrained.
        let max_default = 4096;

1390
1391
1392
1393
1394
1395
1396
1397
        if let Some(max_position_embeddings) = config.max_position_embeddings {
            if max_position_embeddings > max_default {
                let max = max_position_embeddings;
                if args.max_input_tokens.is_none()
                    && args.max_total_tokens.is_none()
                    && args.max_batch_prefill_tokens.is_none()
                {
                    tracing::info!("Model supports up to {max} but tgi will now set its default to {max_default} instead. This is to save VRAM by refusing large prompts in order to allow more users on the same hardware. You can increase that size using `--max-batch-prefill-tokens={} --max-total-tokens={max} --max-input-tokens={}`.", max + 50, max - 1);
1398
                }
1399
1400
1401
                Ok(max_default)
            } else {
                Ok(max_position_embeddings)
1402
            }
1403
1404
1405
1406
1407
        } else {
            Err(Box::new(LauncherError::ArgumentValidation(
                "no max defined".to_string(),
            )))
        }
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
    };
    let max_position_embeddings: usize = get_max_position_embeddings().unwrap_or(4096);

    let max_input_tokens = {
        match (args.max_input_tokens, args.max_input_length) {
            (Some(max_input_tokens), Some(max_input_length)) => {
                return Err(LauncherError::ArgumentValidation(
                    format!("Both `max_input_tokens` ({max_input_tokens}) and `max_input_length` ({max_input_length}) are set. Please define only `max_input_tokens` as `max_input_length is deprecated for naming consistency.",
                )));
            }
            (Some(max_input_tokens), None) | (None, Some(max_input_tokens)) => max_input_tokens,
            (None, None) => {
                let value = max_position_embeddings - 1;
                tracing::info!("Default `max_input_tokens` to {value}");
                value
            }
        }
    };
    let max_total_tokens = {
        match args.max_total_tokens {
            Some(max_total_tokens) => max_total_tokens,
            None => {
                let value = max_position_embeddings;
                tracing::info!("Default `max_total_tokens` to {value}");
                value
            }
        }
    };
    let max_batch_prefill_tokens = {
        match args.max_batch_prefill_tokens {
            Some(max_batch_prefill_tokens) => max_batch_prefill_tokens,
            None => {
                let value: u32 = if let Some(max_batch_size) = args.max_batch_size {
                    max_batch_size * max_input_tokens
                } else {
                    // Adding some edge in order to account for potential block_size alignement
                    // issue.
                    max_input_tokens + 50
                } as u32;
                tracing::info!("Default `max_batch_prefill_tokens` to {value}");
                value
            }
        }
    };

1453
    // Validate args
1454
    if max_input_tokens >= max_total_tokens {
1455
        return Err(LauncherError::ArgumentValidation(
1456
            "`max_input_tokens must be < `max_total_tokens`".to_string(),
1457
1458
        ));
    }
1459
    if max_input_tokens as u32 > max_batch_prefill_tokens {
1460
        return Err(LauncherError::ArgumentValidation(format!(
1461
1462
            "`max_batch_prefill_tokens` must be >= `max_input_tokens`. Given: {} and {}",
            max_batch_prefill_tokens, max_input_tokens
1463
1464
        )));
    }
1465

1466
    let cuda_graphs = match (&args.cuda_graphs, &args.quantize) {
Nicolas Patry's avatar
Nicolas Patry committed
1467
        (Some(cuda_graphs), _) => cuda_graphs.iter().cloned().filter(|&c| c > 0).collect(),
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
        #[allow(deprecated)]
        (
            None,
            Some(
                Quantization::Bitsandbytes
                | Quantization::BitsandbytesNF4
                | Quantization::BitsandbytesFP4,
            ),
        ) => {
            tracing::info!("Bitsandbytes doesn't work with cuda graphs, deactivating them");
            vec![]
        }
        _ => {
            let cuda_graphs = vec![1, 2, 4, 8, 16, 32];
            tracing::info!("Using default cuda graphs {cuda_graphs:?}");
            cuda_graphs
        }
    };

1487
1488
1489
1490
1491
    if args.validation_workers == 0 {
        return Err(LauncherError::ArgumentValidation(
            "`validation_workers` must be > 0".to_string(),
        ));
    }
1492
1493
1494
1495
1496
1497
    if args.trust_remote_code {
        tracing::warn!(
            "`trust_remote_code` is set. Trusting that model `{}` do not contain malicious code.",
            args.model_id
        );
    }
1498
1499

    let num_shard = find_num_shards(args.sharded, args.num_shard)?;
1500
    if num_shard > 1 {
1501
1502
1503
1504
1505
        if matches!(args.quantize, Some(Quantization::Exl2)) {
            return Err(LauncherError::ArgumentValidation(
                "Sharding is currently not supported with `exl2` quantization".into(),
            ));
        }
1506
        tracing::info!("Sharding model on {num_shard} processes");
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1507
1508
    }

1509
    if let Some(ref max_batch_total_tokens) = args.max_batch_total_tokens {
1510
        if max_batch_prefill_tokens > *max_batch_total_tokens {
1511
1512
            return Err(LauncherError::ArgumentValidation(format!(
                "`max_batch_prefill_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
1513
                max_batch_prefill_tokens, max_batch_total_tokens
1514
1515
            )));
        }
1516
        if max_total_tokens as u32 > *max_batch_total_tokens {
1517
1518
            return Err(LauncherError::ArgumentValidation(format!(
                "`max_total_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
1519
                max_total_tokens, max_batch_total_tokens
1520
1521
1522
1523
            )));
        }
    }

1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
    if args.ngrok {
        if args.ngrok_authtoken.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-authtoken` must be set when using ngrok tunneling".to_string(),
            ));
        }

        if args.ngrok_edge.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-edge` must be set when using ngrok tunneling".to_string(),
            ));
        }
    }

1538
1539
1540
1541
1542
1543
1544
    // Signal handler
    let running = Arc::new(AtomicBool::new(true));
    let r = running.clone();
    ctrlc::set_handler(move || {
        r.store(false, Ordering::SeqCst);
    })
    .expect("Error setting Ctrl-C handler");
1545

1546
    // Download and convert model weights
1547
    download_convert_model(&args, running.clone())?;
1548

OlivierDehaene's avatar
OlivierDehaene committed
1549
1550
1551
1552
1553
    if !running.load(Ordering::SeqCst) {
        // Launcher was asked to stop
        return Ok(());
    }

1554
    // Shared shutdown bool
1555
    let shutdown = Arc::new(AtomicBool::new(false));
1556
1557
1558
    // Shared shutdown channel
    // When shutting down, the main thread will wait for all senders to be dropped
    let (shutdown_sender, shutdown_receiver) = mpsc::channel();
1559

1560
1561
    // Shared channel to track shard status
    let (status_sender, status_receiver) = mpsc::channel();
1562

1563
1564
1565
    spawn_shards(
        num_shard,
        &args,
1566
        cuda_graphs,
1567
        max_total_tokens,
1568
        max_input_tokens,
1569
        max_log_level,
1570
1571
1572
1573
1574
1575
1576
        shutdown.clone(),
        &shutdown_receiver,
        shutdown_sender,
        &status_receiver,
        status_sender,
        running.clone(),
    )?;
1577

1578
1579
1580
1581
1582
    // We might have received a termination signal
    if !running.load(Ordering::SeqCst) {
        shutdown_shards(shutdown, &shutdown_receiver);
        return Ok(());
    }
1583

1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
    let mut webserver = spawn_webserver(
        num_shard,
        args,
        max_input_tokens,
        max_total_tokens,
        max_batch_prefill_tokens,
        shutdown.clone(),
        &shutdown_receiver,
    )
    .map_err(|err| {
        shutdown_shards(shutdown.clone(), &shutdown_receiver);
        err
    })?;
1597
1598
1599
1600
1601

    // Default exit code
    let mut exit_code = Ok(());

    while running.load(Ordering::SeqCst) {
1602
        if let Ok(ShardStatus::Failed(rank)) = status_receiver.try_recv() {
OlivierDehaene's avatar
OlivierDehaene committed
1603
            tracing::error!("Shard {rank} crashed");
1604
1605
1606
1607
            exit_code = Err(LauncherError::ShardFailed);
            break;
        };

1608
        match webserver.try_wait().unwrap() {
1609
1610
1611
1612
1613
1614
1615
1616
1617
            Some(_) => {
                tracing::error!("Webserver Crashed");
                shutdown_shards(shutdown, &shutdown_receiver);
                return Err(LauncherError::WebserverFailed);
            }
            None => {
                sleep(Duration::from_millis(100));
            }
        };
1618
    }
1619
1620

    // Graceful termination
OlivierDehaene's avatar
OlivierDehaene committed
1621
    terminate("webserver", webserver, Duration::from_secs(90)).unwrap();
1622
1623
1624
    shutdown_shards(shutdown, &shutdown_receiver);

    exit_code
1625
}