main.rs 46.4 KB
Newer Older
1
use clap::{Parser, ValueEnum};
2
3
use nix::sys::signal::{self, Signal};
use nix::unistd::Pid;
4
use serde::Deserialize;
Nicolas Patry's avatar
Nicolas Patry committed
5
use std::env;
6
use std::ffi::OsString;
7
use std::io::{BufRead, BufReader, Lines};
8
use std::os::unix::process::{CommandExt, ExitStatusExt};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
9
use std::path::Path;
OlivierDehaene's avatar
OlivierDehaene committed
10
use std::process::{Child, Command, ExitStatus, Stdio};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
11
12
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::TryRecvError;
13
use std::sync::{mpsc, Arc};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
14
15
16
17
use std::thread;
use std::thread::sleep;
use std::time::{Duration, Instant};
use std::{fs, io};
18
use tracing_subscriber::EnvFilter;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
19

20
21
mod env_runtime;

22
23
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Quantization {
24
    /// 4 bit quantization. Requires a specific AWQ quantized model:
25
    ///   https://hf.co/models?search=awq.
26
    /// Should replace GPTQ models wherever possible because of the better latency
27
28
29
30
31
32
    Awq,
    /// 8 bit quantization, doesn't require specific model.
    /// Should be a drop-in replacement to bitsandbytes with much better performance.
    /// Kernels are from https://github.com/NetEase-FuXi/EETQ.git
    Eetq,
    /// 4 bit quantization. Requires a specific GTPQ quantized model: https://hf.co/models?search=gptq.
33
    /// text-generation-inference will use exllama (faster) kernels wherever possible, and use
34
35
36
37
38
39
40
41
42
    /// triton kernel (wider support) when it's not.
    /// AWQ has faster kernels.
    Gptq,
    /// Bitsandbytes 8bit. Can be applied on any model, will cut the memory requirement in half,
    /// but it is known that the model will be much slower to run than the native f16.
    #[deprecated(
        since = "1.1.0",
        note = "Use `eetq` instead, which provides better latencies overall and is drop-in in most cases"
    )]
43
    Bitsandbytes,
44
45
    /// Bitsandbytes 4bit. Can be applied on any model, will cut the memory requirement by 4x,
    /// but it is known that the model will be much slower to run than the native f16.
Nicolas Patry's avatar
Nicolas Patry committed
46
    BitsandbytesNF4,
47
48
    /// Bitsandbytes 4bit. nf4 should be preferred in most cases but maybe this one has better
    /// perplexity performance for you model
Nicolas Patry's avatar
Nicolas Patry committed
49
    BitsandbytesFP4,
50
51
52
53
54
55
}

impl std::fmt::Display for Quantization {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
56
57
            #[allow(deprecated)]
            // Use `eetq` instead, which provides better latencies overall and is drop-in in most cases
58
59
60
            Quantization::Bitsandbytes => {
                write!(f, "bitsandbytes")
            }
Nicolas Patry's avatar
Nicolas Patry committed
61
62
63
64
65
66
            Quantization::BitsandbytesNF4 => {
                write!(f, "bitsandbytes-nf4")
            }
            Quantization::BitsandbytesFP4 => {
                write!(f, "bitsandbytes-fp4")
            }
67
68
69
            Quantization::Gptq => {
                write!(f, "gptq")
            }
70
71
72
            Quantization::Awq => {
                write!(f, "awq")
            }
73
74
75
            Quantization::Eetq => {
                write!(f, "eetq")
            }
76
77
78
79
        }
    }
}

80
81
82
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Dtype {
    Float16,
83
    #[clap(name = "bfloat16")]
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
    BFloat16,
}

impl std::fmt::Display for Dtype {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            Dtype::Float16 => {
                write!(f, "float16")
            }
            Dtype::BFloat16 => {
                write!(f, "bfloat16")
            }
        }
    }
}

Nicolas Patry's avatar
Nicolas Patry committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
#[derive(Clone, Copy, Debug, ValueEnum)]
enum RopeScaling {
    Linear,
    Dynamic,
}

impl std::fmt::Display for RopeScaling {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            RopeScaling::Linear => {
                write!(f, "linear")
            }
            RopeScaling::Dynamic => {
                write!(f, "dynamic")
            }
        }
    }
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
121
122
123
124
/// App Configuration
#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]
struct Args {
125
126
127
128
129
    /// The name of the model to load.
    /// Can be a MODEL_ID as listed on <https://hf.co/models> like
    /// `gpt2` or `OpenAssistant/oasst-sft-1-pythia-12b`.
    /// Or it can be a local directory containing the necessary files
    /// as saved by `save_pretrained(...)` methods of transformers
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
130
    #[clap(default_value = "bigscience/bloom-560m", long, env)]
131
    model_id: String,
132
133
134

    /// The actual revision of the model if you're referring to a model
    /// on the hub. You can use a specific commit id or a branch like `refs/pr/2`.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
135
    #[clap(long, env)]
136
    revision: Option<String>,
137

138
139
140
141
142
    /// The number of tokenizer workers used for payload validation and truncation inside the
    /// router.
    #[clap(default_value = "2", long, env)]
    validation_workers: usize,

143
    /// Whether to shard the model across multiple GPUs
144
145
    /// By default text-generation-inference will use all available GPUs to run
    /// the model. Setting it to `false` deactivates `num_shard`.
146
147
    #[clap(long, env)]
    sharded: Option<bool>,
148
149

    /// The number of shards to use if you don't want to use all GPUs on a given machine.
150
151
    /// You can use `CUDA_VISIBLE_DEVICES=0,1 text-generation-launcher... --num_shard 2`
    /// and `CUDA_VISIBLE_DEVICES=2,3 text-generation-launcher... --num_shard 2` to
152
    /// launch 2 copies with 2 shard each on a given machine with 4 GPUs for instance.
153
154
    #[clap(long, env)]
    num_shard: Option<usize>,
155

156
    /// Whether you want the model to be quantized.
157
158
    #[clap(long, env, value_enum)]
    quantize: Option<Quantization>,
159

Nicolas Patry's avatar
Nicolas Patry committed
160
161
162
163
164
165
166
    /// The number of input_ids to speculate on
    /// If using a medusa model, the heads will be picked up automatically
    /// Other wise, it will use n-gram speculation which is relatively free
    /// in terms of compute, but the speedup heavily depends on the task.
    #[clap(long, env)]
    speculate: Option<usize>,

167
168
169
170
    /// The dtype to be forced upon the model. This option cannot be used with `--quantize`.
    #[clap(long, env, value_enum)]
    dtype: Option<Dtype>,

171
172
173
174
175
176
    /// Whether you want to execute hub modelling code. Explicitly passing a `revision` is
    /// encouraged when loading a model with custom code to ensure no malicious code has been
    /// contributed in a newer revision.
    #[clap(long, env, value_enum)]
    trust_remote_code: bool,

177
178
179
    /// The maximum amount of concurrent requests for this particular deployment.
    /// Having a low limit will refuse clients requests instead of having them
    /// wait for too long and is usually good to handle backpressure correctly.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
180
181
    #[clap(default_value = "128", long, env)]
    max_concurrent_requests: usize,
182
183
184
185

    /// This is the maximum allowed value for clients to set `best_of`.
    /// Best of makes `n` generations at the same time, and return the best
    /// in terms of overall log probability over the entire generated sequence
186
187
    #[clap(default_value = "2", long, env)]
    max_best_of: usize,
188
189
190
191
192
193

    /// This is the maximum allowed value for clients to set `stop_sequences`.
    /// Stop sequences are used to allow the model to stop on more than just
    /// the EOS token, and enable more complex "prompting" where users can preprompt
    /// the model in a specific way and define their "own" stop token aligned with
    /// their prompt.
194
195
    #[clap(default_value = "4", long, env)]
    max_stop_sequences: usize,
196

Nicolas Patry's avatar
Nicolas Patry committed
197
198
199
200
201
202
203
204
    /// This is the maximum allowed value for clients to set `top_n_tokens`.
    /// `top_n_tokens is used to return information about the the `n` most likely
    /// tokens at each generation step, instead of just the sampled token. This
    /// information can be used for downstream tasks like for classification or
    /// ranking.
    #[clap(default_value = "5", long, env)]
    max_top_n_tokens: u32,

205
206
207
208
    /// This is the maximum allowed input length (expressed in number of tokens)
    /// for users. The larger this value, the longer prompt users can send which
    /// can impact the overall memory required to handle the load.
    /// Please note that some models have a finite range of sequence they can handle.
209
    #[clap(default_value = "1024", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
210
    max_input_length: usize,
211
212
213
214
215
216
217
218
219

    /// This is the most important value to set as it defines the "memory budget"
    /// of running clients requests.
    /// Clients will send input sequences and ask to generate `max_new_tokens`
    /// on top. with a value of `1512` users can send either a prompt of
    /// `1000` and ask for `512` new tokens, or send a prompt of `1` and ask for
    /// `1511` max_new_tokens.
    /// The larger this value, the larger amount each request will be in your RAM
    /// and the less effective batching can be.
220
    #[clap(default_value = "2048", long, env)]
221
    max_total_tokens: usize,
222
223
224
225
226
227
228
229
230
231
232

    /// This represents the ratio of waiting queries vs running queries where
    /// you want to start considering pausing the running queries to include the waiting
    /// ones into the same batch.
    /// `waiting_served_ratio=1.2` Means when 12 queries are waiting and there's
    /// only 10 queries left in the current batch we check if we can fit those 12
    /// waiting queries into the batching strategy, and if yes, then batching happens
    /// delaying the 10 running queries by a `prefill` run.
    ///
    /// This setting is only applied if there is room in the batch
    /// as defined by `max_batch_total_tokens`.
233
234
    #[clap(default_value = "1.2", long, env)]
    waiting_served_ratio: f32,
235

236
237
238
239
240
241
    /// Limits the number of tokens for the prefill operation.
    /// Since this operation take the most memory and is compute bound, it is interesting
    /// to limit the number of requests that can be sent.
    #[clap(default_value = "4096", long, env)]
    max_batch_prefill_tokens: u32,

242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
    /// **IMPORTANT** This is one critical control to allow maximum usage
    /// of the available hardware.
    ///
    /// This represents the total amount of potential tokens within a batch.
    /// When using padding (not recommended) this would be equivalent of
    /// `batch_size` * `max_total_tokens`.
    ///
    /// However in the non-padded (flash attention) version this can be much finer.
    ///
    /// For `max_batch_total_tokens=1000`, you could fit `10` queries of `total_tokens=100`
    /// or a single query of `1000` tokens.
    ///
    /// Overall this number should be the largest possible amount that fits the
    /// remaining memory (after the model is loaded). Since the actual memory overhead
    /// depends on other parameters like if you're using quantization, flash attention
    /// or the model implementation, text-generation-inference cannot infer this number
    /// automatically.
259
260
    #[clap(long, env)]
    max_batch_total_tokens: Option<u32>,
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

    /// This setting defines how many tokens can be passed before forcing the waiting
    /// queries to be put on the batch (if the size of the batch allows for it).
    /// New queries require 1 `prefill` forward, which is different from `decode`
    /// and therefore you need to pause the running batch in order to run `prefill`
    /// to create the correct values for the waiting queries to be able to join the batch.
    ///
    /// With a value too small, queries will always "steal" the compute to run `prefill`
    /// and running queries will be delayed by a lot.
    ///
    /// With a value too big, waiting queries could wait for a very long time
    /// before being allowed a slot in the running batch. If your server is busy
    /// that means that requests that could run in ~2s on an empty server could
    /// end up running in ~20s because the query had to wait for 18s.
    ///
    /// This number is expressed in number of tokens to make it a bit more
    /// "model" agnostic, but what should really matter is the overall latency
    /// for end users.
279
280
    #[clap(default_value = "20", long, env)]
    max_waiting_tokens: usize,
281

282
283
284
285
286
    /// Enforce a maximum number of requests per batch
    /// Specific flag for hardware targets that do not support unpadded inference
    #[clap(long, env)]
    max_batch_size: Option<usize>,

287
288
289
290
    /// Enable experimental support for cuda graphs
    #[clap(long, env)]
    enable_cuda_graphs: bool,

291
292
293
294
    /// The IP address to listen on
    #[clap(default_value = "0.0.0.0", long, env)]
    hostname: String,

295
    /// The port to listen on.
296
    #[clap(default_value = "3000", long, short, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
297
    port: u16,
298
299
300

    /// The name of the socket for gRPC communication between the webserver
    /// and the shards.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
301
302
    #[clap(default_value = "/tmp/text-generation-server", long, env)]
    shard_uds_path: String,
303
304

    /// The address the master shard will listen on. (setting used by torch distributed)
305
    #[clap(default_value = "localhost", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
306
    master_addr: String,
307
308

    /// The address the master port will listen on. (setting used by torch distributed)
309
    #[clap(default_value = "29500", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
310
    master_port: usize,
311
312
313

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
314
    #[clap(long, env)]
315
    huggingface_hub_cache: Option<String>,
316
317
318

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
319
320
    #[clap(long, env)]
    weights_cache_override: Option<String>,
321
322
323
324
325

    /// For some models (like bloom), text-generation-inference implemented custom
    /// cuda kernels to speed up inference. Those kernels were only tested on A100.
    /// Use this flag to disable them if you're running on different hardware and
    /// encounter issues.
326
    #[clap(long, env)]
327
    disable_custom_kernels: bool,
328

329
330
331
332
333
    /// Limit the CUDA available memory.
    /// The allowed value equals the total visible memory multiplied by cuda-memory-fraction.
    #[clap(default_value = "1.0", long, env)]
    cuda_memory_fraction: f32,

Nicolas Patry's avatar
Nicolas Patry committed
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
    /// Rope scaling will only be used for RoPE models
    /// and allow rescaling the position rotary to accomodate for
    /// larger prompts.
    ///
    /// Goes together with `rope_factor`.
    ///
    /// `--rope-factor 2.0` gives linear scaling with a factor of 2.0
    /// `--rope-scaling dynamic` gives dynamic scaling with a factor of 1.0
    /// `--rope-scaling linear` gives linear scaling with a factor of 1.0 (Nothing will be changed
    /// basically)
    ///
    /// `--rope-scaling linear --rope-factor` fully describes the scaling you want
    #[clap(long, env)]
    rope_scaling: Option<RopeScaling>,

    /// Rope scaling will only be used for RoPE models
    /// See `rope_scaling`
    #[clap(long, env)]
    rope_factor: Option<f32>,

354
    /// Outputs the logs in JSON format (useful for telemetry)
355
    #[clap(long, env)]
356
    json_output: bool,
357

358
359
    #[clap(long, env)]
    otlp_endpoint: Option<String>,
360

361
362
    #[clap(long, env)]
    cors_allow_origin: Vec<String>,
363
364
365
366
    #[clap(long, env)]
    watermark_gamma: Option<f32>,
    #[clap(long, env)]
    watermark_delta: Option<f32>,
367

368
369
370
371
372
373
374
375
    /// Enable ngrok tunneling
    #[clap(long, env)]
    ngrok: bool,

    /// ngrok authentication token
    #[clap(long, env)]
    ngrok_authtoken: Option<String>,

376
    /// ngrok edge
377
    #[clap(long, env)]
378
    ngrok_edge: Option<String>,
379

380
381
382
383
384
    /// The path to the tokenizer config file. This path is used to load the tokenizer configuration which may
    /// include a `chat_template`. If not provided, the default config will be used from the model hub.
    #[clap(long, env)]
    tokenizer_config_path: Option<String>,

drbh's avatar
drbh committed
385
386
387
388
389
    /// Disable outlines grammar constrained generation.
    /// This is a feature that allows you to generate text that follows a specific grammar.
    #[clap(long, env)]
    disable_grammar_support: bool,

390
391
392
    /// Display a lot of information about your runtime environment
    #[clap(long, short, action)]
    env: bool,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
393
394
}

395
396
397
#[derive(Debug)]
enum ShardStatus {
    Ready,
398
    Failed(usize),
399
}
400

401
402
403
404
#[allow(clippy::too_many_arguments)]
fn shard_manager(
    model_id: String,
    revision: Option<String>,
405
    quantize: Option<Quantization>,
Nicolas Patry's avatar
Nicolas Patry committed
406
    speculate: Option<usize>,
407
    dtype: Option<Dtype>,
408
    trust_remote_code: bool,
409
410
411
412
413
414
415
416
417
418
    uds_path: String,
    rank: usize,
    world_size: usize,
    master_addr: String,
    master_port: usize,
    huggingface_hub_cache: Option<String>,
    weights_cache_override: Option<String>,
    disable_custom_kernels: bool,
    watermark_gamma: Option<f32>,
    watermark_delta: Option<f32>,
419
    enable_cuda_graphs: bool,
420
    cuda_memory_fraction: f32,
Nicolas Patry's avatar
Nicolas Patry committed
421
422
    rope_scaling: Option<RopeScaling>,
    rope_factor: Option<f32>,
423
424
    otlp_endpoint: Option<String>,
    status_sender: mpsc::Sender<ShardStatus>,
425
    shutdown: Arc<AtomicBool>,
426
427
    _shutdown_sender: mpsc::Sender<()>,
) {
428
429
430
    // Enter shard-manager tracing span
    let _span = tracing::span!(tracing::Level::INFO, "shard-manager", rank = rank).entered();

431
432
433
434
    // Get UDS path
    let uds_string = format!("{uds_path}-{rank}");
    let uds = Path::new(&uds_string);
    // Clean previous runs
435
436
437
    if uds.exists() {
        fs::remove_file(uds).unwrap();
    }
438
439

    // Process args
OlivierDehaene's avatar
OlivierDehaene committed
440
    let mut shard_args = vec![
441
442
443
444
445
446
447
448
449
        "serve".to_string(),
        model_id,
        "--uds-path".to_string(),
        uds_path,
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];

450
451
    // Activate trust remote code
    if trust_remote_code {
OlivierDehaene's avatar
OlivierDehaene committed
452
        shard_args.push("--trust-remote-code".to_string());
453
454
    }

455
456
    // Activate tensor parallelism
    if world_size > 1 {
OlivierDehaene's avatar
OlivierDehaene committed
457
        shard_args.push("--sharded".to_string());
458
459
    }

460
    if let Some(quantize) = quantize {
OlivierDehaene's avatar
OlivierDehaene committed
461
462
        shard_args.push("--quantize".to_string());
        shard_args.push(quantize.to_string())
463
    }
464

Nicolas Patry's avatar
Nicolas Patry committed
465
466
467
468
469
    if let Some(speculate) = speculate {
        shard_args.push("--speculate".to_string());
        shard_args.push(speculate.to_string())
    }

470
    if let Some(dtype) = dtype {
OlivierDehaene's avatar
OlivierDehaene committed
471
472
        shard_args.push("--dtype".to_string());
        shard_args.push(dtype.to_string())
473
474
    }

475
476
    // Model optional revision
    if let Some(revision) = revision {
OlivierDehaene's avatar
OlivierDehaene committed
477
478
        shard_args.push("--revision".to_string());
        shard_args.push(revision)
479
    }
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
480

Nicolas Patry's avatar
Nicolas Patry committed
481
482
483
484
485
486
    let rope = match (rope_scaling, rope_factor) {
        (None, None) => None,
        (Some(scaling), None) => Some((scaling, 1.0)),
        (Some(scaling), Some(factor)) => Some((scaling, factor)),
        (None, Some(factor)) => Some((RopeScaling::Linear, factor)),
    };
487
488
    // OpenTelemetry
    if let Some(otlp_endpoint) = otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
489
490
        shard_args.push("--otlp-endpoint".to_string());
        shard_args.push(otlp_endpoint);
491
492
493
    }

    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
494
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
495
496

    // Torch Distributed Env vars
OlivierDehaene's avatar
OlivierDehaene committed
497
498
499
500
    envs.push(("RANK".into(), rank.to_string().into()));
    envs.push(("WORLD_SIZE".into(), world_size.to_string().into()));
    envs.push(("MASTER_ADDR".into(), master_addr.into()));
    envs.push(("MASTER_PORT".into(), master_port.to_string().into()));
501
    envs.push(("TORCH_NCCL_AVOID_RECORD_STREAMS".into(), "1".into()));
502

503
504
505
506
507
508
    // CUDA memory fraction
    envs.push((
        "CUDA_MEMORY_FRACTION".into(),
        cuda_memory_fraction.to_string().into(),
    ));

509
    // Safetensors load fast
OlivierDehaene's avatar
OlivierDehaene committed
510
    envs.push(("SAFETENSORS_FAST_GPU".into(), "1".into()));
511

512
513
514
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

515
516
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
517
    envs.push((
518
519
520
521
522
523
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));

    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
OlivierDehaene's avatar
OlivierDehaene committed
524
        envs.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
525
526
    };

Nicolas Patry's avatar
Nicolas Patry committed
527
528
529
530
531
532
533
534
535
    // Detect rope scaling
    // Sending as env instead of CLI args to not bloat everything
    // those only can be used by RoPE models, so passing information around
    // for all models will complexify code unnecessarily
    if let Some((scaling, factor)) = rope {
        envs.push(("ROPE_SCALING".into(), scaling.to_string().into()));
        envs.push(("ROPE_FACTOR".into(), factor.to_string().into()));
    }

536
537
538
    // If huggingface_hub_cache is some, pass it to the shard
    // Useful when running inside a docker container
    if let Some(huggingface_hub_cache) = huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
539
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
540
541
542
543
544
    };

    // If weights_cache_override is some, pass it to the shard
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
545
        envs.push((
546
547
548
549
550
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

551
552
553
554
555
    // Enable experimental support for cuda graphs
    if enable_cuda_graphs {
        envs.push(("ENABLE_CUDA_GRAPHS".into(), "True".into()))
    }

556
557
    // If disable_custom_kernels is true, pass it to the shard as an env var
    if disable_custom_kernels {
OlivierDehaene's avatar
OlivierDehaene committed
558
        envs.push(("DISABLE_CUSTOM_KERNELS".into(), "True".into()))
559
560
561
562
    }

    // Watermark Gamma
    if let Some(watermark_gamma) = watermark_gamma {
OlivierDehaene's avatar
OlivierDehaene committed
563
        envs.push(("WATERMARK_GAMMA".into(), watermark_gamma.to_string().into()))
564
565
566
567
    }

    // Watermark Delta
    if let Some(watermark_delta) = watermark_delta {
OlivierDehaene's avatar
OlivierDehaene committed
568
        envs.push(("WATERMARK_DELTA".into(), watermark_delta.to_string().into()))
569
570
571
    }

    // Start process
572
    tracing::info!("Starting shard");
573
    let mut p = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
574
575
        .args(shard_args)
        .envs(envs)
576
577
578
579
580
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
581
582
        Ok(p) => p,
        Err(err) => {
583
584
585
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
586
587
            }
            {
588
                tracing::error!("{}", err);
589
            }
590

591
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
592
593
594
595
596
            return;
        }
    };

    // Redirect STDOUT to the console
597
    let shard_stdout_reader = BufReader::new(p.stdout.take().unwrap());
598
    let shard_stderr_reader = BufReader::new(p.stderr.take().unwrap());
599

600
    //stdout tracing thread
601
    thread::spawn(move || {
602
        log_lines(shard_stdout_reader.lines());
603
    });
604
605
606
607
608
609
610
    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
        for line in shard_stderr_reader.lines().flatten() {
            err_sender.send(line).unwrap_or(());
        }
    });
611
612
613
614
615
616

    let mut ready = false;
    let start_time = Instant::now();
    let mut wait_time = Instant::now();
    loop {
        // Process exited
617
        if let Some(exit_status) = p.try_wait().unwrap() {
618
619
620
621
            let mut err = String::new();
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }
622

623
            tracing::error!("Shard complete standard error output:\n{err}");
624

625
            if let Some(signal) = exit_status.signal() {
626
627
628
                tracing::error!("Shard process was signaled to shutdown with signal {signal}");
            }

629
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
630
631
632
633
            return;
        }

        // We received a shutdown signal
634
        if shutdown.load(Ordering::SeqCst) {
635
            p.kill().unwrap();
636
            let _ = p.wait();
637
            tracing::info!("Shard terminated");
638
639
640
641
642
            return;
        }

        // Shard is ready
        if uds.exists() && !ready {
643
            tracing::info!("Shard ready in {:?}", start_time.elapsed());
644
645
646
            status_sender.send(ShardStatus::Ready).unwrap();
            ready = true;
        } else if !ready && wait_time.elapsed() > Duration::from_secs(10) {
647
            tracing::info!("Waiting for shard to be ready...");
648
649
650
651
652
653
            wait_time = Instant::now();
        }
        sleep(Duration::from_millis(100));
    }
}

654
fn shutdown_shards(shutdown: Arc<AtomicBool>, shutdown_receiver: &mpsc::Receiver<()>) {
655
656
657
    tracing::info!("Shutting down shards");
    // Update shutdown value to true
    // This will be picked up by the shard manager
658
    shutdown.store(true, Ordering::SeqCst);
659
660
661
662
663
664
665

    // Wait for shards to shutdown
    // This will block till all shutdown_sender are dropped
    let _ = shutdown_receiver.recv();
}

fn num_cuda_devices() -> Option<usize> {
666
667
668
669
    let devices = match env::var("CUDA_VISIBLE_DEVICES") {
        Ok(devices) => devices,
        Err(_) => env::var("NVIDIA_VISIBLE_DEVICES").ok()?,
    };
670
671
    let n_devices = devices.split(',').count();
    Some(n_devices)
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
}

#[derive(Deserialize)]
#[serde(rename_all = "UPPERCASE")]
enum PythonLogLevelEnum {
    Trace,
    Debug,
    Info,
    Success,
    Warning,
    Error,
    Critical,
}

#[derive(Deserialize)]
struct PythonLogLevel {
    name: PythonLogLevelEnum,
}

#[derive(Deserialize)]
struct PythonLogRecord {
    level: PythonLogLevel,
}

#[derive(Deserialize)]
struct PythonLogMessage {
    text: String,
    record: PythonLogRecord,
}

impl PythonLogMessage {
    fn trace(&self) {
        match self.record.level.name {
            PythonLogLevelEnum::Trace => tracing::trace!("{}", self.text),
            PythonLogLevelEnum::Debug => tracing::debug!("{}", self.text),
            PythonLogLevelEnum::Info => tracing::info!("{}", self.text),
            PythonLogLevelEnum::Success => tracing::info!("{}", self.text),
            PythonLogLevelEnum::Warning => tracing::warn!("{}", self.text),
            PythonLogLevelEnum::Error => tracing::error!("{}", self.text),
            PythonLogLevelEnum::Critical => tracing::error!("{}", self.text),
        }
    }
}

716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
impl TryFrom<&String> for PythonLogMessage {
    type Error = serde_json::Error;

    fn try_from(value: &String) -> Result<Self, Self::Error> {
        serde_json::from_str::<Self>(value)
    }
}

fn log_lines<S: Sized + BufRead>(lines: Lines<S>) {
    for line in lines.flatten() {
        match PythonLogMessage::try_from(&line) {
            Ok(log) => log.trace(),
            Err(_) => tracing::debug!("{line}"),
        }
    }
}

733
734
735
736
fn find_num_shards(
    sharded: Option<bool>,
    num_shard: Option<usize>,
) -> Result<usize, LauncherError> {
737
738
739
740
    // get the number of shards given `sharded` and `num_shard`
    let num_shard = match (sharded, num_shard) {
        (Some(true), None) => {
            // try to default to the number of available GPUs
741
742
743
            tracing::info!("Parsing num_shard from CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES");
            let n_devices = num_cuda_devices()
                .expect("--num-shard and CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES are not set");
744
            if n_devices <= 1 {
745
746
747
                return Err(LauncherError::NotEnoughCUDADevices(format!(
                    "`sharded` is true but only found {n_devices} CUDA devices"
                )));
748
            }
749
            n_devices
750
        }
751
752
753
        (Some(true), Some(num_shard)) => {
            // we can't have only one shard while sharded
            if num_shard <= 1 {
754
755
756
                return Err(LauncherError::ArgumentValidation(
                    "`sharded` is true but `num_shard` <= 1".to_string(),
                ));
757
758
            }
            num_shard
759
        }
760
761
762
763
        (Some(false), Some(num_shard)) => num_shard,
        (Some(false), None) => 1,
        (None, None) => num_cuda_devices().unwrap_or(1),
        (None, Some(num_shard)) => num_shard,
764
    };
765
    if num_shard < 1 {
766
767
768
        return Err(LauncherError::ArgumentValidation(
            "`num_shard` cannot be < 1".to_string(),
        ));
769
    }
770
    Ok(num_shard)
771
}
772

773
774
#[derive(Debug)]
enum LauncherError {
775
776
    ArgumentValidation(String),
    NotEnoughCUDADevices(String),
777
778
779
780
781
782
783
    DownloadError,
    ShardCannotStart,
    ShardDisconnected,
    ShardFailed,
    WebserverFailed,
    WebserverCannotStart,
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
784

785
fn download_convert_model(args: &Args, running: Arc<AtomicBool>) -> Result<(), LauncherError> {
786
787
788
    // Enter download tracing span
    let _span = tracing::span!(tracing::Level::INFO, "download").entered();

OlivierDehaene's avatar
OlivierDehaene committed
789
    let mut download_args = vec![
790
791
792
793
794
795
796
797
        "download-weights".to_string(),
        args.model_id.to_string(),
        "--extension".to_string(),
        ".safetensors".to_string(),
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];
798

799
800
    // Model optional revision
    if let Some(revision) = &args.revision {
OlivierDehaene's avatar
OlivierDehaene committed
801
802
        download_args.push("--revision".to_string());
        download_args.push(revision.to_string())
803
    }
804

805
806
807
808
809
    // Trust remote code for automatic peft fusion
    if args.trust_remote_code {
        download_args.push("--trust-remote-code".to_string());
    }

810
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
811
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
812

813
814
815
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

816
    // If huggingface_hub_cache is set, pass it to the download process
817
818
    // Useful when running inside a docker container
    if let Some(ref huggingface_hub_cache) = args.huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
819
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
820
    };
821

822
823
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
824
    envs.push((
825
826
827
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));
828

829
830
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
OlivierDehaene's avatar
OlivierDehaene committed
831
        envs.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
832
    };
833

834
835
836
    // If args.weights_cache_override is some, pass it to the download process
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = &args.weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
837
        envs.push((
838
839
840
841
842
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

843
844
    // Start process
    tracing::info!("Starting download process.");
845
    let mut download_process = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
846
847
        .args(download_args)
        .envs(envs)
848
849
850
851
852
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
853
854
        Ok(p) => p,
        Err(err) => {
855
856
857
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
858
859
            } else {
                tracing::error!("{}", err);
860
            }
861

862
863
864
            return Err(LauncherError::DownloadError);
        }
    };
865

866
    let download_stdout = BufReader::new(download_process.stdout.take().unwrap());
867

868
    thread::spawn(move || {
869
870
871
872
873
874
875
876
877
878
879
        log_lines(download_stdout.lines());
    });

    let download_stderr = BufReader::new(download_process.stderr.take().unwrap());

    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
        for line in download_stderr.lines().flatten() {
            err_sender.send(line).unwrap_or(());
        }
880
    });
881

882
    loop {
883
884
885
886
        if let Some(status) = download_process.try_wait().unwrap() {
            if status.success() {
                tracing::info!("Successfully downloaded weights.");
                break;
887
            }
888
889

            let mut err = String::new();
890
891
892
893
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }

894
895
896
897
898
899
900
901
902
            if let Some(signal) = status.signal() {
                tracing::error!(
                    "Download process was signaled to shutdown with signal {signal}: {err}"
                );
            } else {
                tracing::error!("Download encountered an error: {err}");
            }

            return Err(LauncherError::DownloadError);
903
        }
904
        if !running.load(Ordering::SeqCst) {
OlivierDehaene's avatar
OlivierDehaene committed
905
            terminate("download", download_process, Duration::from_secs(10)).unwrap();
906
907
908
            return Ok(());
        }
        sleep(Duration::from_millis(100));
909
    }
910
911
    Ok(())
}
912

913
#[allow(clippy::too_many_arguments)]
914
915
916
fn spawn_shards(
    num_shard: usize,
    args: &Args,
917
    shutdown: Arc<AtomicBool>,
918
919
920
921
922
923
    shutdown_receiver: &mpsc::Receiver<()>,
    shutdown_sender: mpsc::Sender<()>,
    status_receiver: &mpsc::Receiver<ShardStatus>,
    status_sender: mpsc::Sender<ShardStatus>,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
924
925
    // Start shard processes
    for rank in 0..num_shard {
926
927
928
929
930
931
        let model_id = args.model_id.clone();
        let revision = args.revision.clone();
        let uds_path = args.shard_uds_path.clone();
        let master_addr = args.master_addr.clone();
        let huggingface_hub_cache = args.huggingface_hub_cache.clone();
        let weights_cache_override = args.weights_cache_override.clone();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
932
933
934
        let status_sender = status_sender.clone();
        let shutdown = shutdown.clone();
        let shutdown_sender = shutdown_sender.clone();
935
        let otlp_endpoint = args.otlp_endpoint.clone();
936
        let quantize = args.quantize;
Nicolas Patry's avatar
Nicolas Patry committed
937
        let speculate = args.speculate;
938
        let dtype = args.dtype;
939
        let trust_remote_code = args.trust_remote_code;
940
941
942
943
        let master_port = args.master_port;
        let disable_custom_kernels = args.disable_custom_kernels;
        let watermark_gamma = args.watermark_gamma;
        let watermark_delta = args.watermark_delta;
944
        let enable_cuda_graphs = args.enable_cuda_graphs;
945
        let cuda_memory_fraction = args.cuda_memory_fraction;
Nicolas Patry's avatar
Nicolas Patry committed
946
947
        let rope_scaling = args.rope_scaling;
        let rope_factor = args.rope_factor;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
948
949
        thread::spawn(move || {
            shard_manager(
950
                model_id,
951
                revision,
952
                quantize,
Nicolas Patry's avatar
Nicolas Patry committed
953
                speculate,
954
                dtype,
955
                trust_remote_code,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
956
957
958
959
960
                uds_path,
                rank,
                num_shard,
                master_addr,
                master_port,
961
962
                huggingface_hub_cache,
                weights_cache_override,
963
                disable_custom_kernels,
964
965
                watermark_gamma,
                watermark_delta,
966
                enable_cuda_graphs,
967
                cuda_memory_fraction,
Nicolas Patry's avatar
Nicolas Patry committed
968
969
                rope_scaling,
                rope_factor,
970
                otlp_endpoint,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
                status_sender,
                shutdown,
                shutdown_sender,
            )
        });
    }
    drop(shutdown_sender);

    // Wait for shard to start
    let mut shard_ready = 0;
    while running.load(Ordering::SeqCst) {
        match status_receiver.try_recv() {
            Ok(ShardStatus::Ready) => {
                shard_ready += 1;
                if shard_ready == num_shard {
                    break;
                }
            }
            Err(TryRecvError::Empty) => {
                sleep(Duration::from_millis(100));
            }
992
            Ok(ShardStatus::Failed(rank)) => {
993
                tracing::error!("Shard {rank} failed to start");
994
                shutdown_shards(shutdown, shutdown_receiver);
995
                return Err(LauncherError::ShardCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
996
997
998
            }
            Err(TryRecvError::Disconnected) => {
                tracing::error!("Shard status channel disconnected");
999
                shutdown_shards(shutdown, shutdown_receiver);
1000
                return Err(LauncherError::ShardDisconnected);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1001
1002
1003
            }
        }
    }
1004
1005
    Ok(())
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1006

1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
fn compute_type(num_shard: usize) -> Option<String> {
    let output = Command::new("nvidia-smi")
        .args(["--query-gpu=gpu_name", "--format=csv"])
        .output()
        .ok()?;
    let output = String::from_utf8(output.stdout).ok()?;
    let fullname = output.split('\n').nth(1)?;
    let cardname = fullname.replace(' ', "-").to_lowercase();
    let compute_type = format!("{num_shard}-{cardname}");
    Some(compute_type)
}

1019
fn spawn_webserver(
1020
    num_shard: usize,
1021
    args: Args,
1022
    shutdown: Arc<AtomicBool>,
1023
    shutdown_receiver: &mpsc::Receiver<()>,
1024
) -> Result<Child, LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1025
1026
1027
    // All shard started
    // Start webserver
    tracing::info!("Starting Webserver");
OlivierDehaene's avatar
OlivierDehaene committed
1028
    let mut router_args = vec![
1029
        "--max-concurrent-requests".to_string(),
1030
        args.max_concurrent_requests.to_string(),
1031
        "--max-best-of".to_string(),
1032
        args.max_best_of.to_string(),
1033
        "--max-stop-sequences".to_string(),
1034
        args.max_stop_sequences.to_string(),
Nicolas Patry's avatar
Nicolas Patry committed
1035
1036
        "--max-top-n-tokens".to_string(),
        args.max_top_n_tokens.to_string(),
1037
        "--max-input-length".to_string(),
1038
        args.max_input_length.to_string(),
1039
        "--max-total-tokens".to_string(),
1040
        args.max_total_tokens.to_string(),
1041
1042
        "--max-batch-prefill-tokens".to_string(),
        args.max_batch_prefill_tokens.to_string(),
1043
        "--waiting-served-ratio".to_string(),
1044
        args.waiting_served_ratio.to_string(),
1045
        "--max-waiting-tokens".to_string(),
1046
        args.max_waiting_tokens.to_string(),
1047
1048
        "--validation-workers".to_string(),
        args.validation_workers.to_string(),
1049
1050
        "--hostname".to_string(),
        args.hostname.to_string(),
1051
        "--port".to_string(),
1052
        args.port.to_string(),
1053
        "--master-shard-uds-path".to_string(),
1054
        format!("{}-0", args.shard_uds_path),
1055
        "--tokenizer-name".to_string(),
1056
        args.model_id,
1057
1058
    ];

drbh's avatar
drbh committed
1059
1060
1061
1062
1063
    // Grammar support
    if args.disable_grammar_support {
        router_args.push("--disable-grammar-support".to_string());
    }

1064
1065
1066
1067
1068
1069
    // Tokenizer config path
    if let Some(ref tokenizer_config_path) = args.tokenizer_config_path {
        router_args.push("--tokenizer-config-path".to_string());
        router_args.push(tokenizer_config_path.to_string());
    }

1070
1071
1072
1073
1074
1075
    // Model optional max batch total tokens
    if let Some(max_batch_total_tokens) = args.max_batch_total_tokens {
        router_args.push("--max-batch-total-tokens".to_string());
        router_args.push(max_batch_total_tokens.to_string());
    }

1076
1077
1078
1079
1080
1081
    // Router optional max batch size
    if let Some(max_batch_size) = args.max_batch_size {
        router_args.push("--max-batch-size".to_string());
        router_args.push(max_batch_size.to_string());
    }

1082
1083
    // Model optional revision
    if let Some(ref revision) = args.revision {
OlivierDehaene's avatar
OlivierDehaene committed
1084
1085
        router_args.push("--revision".to_string());
        router_args.push(revision.to_string())
1086
1087
    }

1088
    if args.json_output {
OlivierDehaene's avatar
OlivierDehaene committed
1089
        router_args.push("--json-output".to_string());
1090
1091
    }

1092
    // OpenTelemetry
1093
    if let Some(otlp_endpoint) = args.otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
1094
1095
        router_args.push("--otlp-endpoint".to_string());
        router_args.push(otlp_endpoint);
1096
1097
1098
1099
    }

    // CORS origins
    for origin in args.cors_allow_origin.into_iter() {
OlivierDehaene's avatar
OlivierDehaene committed
1100
1101
        router_args.push("--cors-allow-origin".to_string());
        router_args.push(origin);
1102
1103
    }

1104
1105
    // Ngrok
    if args.ngrok {
OlivierDehaene's avatar
OlivierDehaene committed
1106
1107
        router_args.push("--ngrok".to_string());
        router_args.push("--ngrok-authtoken".to_string());
1108
1109
1110
        router_args.push(args.ngrok_authtoken.unwrap());
        router_args.push("--ngrok-edge".to_string());
        router_args.push(args.ngrok_edge.unwrap());
1111
1112
    }

1113
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
1114
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
1115

1116
1117
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
OlivierDehaene's avatar
OlivierDehaene committed
1118
        envs.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
1119
    };
1120

1121
1122
1123
1124
1125
1126
1127
    // Parse Compute type
    if let Ok(compute_type) = env::var("COMPUTE_TYPE") {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    } else if let Some(compute_type) = compute_type(num_shard) {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    }

1128
    let mut webserver = match Command::new("text-generation-router")
OlivierDehaene's avatar
OlivierDehaene committed
1129
1130
        .args(router_args)
        .envs(envs)
1131
1132
1133
1134
1135
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1136
1137
        Ok(p) => p,
        Err(err) => {
1138
            tracing::error!("Failed to start webserver: {}", err);
1139
1140
1141
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-router not found in PATH");
                tracing::error!("Please install it with `make install-router`")
1142
1143
            } else {
                tracing::error!("{}", err);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1144
            }
1145

1146
            shutdown_shards(shutdown, shutdown_receiver);
1147
            return Err(LauncherError::WebserverCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1148
1149
1150
        }
    };

1151
1152
1153
    // Redirect STDOUT and STDERR to the console
    let webserver_stdout = webserver.stdout.take().unwrap();
    let webserver_stderr = webserver.stderr.take().unwrap();
1154
1155

    thread::spawn(move || {
1156
1157
        let stdout = BufReader::new(webserver_stdout);
        let stderr = BufReader::new(webserver_stderr);
1158
        for line in stdout.lines() {
1159
            println!("{}", line.unwrap());
1160
        }
1161
1162
        for line in stderr.lines() {
            println!("{}", line.unwrap());
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1163
        }
1164
1165
1166
    });
    Ok(webserver)
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1167

OlivierDehaene's avatar
OlivierDehaene committed
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
fn terminate(process_name: &str, mut process: Child, timeout: Duration) -> io::Result<ExitStatus> {
    tracing::info!("Terminating {process_name}");

    let terminate_time = Instant::now();
    signal::kill(Pid::from_raw(process.id() as i32), Signal::SIGTERM).unwrap();

    tracing::info!("Waiting for {process_name} to gracefully shutdown");

    while terminate_time.elapsed() < timeout {
        if let Some(status) = process.try_wait()? {
            tracing::info!("{process_name} terminated");
            return Ok(status);
        }
        sleep(Duration::from_millis(100));
    }

    tracing::info!("Killing {process_name}");

    process.kill()?;
    let exit_status = process.wait()?;

    tracing::info!("{process_name} killed");
    Ok(exit_status)
}

1193
1194
fn main() -> Result<(), LauncherError> {
    // Pattern match configuration
1195
    let args: Args = Args::parse();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1196

1197
1198
1199
1200
    // Filter events with LOG_LEVEL
    let env_filter =
        EnvFilter::try_from_env("LOG_LEVEL").unwrap_or_else(|_| EnvFilter::new("info"));

1201
    if args.json_output {
1202
1203
1204
1205
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .json()
            .init();
1206
    } else {
1207
1208
1209
1210
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .compact()
            .init();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1211
1212
    }

1213
1214
1215
1216
1217
    if args.env {
        let env_runtime = env_runtime::Env::new();
        tracing::info!("{}", env_runtime);
    }

1218
1219
    tracing::info!("{:?}", args);

1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
    // Validate args
    if args.max_input_length >= args.max_total_tokens {
        return Err(LauncherError::ArgumentValidation(
            "`max_input_length` must be < `max_total_tokens`".to_string(),
        ));
    }
    if args.max_input_length as u32 > args.max_batch_prefill_tokens {
        return Err(LauncherError::ArgumentValidation(format!(
            "`max_batch_prefill_tokens` must be >= `max_input_length`. Given: {} and {}",
            args.max_batch_prefill_tokens, args.max_input_length
        )));
    }
1232

1233
1234
1235
1236
1237
    if args.validation_workers == 0 {
        return Err(LauncherError::ArgumentValidation(
            "`validation_workers` must be > 0".to_string(),
        ));
    }
1238
1239
1240
1241
1242
1243
    if args.trust_remote_code {
        tracing::warn!(
            "`trust_remote_code` is set. Trusting that model `{}` do not contain malicious code.",
            args.model_id
        );
    }
1244
1245

    let num_shard = find_num_shards(args.sharded, args.num_shard)?;
1246
1247
    if num_shard > 1 {
        tracing::info!("Sharding model on {num_shard} processes");
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1248
1249
    }

1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
    if let Some(ref max_batch_total_tokens) = args.max_batch_total_tokens {
        if args.max_batch_prefill_tokens > *max_batch_total_tokens {
            return Err(LauncherError::ArgumentValidation(format!(
                "`max_batch_prefill_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
                args.max_batch_prefill_tokens, max_batch_total_tokens
            )));
        }
        if args.max_total_tokens as u32 > *max_batch_total_tokens {
            return Err(LauncherError::ArgumentValidation(format!(
                "`max_total_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
                args.max_total_tokens, max_batch_total_tokens
            )));
        }
    }

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
    if args.ngrok {
        if args.ngrok_authtoken.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-authtoken` must be set when using ngrok tunneling".to_string(),
            ));
        }

        if args.ngrok_edge.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-edge` must be set when using ngrok tunneling".to_string(),
            ));
        }
    }

1279
1280
1281
1282
1283
1284
1285
    // Signal handler
    let running = Arc::new(AtomicBool::new(true));
    let r = running.clone();
    ctrlc::set_handler(move || {
        r.store(false, Ordering::SeqCst);
    })
    .expect("Error setting Ctrl-C handler");
1286

1287
    // Download and convert model weights
1288
    download_convert_model(&args, running.clone())?;
1289

OlivierDehaene's avatar
OlivierDehaene committed
1290
1291
1292
1293
1294
    if !running.load(Ordering::SeqCst) {
        // Launcher was asked to stop
        return Ok(());
    }

1295
    // Shared shutdown bool
1296
    let shutdown = Arc::new(AtomicBool::new(false));
1297
1298
1299
    // Shared shutdown channel
    // When shutting down, the main thread will wait for all senders to be dropped
    let (shutdown_sender, shutdown_receiver) = mpsc::channel();
1300

1301
1302
    // Shared channel to track shard status
    let (status_sender, status_receiver) = mpsc::channel();
1303

1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
    spawn_shards(
        num_shard,
        &args,
        shutdown.clone(),
        &shutdown_receiver,
        shutdown_sender,
        &status_receiver,
        status_sender,
        running.clone(),
    )?;
1314

1315
1316
1317
1318
1319
    // We might have received a termination signal
    if !running.load(Ordering::SeqCst) {
        shutdown_shards(shutdown, &shutdown_receiver);
        return Ok(());
    }
1320

1321
1322
    let mut webserver = spawn_webserver(num_shard, args, shutdown.clone(), &shutdown_receiver)
        .map_err(|err| {
OlivierDehaene's avatar
OlivierDehaene committed
1323
1324
1325
            shutdown_shards(shutdown.clone(), &shutdown_receiver);
            err
        })?;
1326
1327
1328
1329
1330

    // Default exit code
    let mut exit_code = Ok(());

    while running.load(Ordering::SeqCst) {
1331
        if let Ok(ShardStatus::Failed(rank)) = status_receiver.try_recv() {
OlivierDehaene's avatar
OlivierDehaene committed
1332
            tracing::error!("Shard {rank} crashed");
1333
1334
1335
1336
            exit_code = Err(LauncherError::ShardFailed);
            break;
        };

1337
        match webserver.try_wait().unwrap() {
1338
1339
1340
1341
1342
1343
1344
1345
1346
            Some(_) => {
                tracing::error!("Webserver Crashed");
                shutdown_shards(shutdown, &shutdown_receiver);
                return Err(LauncherError::WebserverFailed);
            }
            None => {
                sleep(Duration::from_millis(100));
            }
        };
1347
    }
1348
1349

    // Graceful termination
OlivierDehaene's avatar
OlivierDehaene committed
1350
    terminate("webserver", webserver, Duration::from_secs(90)).unwrap();
1351
1352
1353
    shutdown_shards(shutdown, &shutdown_receiver);

    exit_code
1354
}