main.rs 32.1 KB
Newer Older
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1
use clap::Parser;
2
use serde::Deserialize;
Nicolas Patry's avatar
Nicolas Patry committed
3
use std::env;
4
use std::ffi::OsString;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
5
6
7
8
9
10
11
12
13
14
use std::io::{BufRead, BufReader, Read};
use std::path::Path;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::TryRecvError;
use std::sync::Arc;
use std::sync::{mpsc, Mutex};
use std::thread;
use std::thread::sleep;
use std::time::{Duration, Instant};
use std::{fs, io};
15
use subprocess::{ExitStatus, Popen, PopenConfig, PopenError, Redirection};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
16

17
18
mod env_runtime;

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
19
20
21
22
/// App Configuration
#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]
struct Args {
23
24
25
26
27
    /// The name of the model to load.
    /// Can be a MODEL_ID as listed on <https://hf.co/models> like
    /// `gpt2` or `OpenAssistant/oasst-sft-1-pythia-12b`.
    /// Or it can be a local directory containing the necessary files
    /// as saved by `save_pretrained(...)` methods of transformers
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
28
    #[clap(default_value = "bigscience/bloom-560m", long, env)]
29
    model_id: String,
30
31
32

    /// The actual revision of the model if you're referring to a model
    /// on the hub. You can use a specific commit id or a branch like `refs/pr/2`.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
33
    #[clap(long, env)]
34
    revision: Option<String>,
35
36
37
38

    /// Wether to shard or not the model across multiple GPUs
    /// By default text-generation-inference will use all available GPUs to run
    /// the model. Setting it to `false` deactivates `num_shard`.
39
40
    #[clap(long, env)]
    sharded: Option<bool>,
41
42
43
44
45

    /// The number of shards to use if you don't want to use all GPUs on a given machine.
    /// You can use `CUDA_VISIBLE_DEVICE=0,1 text-generation-launcher... --num_shard 2`
    /// and `CUDA_VISIBLE_DEVICE=2,3 text-generation-launcher... --num_shard 2` to
    /// launch 2 copies with 2 shard each on a given machine with 4 GPUs for instance.
46
47
    #[clap(long, env)]
    num_shard: Option<usize>,
48
49
50

    /// Wether you want the model to be quantized or not. This will use bitsandbytes for
    /// quantization on the fly.
51
52
    #[clap(long, env)]
    quantize: bool,
53
54
55
56

    /// The maximum amount of concurrent requests for this particular deployment.
    /// Having a low limit will refuse clients requests instead of having them
    /// wait for too long and is usually good to handle backpressure correctly.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
57
58
    #[clap(default_value = "128", long, env)]
    max_concurrent_requests: usize,
59
60
61
62

    /// This is the maximum allowed value for clients to set `best_of`.
    /// Best of makes `n` generations at the same time, and return the best
    /// in terms of overall log probability over the entire generated sequence
63
64
    #[clap(default_value = "2", long, env)]
    max_best_of: usize,
65
66
67
68
69
70

    /// This is the maximum allowed value for clients to set `stop_sequences`.
    /// Stop sequences are used to allow the model to stop on more than just
    /// the EOS token, and enable more complex "prompting" where users can preprompt
    /// the model in a specific way and define their "own" stop token aligned with
    /// their prompt.
71
72
    #[clap(default_value = "4", long, env)]
    max_stop_sequences: usize,
73
74
75
76
77

    /// This is the maximum allowed input length (expressed in number of tokens)
    /// for users. The larger this value, the longer prompt users can send which
    /// can impact the overall memory required to handle the load.
    /// Please note that some models have a finite range of sequence they can handle.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
78
79
    #[clap(default_value = "1000", long, env)]
    max_input_length: usize,
80
81
82
83
84
85
86
87
88

    /// This is the most important value to set as it defines the "memory budget"
    /// of running clients requests.
    /// Clients will send input sequences and ask to generate `max_new_tokens`
    /// on top. with a value of `1512` users can send either a prompt of
    /// `1000` and ask for `512` new tokens, or send a prompt of `1` and ask for
    /// `1511` max_new_tokens.
    /// The larger this value, the larger amount each request will be in your RAM
    /// and the less effective batching can be.
89
90
    #[clap(default_value = "1512", long, env)]
    max_total_tokens: usize,
91
92
93
94

    /// The maximum allowed batch size during dynamic batching.
    /// Using `max_batch_total_tokens` should be favored in general
    /// as it's a finer way to control RAM usage.
95
96
    #[clap(long, env)]
    max_batch_size: Option<usize>,
97
98
99
100
101
102
103
104
105
106
107

    /// This represents the ratio of waiting queries vs running queries where
    /// you want to start considering pausing the running queries to include the waiting
    /// ones into the same batch.
    /// `waiting_served_ratio=1.2` Means when 12 queries are waiting and there's
    /// only 10 queries left in the current batch we check if we can fit those 12
    /// waiting queries into the batching strategy, and if yes, then batching happens
    /// delaying the 10 running queries by a `prefill` run.
    ///
    /// This setting is only applied if there is room in the batch
    /// as defined by `max_batch_total_tokens`.
108
109
    #[clap(default_value = "1.2", long, env)]
    waiting_served_ratio: f32,
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

    /// **IMPORTANT** This is one critical control to allow maximum usage
    /// of the available hardware.
    ///
    /// This represents the total amount of potential tokens within a batch.
    /// When using padding (not recommended) this would be equivalent of
    /// `batch_size` * `max_total_tokens`.
    ///
    /// However in the non-padded (flash attention) version this can be much finer.
    ///
    /// For `max_batch_total_tokens=1000`, you could fit `10` queries of `total_tokens=100`
    /// or a single query of `1000` tokens.
    ///
    /// So you don't have to control that finely
    /// `max_batch_size` or `max_total_tokens`. In fact you could mostly relax them if you
    /// want maximum flexibility. However, for your users if they are asking for the full amount of
    /// total tokens, they are likely to wait for a very long time to get a spot
    /// in the batch (since they are going to be alone) so setting `max_batch_size`
    /// and `max_total_tokens` can still be useful to prevent those long waiting times.
    ///
    /// Overall this number should be the largest possible amount that fits the
    /// remaining memory (after the model is loaded). Since the actual memory overhead
    /// depends on other parameters like if you're using quantization, flash attention
    /// or the model implementation, text-generation-inference cannot infer this number
    /// automatically.
135
136
    #[clap(default_value = "32000", long, env)]
    max_batch_total_tokens: u32,
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

    /// This setting defines how many tokens can be passed before forcing the waiting
    /// queries to be put on the batch (if the size of the batch allows for it).
    /// New queries require 1 `prefill` forward, which is different from `decode`
    /// and therefore you need to pause the running batch in order to run `prefill`
    /// to create the correct values for the waiting queries to be able to join the batch.
    ///
    /// With a value too small, queries will always "steal" the compute to run `prefill`
    /// and running queries will be delayed by a lot.
    ///
    /// With a value too big, waiting queries could wait for a very long time
    /// before being allowed a slot in the running batch. If your server is busy
    /// that means that requests that could run in ~2s on an empty server could
    /// end up running in ~20s because the query had to wait for 18s.
    ///
    /// This number is expressed in number of tokens to make it a bit more
    /// "model" agnostic, but what should really matter is the overall latency
    /// for end users.
155
156
    #[clap(default_value = "20", long, env)]
    max_waiting_tokens: usize,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
157
    #[clap(default_value = "3000", long, short, env)]
158
159

    /// The port to listen on.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
160
    port: u16,
161
162
163

    /// The name of the socket for gRPC communication between the webserver
    /// and the shards.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
164
165
    #[clap(default_value = "/tmp/text-generation-server", long, env)]
    shard_uds_path: String,
166
167

    /// The address the master shard will listen on. (setting used by torch distributed)
168
    #[clap(default_value = "localhost", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
169
    master_addr: String,
170
171

    /// The address the master port will listen on. (setting used by torch distributed)
172
    #[clap(default_value = "29500", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
173
    master_port: usize,
174
175
176

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
177
    #[clap(long, env)]
178
    huggingface_hub_cache: Option<String>,
179
180
181

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
182
183
    #[clap(long, env)]
    weights_cache_override: Option<String>,
184
185
186
187
188

    /// For some models (like bloom), text-generation-inference implemented custom
    /// cuda kernels to speed up inference. Those kernels were only tested on A100.
    /// Use this flag to disable them if you're running on different hardware and
    /// encounter issues.
189
    #[clap(long, env)]
190
    disable_custom_kernels: bool,
191
192

    /// Outputs the logs in JSON format (useful for telemetry)
193
    #[clap(long, env)]
194
    json_output: bool,
195

196
197
    #[clap(long, env)]
    otlp_endpoint: Option<String>,
198

199
200
    #[clap(long, env)]
    cors_allow_origin: Vec<String>,
201
202
203
204
    #[clap(long, env)]
    watermark_gamma: Option<f32>,
    #[clap(long, env)]
    watermark_delta: Option<f32>,
205
206
207
208

    /// Display a lot of information about your runtime environment
    #[clap(long, short, action)]
    env: bool,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
209
210
}

211
212
213
214
215
#[derive(Debug)]
enum ShardStatus {
    Ready,
    Failed((usize, String)),
}
216

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#[allow(clippy::too_many_arguments)]
fn shard_manager(
    model_id: String,
    revision: Option<String>,
    quantize: bool,
    uds_path: String,
    rank: usize,
    world_size: usize,
    master_addr: String,
    master_port: usize,
    huggingface_hub_cache: Option<String>,
    weights_cache_override: Option<String>,
    disable_custom_kernels: bool,
    watermark_gamma: Option<f32>,
    watermark_delta: Option<f32>,
    otlp_endpoint: Option<String>,
    status_sender: mpsc::Sender<ShardStatus>,
    shutdown: Arc<Mutex<bool>>,
    _shutdown_sender: mpsc::Sender<()>,
) {
    // Get UDS path
    let uds_string = format!("{uds_path}-{rank}");
    let uds = Path::new(&uds_string);
    // Clean previous runs
    fs::remove_file(uds).unwrap_or_default();

    // Process args
    let mut shard_argv = vec![
        "text-generation-server".to_string(),
        "serve".to_string(),
        model_id,
        "--uds-path".to_string(),
        uds_path,
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];

    // Activate tensor parallelism
    if world_size > 1 {
        shard_argv.push("--sharded".to_string());
258
259
    }

260
261
262
    if quantize {
        shard_argv.push("--quantize".to_string())
    }
263

264
265
266
267
268
    // Model optional revision
    if let Some(revision) = revision {
        shard_argv.push("--revision".to_string());
        shard_argv.push(revision)
    }
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
    // OpenTelemetry
    if let Some(otlp_endpoint) = otlp_endpoint {
        shard_argv.push("--otlp-endpoint".to_string());
        shard_argv.push(otlp_endpoint);
    }

    // Copy current process env
    let mut env: Vec<(OsString, OsString)> = env::vars_os().collect();

    // Torch Distributed Env vars
    env.push(("RANK".into(), rank.to_string().into()));
    env.push(("WORLD_SIZE".into(), world_size.to_string().into()));
    env.push(("MASTER_ADDR".into(), master_addr.into()));
    env.push(("MASTER_PORT".into(), master_port.to_string().into()));
    env.push(("NCCL_ASYNC_ERROR_HANDLING".into(), "1".into()));

    // Safetensors load fast
    env.push(("SAFETENSORS_FAST_GPU".into(), "1".into()));

    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
    env.push((
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));

    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
        env.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
    };

    // If huggingface_hub_cache is some, pass it to the shard
    // Useful when running inside a docker container
    if let Some(huggingface_hub_cache) = huggingface_hub_cache {
        env.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
    };

    // If weights_cache_override is some, pass it to the shard
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = weights_cache_override {
        env.push((
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

    // If disable_custom_kernels is true, pass it to the shard as an env var
    if disable_custom_kernels {
        env.push(("DISABLE_CUSTOM_KERNELS".into(), "True".into()))
    }

    // Watermark Gamma
    if let Some(watermark_gamma) = watermark_gamma {
        env.push(("WATERMARK_GAMMA".into(), watermark_gamma.to_string().into()))
    }

    // Watermark Delta
    if let Some(watermark_delta) = watermark_delta {
        env.push(("WATERMARK_DELTA".into(), watermark_delta.to_string().into()))
    }

    // Start process
    tracing::info!("Starting shard {rank}");
    let mut p = match Popen::create(
        &shard_argv,
        PopenConfig {
            stdout: Redirection::Pipe,
            stderr: Redirection::Pipe,
            // Needed for the shutdown procedure
            setpgid: true,
            // NCCL env vars
            env: Some(env),
            ..Default::default()
        },
    ) {
        Ok(p) => p,
        Err(err) => {
            if let PopenError::IoError(ref err) = err {
                if err.kind() == io::ErrorKind::NotFound {
                    tracing::error!("text-generation-server not found in PATH");
                    tracing::error!("Please install it with `make install-server`")
351
352
                }
            }
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
            status_sender
                .send(ShardStatus::Failed((rank, err.to_string())))
                .unwrap();
            return;
        }
    };

    // Redirect STDOUT to the console
    let shard_stdout = p.stdout.take().unwrap();

    thread::spawn(move || {
        // Enter shard-manager tracing span
        let stdout = BufReader::new(shard_stdout);
        let _span = tracing::span!(tracing::Level::INFO, "shard-manager", rank = rank).entered();
        for line in stdout.lines() {
            // Parse loguru logs
            if let Ok(log) = serde_json::from_str::<PythonLogMessage>(&line.unwrap()) {
                log.trace();
            }
        }
    });

    let mut ready = false;
    let start_time = Instant::now();
    let mut wait_time = Instant::now();
    loop {
        // Process exited
        if p.poll().is_some() {
            let mut err = String::new();
            p.stderr.take().unwrap().read_to_string(&mut err).unwrap();
            status_sender
                .send(ShardStatus::Failed((rank, err)))
                .unwrap();
            return;
        }

        // We received a shutdown signal
        if *shutdown.lock().unwrap() {
            p.terminate().unwrap();
            let _ = p.wait_timeout(Duration::from_secs(90));
            tracing::info!("Shard {rank} terminated");
            return;
        }

        // Shard is ready
        if uds.exists() && !ready {
            tracing::info!("Shard {rank} ready in {:?}", start_time.elapsed());
            status_sender.send(ShardStatus::Ready).unwrap();
            ready = true;
        } else if !ready && wait_time.elapsed() > Duration::from_secs(10) {
            tracing::info!("Waiting for shard {rank} to be ready...");
            wait_time = Instant::now();
        }
        sleep(Duration::from_millis(100));
    }
}

fn shutdown_shards(shutdown: Arc<Mutex<bool>>, shutdown_receiver: &mpsc::Receiver<()>) {
    tracing::info!("Shutting down shards");
    // Update shutdown value to true
    // This will be picked up by the shard manager
    {
        let mut shutdown = shutdown.lock().unwrap();
        *shutdown = true;
    }

    // Wait for shards to shutdown
    // This will block till all shutdown_sender are dropped
    let _ = shutdown_receiver.recv();
}

fn num_cuda_devices() -> Option<usize> {
    if let Ok(cuda_visible_devices) = env::var("CUDA_VISIBLE_DEVICES") {
        let n_devices = cuda_visible_devices.split(',').count();
        return Some(n_devices);
    }
    None
}

#[derive(Deserialize)]
#[serde(rename_all = "UPPERCASE")]
enum PythonLogLevelEnum {
    Trace,
    Debug,
    Info,
    Success,
    Warning,
    Error,
    Critical,
}

#[derive(Deserialize)]
struct PythonLogLevel {
    name: PythonLogLevelEnum,
}

#[derive(Deserialize)]
struct PythonLogRecord {
    level: PythonLogLevel,
}

#[derive(Deserialize)]
struct PythonLogMessage {
    text: String,
    record: PythonLogRecord,
}

impl PythonLogMessage {
    fn trace(&self) {
        match self.record.level.name {
            PythonLogLevelEnum::Trace => tracing::trace!("{}", self.text),
            PythonLogLevelEnum::Debug => tracing::debug!("{}", self.text),
            PythonLogLevelEnum::Info => tracing::info!("{}", self.text),
            PythonLogLevelEnum::Success => tracing::info!("{}", self.text),
            PythonLogLevelEnum::Warning => tracing::warn!("{}", self.text),
            PythonLogLevelEnum::Error => tracing::error!("{}", self.text),
            PythonLogLevelEnum::Critical => tracing::error!("{}", self.text),
        }
    }
}

fn find_num_shards(sharded: Option<bool>, num_shard: Option<usize>) -> usize {
    // get the number of shards given `sharded` and `num_shard`
    let num_shard = match (sharded, num_shard) {
        (Some(true), None) => {
            // try to default to the number of available GPUs
            tracing::info!("Parsing num_shard from CUDA_VISIBLE_DEVICES");
            let n_devices =
                num_cuda_devices().expect("--num-shard and CUDA_VISIBLE_DEVICES are not set");
            if n_devices <= 1 {
                panic!("`sharded` is true but only found {n_devices} CUDA devices");
484
            }
485
            n_devices
486
        }
487
488
489
490
491
492
        (Some(true), Some(num_shard)) => {
            // we can't have only one shard while sharded
            if num_shard <= 1 {
                panic!("`sharded` is true but `num_shard` <= 1");
            }
            num_shard
493
        }
494
495
496
497
        (Some(false), Some(num_shard)) => num_shard,
        (Some(false), None) => 1,
        (None, None) => num_cuda_devices().unwrap_or(1),
        (None, Some(num_shard)) => num_shard,
498
    };
499
500
501
    if num_shard < 1 {
        panic!("`num_shard` cannot be < 1");
    }
502
503
    num_shard
}
504

505
506
507
508
509
510
511
512
513
#[derive(Debug)]
enum LauncherError {
    DownloadError,
    ShardCannotStart,
    ShardDisconnected,
    ShardFailed,
    WebserverFailed,
    WebserverCannotStart,
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
514

515
516
517
518
519
fn download_convert_model(
    args: &Args,
    auto_convert: bool,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
520
521
522
523
524
525
526
527
528
529
    let mut download_argv = vec![
        "text-generation-server".to_string(),
        "download-weights".to_string(),
        args.model_id.to_string(),
        "--extension".to_string(),
        ".safetensors".to_string(),
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];
530

531
532
533
534
535
    // Auto convert weights to safetensors
    if auto_convert {
        download_argv.push("--auto-convert".to_string());
    }

536
537
538
539
540
    // Model optional revision
    if let Some(revision) = &args.revision {
        download_argv.push("--revision".to_string());
        download_argv.push(revision.to_string())
    }
541

542
543
    // Copy current process env
    let mut env: Vec<(OsString, OsString)> = env::vars_os().collect();
544

545
546
547
548
549
    // If huggingface_hub_cache is set, pass it to the shard
    // Useful when running inside a docker container
    if let Some(ref huggingface_hub_cache) = args.huggingface_hub_cache {
        env.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
    };
550

551
552
553
554
555
556
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
    env.push((
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));
557

558
559
560
561
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
        env.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
    };
562

563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
    // Start process
    tracing::info!("Starting download process.");
    let mut download_process = match Popen::create(
        &download_argv,
        PopenConfig {
            stdout: Redirection::Pipe,
            stderr: Redirection::Pipe,
            // Needed for the shutdown procedure
            setpgid: true,
            env: Some(env),
            ..Default::default()
        },
    ) {
        Ok(p) => p,
        Err(err) => {
            if let PopenError::IoError(ref err) = err {
                if err.kind() == io::ErrorKind::NotFound {
                    tracing::error!("text-generation-server not found in PATH");
                    tracing::error!("Please install it with `make install-server`")
582
583
                }
            }
584
585
586
            return Err(LauncherError::DownloadError);
        }
    };
587

588
589
590
591
592
593
594
595
596
597
    // Redirect STDOUT to the console
    let download_stdout = download_process.stdout.take().unwrap();
    thread::spawn(move || {
        // Enter download tracing span
        let stdout = BufReader::new(download_stdout);
        let _span = tracing::span!(tracing::Level::INFO, "download").entered();
        for line in stdout.lines() {
            // Parse loguru logs
            if let Ok(log) = serde_json::from_str::<PythonLogMessage>(&line.unwrap()) {
                log.trace();
598
            }
599
600
        }
    });
601

602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
    loop {
        if let Some(status) = download_process.poll() {
            match status {
                ExitStatus::Exited(exit_code) => {
                    if exit_code == 0 {
                        tracing::info!("Successfully downloaded weights.");
                        break;
                    } else {
                        let mut err = String::new();
                        download_process
                            .stderr
                            .take()
                            .unwrap()
                            .read_to_string(&mut err)
                            .unwrap();
                        tracing::error!("Download encountered an error: {err}");
                        return Err(LauncherError::DownloadError);
619
620
                    }
                }
621
622
623
624
                _ => {
                    tracing::error!("Download process exited with an unknown status.");
                    return Err(LauncherError::DownloadError);
                }
625
626
            }
        }
627
628
629
630
631
632
633
634
635
636
        if !running.load(Ordering::SeqCst) {
            download_process.terminate().unwrap();
            tracing::info!("Waiting for download process to gracefully shutdown");
            download_process
                .wait_timeout(Duration::from_secs(90))
                .unwrap();
            tracing::info!("Download process terminated");
            return Ok(());
        }
        sleep(Duration::from_millis(100));
637
    }
638
639
    Ok(())
}
640

641
#[allow(clippy::too_many_arguments)]
642
643
644
645
646
647
648
649
650
651
fn spawn_shards(
    num_shard: usize,
    args: &Args,
    shutdown: Arc<Mutex<bool>>,
    shutdown_receiver: &mpsc::Receiver<()>,
    shutdown_sender: mpsc::Sender<()>,
    status_receiver: &mpsc::Receiver<ShardStatus>,
    status_sender: mpsc::Sender<ShardStatus>,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
652
653
    // Start shard processes
    for rank in 0..num_shard {
654
655
656
657
658
659
        let model_id = args.model_id.clone();
        let revision = args.revision.clone();
        let uds_path = args.shard_uds_path.clone();
        let master_addr = args.master_addr.clone();
        let huggingface_hub_cache = args.huggingface_hub_cache.clone();
        let weights_cache_override = args.weights_cache_override.clone();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
660
661
662
        let status_sender = status_sender.clone();
        let shutdown = shutdown.clone();
        let shutdown_sender = shutdown_sender.clone();
663
        let otlp_endpoint = args.otlp_endpoint.clone();
664
665
666
667
668
        let quantize = args.quantize;
        let master_port = args.master_port;
        let disable_custom_kernels = args.disable_custom_kernels;
        let watermark_gamma = args.watermark_gamma;
        let watermark_delta = args.watermark_delta;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
669
670
        thread::spawn(move || {
            shard_manager(
671
                model_id,
672
                revision,
673
                quantize,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
674
675
676
677
678
                uds_path,
                rank,
                num_shard,
                master_addr,
                master_port,
679
680
                huggingface_hub_cache,
                weights_cache_override,
681
                disable_custom_kernels,
682
683
                watermark_gamma,
                watermark_delta,
684
                otlp_endpoint,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
                status_sender,
                shutdown,
                shutdown_sender,
            )
        });
    }
    drop(shutdown_sender);

    // Wait for shard to start
    let mut shard_ready = 0;
    while running.load(Ordering::SeqCst) {
        match status_receiver.try_recv() {
            Ok(ShardStatus::Ready) => {
                shard_ready += 1;
                if shard_ready == num_shard {
                    break;
                }
            }
            Err(TryRecvError::Empty) => {
                sleep(Duration::from_millis(100));
            }
706
707
            Ok(ShardStatus::Failed((rank, err))) => {
                tracing::error!("Shard {} failed to start:\n{}", rank, err);
708
                shutdown_shards(shutdown, shutdown_receiver);
709
                return Err(LauncherError::ShardCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
710
711
712
            }
            Err(TryRecvError::Disconnected) => {
                tracing::error!("Shard status channel disconnected");
713
                shutdown_shards(shutdown, shutdown_receiver);
714
                return Err(LauncherError::ShardDisconnected);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
715
716
717
            }
        }
    }
718
719
    Ok(())
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
720

721
722
723
724
725
fn spawn_webserver(
    args: Args,
    shutdown: Arc<Mutex<bool>>,
    shutdown_receiver: &mpsc::Receiver<()>,
) -> Result<Popen, LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
726
727
728
    // All shard started
    // Start webserver
    tracing::info!("Starting Webserver");
729
730
731
    let mut argv = vec![
        "text-generation-router".to_string(),
        "--max-concurrent-requests".to_string(),
732
        args.max_concurrent_requests.to_string(),
733
        "--max-best-of".to_string(),
734
        args.max_best_of.to_string(),
735
        "--max-stop-sequences".to_string(),
736
        args.max_stop_sequences.to_string(),
737
        "--max-input-length".to_string(),
738
        args.max_input_length.to_string(),
739
        "--max-total-tokens".to_string(),
740
        args.max_total_tokens.to_string(),
741
        "--waiting-served-ratio".to_string(),
742
        args.waiting_served_ratio.to_string(),
743
        "--max-waiting-tokens".to_string(),
744
        args.max_waiting_tokens.to_string(),
745
        "--port".to_string(),
746
        args.port.to_string(),
747
        "--master-shard-uds-path".to_string(),
748
        format!("{}-0", args.shard_uds_path),
749
        "--tokenizer-name".to_string(),
750
        args.model_id,
751
752
    ];

753
    // Deprecate max_batch_size
754
    if let Some(max_batch_size) = args.max_batch_size {
755
        argv.push("--max-batch-size".to_string());
756
757
758
759
        argv.push(max_batch_size.to_string())
    } else {
        argv.push("--max-batch-total-tokens".to_string());
        argv.push(args.max_batch_total_tokens.to_string())
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
760
761
    }

762
763
764
765
    // Model optional revision
    if let Some(ref revision) = args.revision {
        argv.push("--revision".to_string());
        argv.push(revision.to_string())
766
767
    }

768
769
    if args.json_output {
        argv.push("--json-output".to_string());
770
771
    }

772
    // OpenTelemetry
773
774
775
776
777
778
779
780
781
    if let Some(otlp_endpoint) = args.otlp_endpoint {
        argv.push("--otlp-endpoint".to_string());
        argv.push(otlp_endpoint);
    }

    // CORS origins
    for origin in args.cors_allow_origin.into_iter() {
        argv.push("--cors-allow-origin".to_string());
        argv.push(origin);
782
783
    }

784
785
786
    // Copy current process env
    let mut env: Vec<(OsString, OsString)> = env::vars_os().collect();

787
788
789
790
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
        env.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
    };
791

792
793
    let mut webserver = match Popen::create(
        &argv,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
794
795
796
797
798
        PopenConfig {
            stdout: Redirection::Pipe,
            stderr: Redirection::Pipe,
            // Needed for the shutdown procedure
            setpgid: true,
Nicolas Patry's avatar
Nicolas Patry committed
799
            env: Some(env),
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
800
801
802
803
804
            ..Default::default()
        },
    ) {
        Ok(p) => p,
        Err(err) => {
805
806
            tracing::error!("Failed to start webserver: {}", err);
            if let PopenError::IoError(err) = err {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
807
                if err.kind() == io::ErrorKind::NotFound {
808
809
                    tracing::error!("text-generation-router not found in PATH");
                    tracing::error!("Please install it with `make install-router`")
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
810
                }
811
812
            } else {
                tracing::error!("{}", err);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
813
            }
814

815
            shutdown_shards(shutdown, shutdown_receiver);
816
            return Err(LauncherError::WebserverCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
817
818
819
        }
    };

820
821
822
    // Redirect STDOUT and STDERR to the console
    let webserver_stdout = webserver.stdout.take().unwrap();
    let webserver_stderr = webserver.stderr.take().unwrap();
823
824

    thread::spawn(move || {
825
826
        let stdout = BufReader::new(webserver_stdout);
        let stderr = BufReader::new(webserver_stderr);
827
        for line in stdout.lines() {
828
            println!("{}", line.unwrap());
829
        }
830
831
        for line in stderr.lines() {
            println!("{}", line.unwrap());
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
832
        }
833
834
835
    });
    Ok(webserver)
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
836

837
838
839
fn main() -> Result<(), LauncherError> {
    // Pattern match configuration
    let args = Args::parse();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
840

841
842
843
844
    if args.json_output {
        tracing_subscriber::fmt().json().init();
    } else {
        tracing_subscriber::fmt().compact().init();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
845
846
    }

847
848
849
850
851
    if args.env {
        let env_runtime = env_runtime::Env::new();
        tracing::info!("{}", env_runtime);
    }

852
853
854
855
856
    tracing::info!("{:?}", args);

    let num_shard = find_num_shards(args.sharded, args.num_shard);
    if num_shard > 1 {
        tracing::info!("Sharding model on {num_shard} processes");
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
857
858
    }

859
860
861
862
863
864
865
    // Signal handler
    let running = Arc::new(AtomicBool::new(true));
    let r = running.clone();
    ctrlc::set_handler(move || {
        r.store(false, Ordering::SeqCst);
    })
    .expect("Error setting Ctrl-C handler");
866

867
868
869
870
871
    // auto_convert is only needed for sharded models as we do not require safetensors in
    // single shard mode
    let auto_convert = num_shard > 1;
    // Download and convert model weights
    download_convert_model(&args, auto_convert, running.clone())?;
872

873
874
875
876
877
    // Shared shutdown bool
    let shutdown = Arc::new(Mutex::new(false));
    // Shared shutdown channel
    // When shutting down, the main thread will wait for all senders to be dropped
    let (shutdown_sender, shutdown_receiver) = mpsc::channel();
878

879
880
    // Shared channel to track shard status
    let (status_sender, status_receiver) = mpsc::channel();
881

882
883
884
885
886
887
888
889
890
891
    spawn_shards(
        num_shard,
        &args,
        shutdown.clone(),
        &shutdown_receiver,
        shutdown_sender,
        &status_receiver,
        status_sender,
        running.clone(),
    )?;
892

893
894
895
896
897
    // We might have received a termination signal
    if !running.load(Ordering::SeqCst) {
        shutdown_shards(shutdown, &shutdown_receiver);
        return Ok(());
    }
898

899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
    let mut webserver = spawn_webserver(args, shutdown.clone(), &shutdown_receiver)?;

    // Default exit code
    let mut exit_code = Ok(());

    while running.load(Ordering::SeqCst) {
        if let Ok(ShardStatus::Failed((rank, err))) = status_receiver.try_recv() {
            tracing::error!("Shard {rank} failed:\n{err}");
            exit_code = Err(LauncherError::ShardFailed);
            break;
        };

        match webserver.poll() {
            Some(_) => {
                tracing::error!("Webserver Crashed");
                shutdown_shards(shutdown, &shutdown_receiver);
                return Err(LauncherError::WebserverFailed);
            }
            None => {
                sleep(Duration::from_millis(100));
            }
        };
921
    }
922
923
924
925
926
927
928
929
930

    // Graceful termination
    webserver.terminate().unwrap();
    tracing::info!("Waiting for webserver to gracefully shutdown");
    webserver.wait_timeout(Duration::from_secs(90)).unwrap();
    tracing::info!("Webserver terminated");
    shutdown_shards(shutdown, &shutdown_receiver);

    exit_code
931
}