main.rs 55.3 KB
Newer Older
1
use clap::{Parser, ValueEnum};
2
use hf_hub::{api::sync::Api, Repo, RepoType};
3
4
use nix::sys::signal::{self, Signal};
use nix::unistd::Pid;
5
use serde::Deserialize;
Nicolas Patry's avatar
Nicolas Patry committed
6
use std::env;
7
use std::ffi::OsString;
8
use std::io::{BufRead, BufReader, Lines};
9
use std::os::unix::process::{CommandExt, ExitStatusExt};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
10
use std::path::Path;
OlivierDehaene's avatar
OlivierDehaene committed
11
use std::process::{Child, Command, ExitStatus, Stdio};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
12
13
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::TryRecvError;
14
use std::sync::{mpsc, Arc};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
15
16
17
18
use std::thread;
use std::thread::sleep;
use std::time::{Duration, Instant};
use std::{fs, io};
19
use thiserror::Error;
20
use tracing_subscriber::{filter::LevelFilter, EnvFilter};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
21

22
23
mod env_runtime;

24
#[derive(Deserialize)]
25
struct RawConfig {
26
    max_position_embeddings: Option<usize>,
27
    n_positions: Option<usize>,
28
29
30
    max_seq_len: Option<usize>,
}

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#[derive(Deserialize)]
struct Config {
    max_position_embeddings: Option<usize>,
}

impl From<RawConfig> for Config {
    fn from(other: RawConfig) -> Self {
        let max_position_embeddings = other
            .max_position_embeddings
            .or(other.max_seq_len)
            .or(other.n_positions);
        Config {
            max_position_embeddings,
        }
    }
}

48
49
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Quantization {
50
    /// 4 bit quantization. Requires a specific AWQ quantized model:
51
    ///   <https://hf.co/models?search=awq>.
52
    /// Should replace GPTQ models wherever possible because of the better latency
53
54
55
    Awq,
    /// 8 bit quantization, doesn't require specific model.
    /// Should be a drop-in replacement to bitsandbytes with much better performance.
56
    /// Kernels are from <https://github.com/NetEase-FuXi/EETQ.git>
57
    Eetq,
58
59
60
61
    /// Variable bit quantization. Requires a specific EXL2 quantized model:
    /// <https://hf.co/models?search=exl2>. Requires exllama2 kernels and does
    /// not support tensor parallelism (num_shard > 1).
    Exl2,
62
    /// 4 bit quantization. Requires a specific GTPQ quantized model: <https://hf.co/models?search=gptq>.
63
    /// text-generation-inference will use exllama (faster) kernels wherever possible, and use
64
65
66
67
68
69
70
71
72
    /// triton kernel (wider support) when it's not.
    /// AWQ has faster kernels.
    Gptq,
    /// Bitsandbytes 8bit. Can be applied on any model, will cut the memory requirement in half,
    /// but it is known that the model will be much slower to run than the native f16.
    #[deprecated(
        since = "1.1.0",
        note = "Use `eetq` instead, which provides better latencies overall and is drop-in in most cases"
    )]
73
    Bitsandbytes,
74
75
    /// Bitsandbytes 4bit. Can be applied on any model, will cut the memory requirement by 4x,
    /// but it is known that the model will be much slower to run than the native f16.
Nicolas Patry's avatar
Nicolas Patry committed
76
    BitsandbytesNF4,
77
78
    /// Bitsandbytes 4bit. nf4 should be preferred in most cases but maybe this one has better
    /// perplexity performance for you model
Nicolas Patry's avatar
Nicolas Patry committed
79
    BitsandbytesFP4,
Nicolas Patry's avatar
Nicolas Patry committed
80
81
82
83
84
    /// [FP8](https://developer.nvidia.com/blog/nvidia-arm-and-intel-publish-fp8-specification-for-standardization-as-an-interchange-format-for-ai/) (e4m3) works on H100 and above
    /// This dtype has native ops should be the fastest if available.
    /// This is currently not the fastest because of local unpacking + padding to satisfy matrix
    /// multiplication limitations.
    Fp8,
85
86
87
88
89
90
}

impl std::fmt::Display for Quantization {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
91
92
            #[allow(deprecated)]
            // Use `eetq` instead, which provides better latencies overall and is drop-in in most cases
93
94
95
            Quantization::Bitsandbytes => {
                write!(f, "bitsandbytes")
            }
Nicolas Patry's avatar
Nicolas Patry committed
96
97
98
99
100
101
            Quantization::BitsandbytesNF4 => {
                write!(f, "bitsandbytes-nf4")
            }
            Quantization::BitsandbytesFP4 => {
                write!(f, "bitsandbytes-fp4")
            }
102
103
104
            Quantization::Exl2 => {
                write!(f, "exl2")
            }
105
106
107
            Quantization::Gptq => {
                write!(f, "gptq")
            }
108
109
110
            Quantization::Awq => {
                write!(f, "awq")
            }
111
112
113
            Quantization::Eetq => {
                write!(f, "eetq")
            }
Nicolas Patry's avatar
Nicolas Patry committed
114
115
116
            Quantization::Fp8 => {
                write!(f, "fp8")
            }
117
118
119
120
        }
    }
}

121
122
123
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Dtype {
    Float16,
124
    #[clap(name = "bfloat16")]
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
    BFloat16,
}

impl std::fmt::Display for Dtype {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            Dtype::Float16 => {
                write!(f, "float16")
            }
            Dtype::BFloat16 => {
                write!(f, "bfloat16")
            }
        }
    }
}

Nicolas Patry's avatar
Nicolas Patry committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#[derive(Clone, Copy, Debug, ValueEnum)]
enum RopeScaling {
    Linear,
    Dynamic,
}

impl std::fmt::Display for RopeScaling {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            RopeScaling::Linear => {
                write!(f, "linear")
            }
            RopeScaling::Dynamic => {
                write!(f, "dynamic")
            }
        }
    }
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
162
163
164
165
/// App Configuration
#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]
struct Args {
166
167
168
169
170
    /// The name of the model to load.
    /// Can be a MODEL_ID as listed on <https://hf.co/models> like
    /// `gpt2` or `OpenAssistant/oasst-sft-1-pythia-12b`.
    /// Or it can be a local directory containing the necessary files
    /// as saved by `save_pretrained(...)` methods of transformers
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
171
    #[clap(default_value = "bigscience/bloom-560m", long, env)]
172
    model_id: String,
173
174
175

    /// The actual revision of the model if you're referring to a model
    /// on the hub. You can use a specific commit id or a branch like `refs/pr/2`.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
176
    #[clap(long, env)]
177
    revision: Option<String>,
178

179
180
181
182
183
    /// The number of tokenizer workers used for payload validation and truncation inside the
    /// router.
    #[clap(default_value = "2", long, env)]
    validation_workers: usize,

184
    /// Whether to shard the model across multiple GPUs
185
186
    /// By default text-generation-inference will use all available GPUs to run
    /// the model. Setting it to `false` deactivates `num_shard`.
187
188
    #[clap(long, env)]
    sharded: Option<bool>,
189
190

    /// The number of shards to use if you don't want to use all GPUs on a given machine.
191
192
    /// You can use `CUDA_VISIBLE_DEVICES=0,1 text-generation-launcher... --num_shard 2`
    /// and `CUDA_VISIBLE_DEVICES=2,3 text-generation-launcher... --num_shard 2` to
193
    /// launch 2 copies with 2 shard each on a given machine with 4 GPUs for instance.
194
195
    #[clap(long, env)]
    num_shard: Option<usize>,
196

197
    /// Whether you want the model to be quantized.
198
199
    #[clap(long, env, value_enum)]
    quantize: Option<Quantization>,
200

Nicolas Patry's avatar
Nicolas Patry committed
201
202
203
204
205
206
207
    /// The number of input_ids to speculate on
    /// If using a medusa model, the heads will be picked up automatically
    /// Other wise, it will use n-gram speculation which is relatively free
    /// in terms of compute, but the speedup heavily depends on the task.
    #[clap(long, env)]
    speculate: Option<usize>,

208
209
210
211
    /// The dtype to be forced upon the model. This option cannot be used with `--quantize`.
    #[clap(long, env, value_enum)]
    dtype: Option<Dtype>,

212
213
214
215
216
217
    /// Whether you want to execute hub modelling code. Explicitly passing a `revision` is
    /// encouraged when loading a model with custom code to ensure no malicious code has been
    /// contributed in a newer revision.
    #[clap(long, env, value_enum)]
    trust_remote_code: bool,

218
219
220
    /// The maximum amount of concurrent requests for this particular deployment.
    /// Having a low limit will refuse clients requests instead of having them
    /// wait for too long and is usually good to handle backpressure correctly.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
221
222
    #[clap(default_value = "128", long, env)]
    max_concurrent_requests: usize,
223
224
225
226

    /// This is the maximum allowed value for clients to set `best_of`.
    /// Best of makes `n` generations at the same time, and return the best
    /// in terms of overall log probability over the entire generated sequence
227
228
    #[clap(default_value = "2", long, env)]
    max_best_of: usize,
229
230
231
232
233
234

    /// This is the maximum allowed value for clients to set `stop_sequences`.
    /// Stop sequences are used to allow the model to stop on more than just
    /// the EOS token, and enable more complex "prompting" where users can preprompt
    /// the model in a specific way and define their "own" stop token aligned with
    /// their prompt.
235
236
    #[clap(default_value = "4", long, env)]
    max_stop_sequences: usize,
237

Nicolas Patry's avatar
Nicolas Patry committed
238
    /// This is the maximum allowed value for clients to set `top_n_tokens`.
239
    /// `top_n_tokens` is used to return information about the the `n` most likely
Nicolas Patry's avatar
Nicolas Patry committed
240
241
242
243
244
245
    /// tokens at each generation step, instead of just the sampled token. This
    /// information can be used for downstream tasks like for classification or
    /// ranking.
    #[clap(default_value = "5", long, env)]
    max_top_n_tokens: u32,

246
247
248
249
    /// This is the maximum allowed input length (expressed in number of tokens)
    /// for users. The larger this value, the longer prompt users can send which
    /// can impact the overall memory required to handle the load.
    /// Please note that some models have a finite range of sequence they can handle.
250
251
252
253
254
255
256
    /// Default to min(max_position_embeddings - 1, 4095)
    #[clap(long, env)]
    max_input_tokens: Option<usize>,

    /// Legacy version of [`Args::max_input_tokens`].
    #[clap(long, env)]
    max_input_length: Option<usize>,
257
258
259
260
261
262
263
264
265

    /// This is the most important value to set as it defines the "memory budget"
    /// of running clients requests.
    /// Clients will send input sequences and ask to generate `max_new_tokens`
    /// on top. with a value of `1512` users can send either a prompt of
    /// `1000` and ask for `512` new tokens, or send a prompt of `1` and ask for
    /// `1511` max_new_tokens.
    /// The larger this value, the larger amount each request will be in your RAM
    /// and the less effective batching can be.
266
267
268
    /// Default to min(max_position_embeddings, 4096)
    #[clap(long, env)]
    max_total_tokens: Option<usize>,
269
270
271
272
273
274
275
276
277
278
279

    /// This represents the ratio of waiting queries vs running queries where
    /// you want to start considering pausing the running queries to include the waiting
    /// ones into the same batch.
    /// `waiting_served_ratio=1.2` Means when 12 queries are waiting and there's
    /// only 10 queries left in the current batch we check if we can fit those 12
    /// waiting queries into the batching strategy, and if yes, then batching happens
    /// delaying the 10 running queries by a `prefill` run.
    ///
    /// This setting is only applied if there is room in the batch
    /// as defined by `max_batch_total_tokens`.
280
    #[clap(default_value = "0.3", long, env)]
281
    waiting_served_ratio: f32,
282

283
284
285
    /// Limits the number of tokens for the prefill operation.
    /// Since this operation take the most memory and is compute bound, it is interesting
    /// to limit the number of requests that can be sent.
286
287
288
    /// Default to `max_input_tokens + 50` to give a bit of room.
    #[clap(long, env)]
    max_batch_prefill_tokens: Option<u32>,
289

290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
    /// **IMPORTANT** This is one critical control to allow maximum usage
    /// of the available hardware.
    ///
    /// This represents the total amount of potential tokens within a batch.
    /// When using padding (not recommended) this would be equivalent of
    /// `batch_size` * `max_total_tokens`.
    ///
    /// However in the non-padded (flash attention) version this can be much finer.
    ///
    /// For `max_batch_total_tokens=1000`, you could fit `10` queries of `total_tokens=100`
    /// or a single query of `1000` tokens.
    ///
    /// Overall this number should be the largest possible amount that fits the
    /// remaining memory (after the model is loaded). Since the actual memory overhead
    /// depends on other parameters like if you're using quantization, flash attention
    /// or the model implementation, text-generation-inference cannot infer this number
    /// automatically.
307
308
    #[clap(long, env)]
    max_batch_total_tokens: Option<u32>,
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326

    /// This setting defines how many tokens can be passed before forcing the waiting
    /// queries to be put on the batch (if the size of the batch allows for it).
    /// New queries require 1 `prefill` forward, which is different from `decode`
    /// and therefore you need to pause the running batch in order to run `prefill`
    /// to create the correct values for the waiting queries to be able to join the batch.
    ///
    /// With a value too small, queries will always "steal" the compute to run `prefill`
    /// and running queries will be delayed by a lot.
    ///
    /// With a value too big, waiting queries could wait for a very long time
    /// before being allowed a slot in the running batch. If your server is busy
    /// that means that requests that could run in ~2s on an empty server could
    /// end up running in ~20s because the query had to wait for 18s.
    ///
    /// This number is expressed in number of tokens to make it a bit more
    /// "model" agnostic, but what should really matter is the overall latency
    /// for end users.
327
328
    #[clap(default_value = "20", long, env)]
    max_waiting_tokens: usize,
329

330
331
332
333
334
    /// Enforce a maximum number of requests per batch
    /// Specific flag for hardware targets that do not support unpadded inference
    #[clap(long, env)]
    max_batch_size: Option<usize>,

335
336
    /// Specify the batch sizes to compute cuda graphs for.
    /// Use "0" to disable.
337
338
339
    /// Default = "1,2,4,8,16,32"
    #[clap(long, env, value_delimiter = ',')]
    cuda_graphs: Option<Vec<usize>>,
340

341
342
343
344
    /// The IP address to listen on
    #[clap(default_value = "0.0.0.0", long, env)]
    hostname: String,

345
    /// The port to listen on.
346
    #[clap(default_value = "3000", long, short, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
347
    port: u16,
348
349
350

    /// The name of the socket for gRPC communication between the webserver
    /// and the shards.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
351
352
    #[clap(default_value = "/tmp/text-generation-server", long, env)]
    shard_uds_path: String,
353
354

    /// The address the master shard will listen on. (setting used by torch distributed)
355
    #[clap(default_value = "localhost", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
356
    master_addr: String,
357
358

    /// The address the master port will listen on. (setting used by torch distributed)
359
    #[clap(default_value = "29500", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
360
    master_port: usize,
361
362
363

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
364
    #[clap(long, env)]
365
    huggingface_hub_cache: Option<String>,
366
367
368

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
369
370
    #[clap(long, env)]
    weights_cache_override: Option<String>,
371
372
373
374
375

    /// For some models (like bloom), text-generation-inference implemented custom
    /// cuda kernels to speed up inference. Those kernels were only tested on A100.
    /// Use this flag to disable them if you're running on different hardware and
    /// encounter issues.
376
    #[clap(long, env)]
377
    disable_custom_kernels: bool,
378

379
380
381
382
383
    /// Limit the CUDA available memory.
    /// The allowed value equals the total visible memory multiplied by cuda-memory-fraction.
    #[clap(default_value = "1.0", long, env)]
    cuda_memory_fraction: f32,

Nicolas Patry's avatar
Nicolas Patry committed
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
    /// Rope scaling will only be used for RoPE models
    /// and allow rescaling the position rotary to accomodate for
    /// larger prompts.
    ///
    /// Goes together with `rope_factor`.
    ///
    /// `--rope-factor 2.0` gives linear scaling with a factor of 2.0
    /// `--rope-scaling dynamic` gives dynamic scaling with a factor of 1.0
    /// `--rope-scaling linear` gives linear scaling with a factor of 1.0 (Nothing will be changed
    /// basically)
    ///
    /// `--rope-scaling linear --rope-factor` fully describes the scaling you want
    #[clap(long, env)]
    rope_scaling: Option<RopeScaling>,

    /// Rope scaling will only be used for RoPE models
    /// See `rope_scaling`
    #[clap(long, env)]
    rope_factor: Option<f32>,

404
    /// Outputs the logs in JSON format (useful for telemetry)
405
    #[clap(long, env)]
406
    json_output: bool,
407

408
409
    #[clap(long, env)]
    otlp_endpoint: Option<String>,
410

411
412
    #[clap(long, env)]
    cors_allow_origin: Vec<String>,
413
414
415
416
    #[clap(long, env)]
    watermark_gamma: Option<f32>,
    #[clap(long, env)]
    watermark_delta: Option<f32>,
417

418
419
420
421
422
423
424
425
    /// Enable ngrok tunneling
    #[clap(long, env)]
    ngrok: bool,

    /// ngrok authentication token
    #[clap(long, env)]
    ngrok_authtoken: Option<String>,

426
    /// ngrok edge
427
    #[clap(long, env)]
428
    ngrok_edge: Option<String>,
429

430
431
432
433
434
    /// The path to the tokenizer config file. This path is used to load the tokenizer configuration which may
    /// include a `chat_template`. If not provided, the default config will be used from the model hub.
    #[clap(long, env)]
    tokenizer_config_path: Option<String>,

drbh's avatar
drbh committed
435
436
437
438
439
    /// Disable outlines grammar constrained generation.
    /// This is a feature that allows you to generate text that follows a specific grammar.
    #[clap(long, env)]
    disable_grammar_support: bool,

440
441
442
    /// Display a lot of information about your runtime environment
    #[clap(long, short, action)]
    env: bool,
443
444
445
446

    /// Control the maximum number of inputs that a client can send in a single request
    #[clap(default_value = "4", long, env)]
    max_client_batch_size: usize,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
447
448
}

449
450
451
#[derive(Debug)]
enum ShardStatus {
    Ready,
452
    Failed(usize),
453
}
454

455
456
457
458
#[allow(clippy::too_many_arguments)]
fn shard_manager(
    model_id: String,
    revision: Option<String>,
459
    quantize: Option<Quantization>,
Nicolas Patry's avatar
Nicolas Patry committed
460
    speculate: Option<usize>,
461
    dtype: Option<Dtype>,
462
    trust_remote_code: bool,
463
464
465
466
467
468
469
470
471
472
    uds_path: String,
    rank: usize,
    world_size: usize,
    master_addr: String,
    master_port: usize,
    huggingface_hub_cache: Option<String>,
    weights_cache_override: Option<String>,
    disable_custom_kernels: bool,
    watermark_gamma: Option<f32>,
    watermark_delta: Option<f32>,
473
    cuda_graphs: Vec<usize>,
474
    cuda_memory_fraction: f32,
Nicolas Patry's avatar
Nicolas Patry committed
475
476
    rope_scaling: Option<RopeScaling>,
    rope_factor: Option<f32>,
477
478
    max_total_tokens: usize,
    max_batch_size: Option<usize>,
479
    otlp_endpoint: Option<String>,
480
    log_level: LevelFilter,
481
    status_sender: mpsc::Sender<ShardStatus>,
482
    shutdown: Arc<AtomicBool>,
483
484
    _shutdown_sender: mpsc::Sender<()>,
) {
485
486
487
    // Enter shard-manager tracing span
    let _span = tracing::span!(tracing::Level::INFO, "shard-manager", rank = rank).entered();

488
489
490
491
    // Get UDS path
    let uds_string = format!("{uds_path}-{rank}");
    let uds = Path::new(&uds_string);
    // Clean previous runs
492
493
494
    if uds.exists() {
        fs::remove_file(uds).unwrap();
    }
495
496

    // Process args
OlivierDehaene's avatar
OlivierDehaene committed
497
    let mut shard_args = vec![
498
499
500
501
502
        "serve".to_string(),
        model_id,
        "--uds-path".to_string(),
        uds_path,
        "--logger-level".to_string(),
503
        log_level.to_string().to_uppercase(),
504
505
506
        "--json-output".to_string(),
    ];

507
508
    // Activate trust remote code
    if trust_remote_code {
OlivierDehaene's avatar
OlivierDehaene committed
509
        shard_args.push("--trust-remote-code".to_string());
510
511
    }

512
513
    // Activate tensor parallelism
    if world_size > 1 {
OlivierDehaene's avatar
OlivierDehaene committed
514
        shard_args.push("--sharded".to_string());
515
516
    }

517
    if let Some(quantize) = quantize {
OlivierDehaene's avatar
OlivierDehaene committed
518
519
        shard_args.push("--quantize".to_string());
        shard_args.push(quantize.to_string())
520
    }
521

Nicolas Patry's avatar
Nicolas Patry committed
522
523
524
525
526
    if let Some(speculate) = speculate {
        shard_args.push("--speculate".to_string());
        shard_args.push(speculate.to_string())
    }

527
    if let Some(dtype) = dtype {
OlivierDehaene's avatar
OlivierDehaene committed
528
529
        shard_args.push("--dtype".to_string());
        shard_args.push(dtype.to_string())
530
531
    }

532
533
    // Model optional revision
    if let Some(revision) = revision {
OlivierDehaene's avatar
OlivierDehaene committed
534
535
        shard_args.push("--revision".to_string());
        shard_args.push(revision)
536
    }
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
537

Nicolas Patry's avatar
Nicolas Patry committed
538
539
540
541
542
543
    let rope = match (rope_scaling, rope_factor) {
        (None, None) => None,
        (Some(scaling), None) => Some((scaling, 1.0)),
        (Some(scaling), Some(factor)) => Some((scaling, factor)),
        (None, Some(factor)) => Some((RopeScaling::Linear, factor)),
    };
544

545
546
    // OpenTelemetry
    if let Some(otlp_endpoint) = otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
547
548
        shard_args.push("--otlp-endpoint".to_string());
        shard_args.push(otlp_endpoint);
549
550
551
    }

    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
552
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
553

554
555
556
    // Remove LOG_LEVEL if present
    envs.retain(|(name, _)| name != "LOG_LEVEL");

557
    // Torch Distributed Env vars
OlivierDehaene's avatar
OlivierDehaene committed
558
559
560
561
    envs.push(("RANK".into(), rank.to_string().into()));
    envs.push(("WORLD_SIZE".into(), world_size.to_string().into()));
    envs.push(("MASTER_ADDR".into(), master_addr.into()));
    envs.push(("MASTER_PORT".into(), master_port.to_string().into()));
562
    envs.push(("TORCH_NCCL_AVOID_RECORD_STREAMS".into(), "1".into()));
563

564
565
566
567
568
569
    // CUDA memory fraction
    envs.push((
        "CUDA_MEMORY_FRACTION".into(),
        cuda_memory_fraction.to_string().into(),
    ));

570
    // Safetensors load fast
OlivierDehaene's avatar
OlivierDehaene committed
571
    envs.push(("SAFETENSORS_FAST_GPU".into(), "1".into()));
572

573
574
575
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

576
577
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
578
    envs.push((
579
580
581
582
583
584
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));

    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
OlivierDehaene's avatar
OlivierDehaene committed
585
        envs.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
586
587
    };

Nicolas Patry's avatar
Nicolas Patry committed
588
589
590
591
592
593
594
595
596
    // Detect rope scaling
    // Sending as env instead of CLI args to not bloat everything
    // those only can be used by RoPE models, so passing information around
    // for all models will complexify code unnecessarily
    if let Some((scaling, factor)) = rope {
        envs.push(("ROPE_SCALING".into(), scaling.to_string().into()));
        envs.push(("ROPE_FACTOR".into(), factor.to_string().into()));
    }

597
598
599
600
601
602
603
604
    envs.push((
        "MAX_TOTAL_TOKENS".into(),
        max_total_tokens.to_string().into(),
    ));
    if let Some(max_batch_size) = max_batch_size {
        envs.push(("MAX_BATCH_SIZE".into(), max_batch_size.to_string().into()));
    }

605
606
607
    // If huggingface_hub_cache is some, pass it to the shard
    // Useful when running inside a docker container
    if let Some(huggingface_hub_cache) = huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
608
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
609
610
611
612
613
    };

    // If weights_cache_override is some, pass it to the shard
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
614
        envs.push((
615
616
617
618
619
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

620
    // Enable experimental support for cuda graphs
621
622
623
624
625
626
627
628
629
630
    if !cuda_graphs.is_empty() {
        envs.push((
            "CUDA_GRAPHS".into(),
            cuda_graphs
                .into_iter()
                .map(|c| c.to_string())
                .collect::<Vec<_>>()
                .join(",")
                .into(),
        ));
631
632
    }

633
634
    // If disable_custom_kernels is true, pass it to the shard as an env var
    if disable_custom_kernels {
OlivierDehaene's avatar
OlivierDehaene committed
635
        envs.push(("DISABLE_CUSTOM_KERNELS".into(), "True".into()))
636
637
638
639
    }

    // Watermark Gamma
    if let Some(watermark_gamma) = watermark_gamma {
OlivierDehaene's avatar
OlivierDehaene committed
640
        envs.push(("WATERMARK_GAMMA".into(), watermark_gamma.to_string().into()))
641
642
643
644
    }

    // Watermark Delta
    if let Some(watermark_delta) = watermark_delta {
OlivierDehaene's avatar
OlivierDehaene committed
645
        envs.push(("WATERMARK_DELTA".into(), watermark_delta.to_string().into()))
646
647
648
    }

    // Start process
649
    tracing::info!("Starting shard");
650
    let mut p = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
651
        .args(shard_args)
652
        .env_clear()
OlivierDehaene's avatar
OlivierDehaene committed
653
        .envs(envs)
654
655
656
657
658
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
659
660
        Ok(p) => p,
        Err(err) => {
661
662
663
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
664
665
            }
            {
666
                tracing::error!("{}", err);
667
            }
668

669
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
670
671
672
673
674
            return;
        }
    };

    // Redirect STDOUT to the console
675
    let shard_stdout_reader = BufReader::new(p.stdout.take().unwrap());
676
    let shard_stderr_reader = BufReader::new(p.stderr.take().unwrap());
677

678
    //stdout tracing thread
679
    thread::spawn(move || {
680
        log_lines(shard_stdout_reader.lines());
681
    });
682
683
684
    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
OlivierDehaene's avatar
OlivierDehaene committed
685
        for line in shard_stderr_reader.lines().map_while(Result::ok) {
686
687
688
            err_sender.send(line).unwrap_or(());
        }
    });
689
690
691
692
693
694

    let mut ready = false;
    let start_time = Instant::now();
    let mut wait_time = Instant::now();
    loop {
        // Process exited
695
        if let Some(exit_status) = p.try_wait().unwrap() {
696
697
698
699
            let mut err = String::new();
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }
700

701
            tracing::error!("Shard complete standard error output:\n{err}");
702

703
            if let Some(signal) = exit_status.signal() {
704
705
706
                tracing::error!("Shard process was signaled to shutdown with signal {signal}");
            }

707
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
708
709
710
711
            return;
        }

        // We received a shutdown signal
712
        if shutdown.load(Ordering::SeqCst) {
713
            terminate("shard", p, Duration::from_secs(90)).unwrap();
714
715
716
717
718
            return;
        }

        // Shard is ready
        if uds.exists() && !ready {
719
            tracing::info!("Shard ready in {:?}", start_time.elapsed());
720
721
722
            status_sender.send(ShardStatus::Ready).unwrap();
            ready = true;
        } else if !ready && wait_time.elapsed() > Duration::from_secs(10) {
723
            tracing::info!("Waiting for shard to be ready...");
724
725
726
727
728
729
            wait_time = Instant::now();
        }
        sleep(Duration::from_millis(100));
    }
}

730
fn shutdown_shards(shutdown: Arc<AtomicBool>, shutdown_receiver: &mpsc::Receiver<()>) {
731
732
733
    tracing::info!("Shutting down shards");
    // Update shutdown value to true
    // This will be picked up by the shard manager
734
    shutdown.store(true, Ordering::SeqCst);
735
736
737
738
739
740
741

    // Wait for shards to shutdown
    // This will block till all shutdown_sender are dropped
    let _ = shutdown_receiver.recv();
}

fn num_cuda_devices() -> Option<usize> {
742
743
744
745
    let devices = match env::var("CUDA_VISIBLE_DEVICES") {
        Ok(devices) => devices,
        Err(_) => env::var("NVIDIA_VISIBLE_DEVICES").ok()?,
    };
746
747
    let n_devices = devices.split(',').count();
    Some(n_devices)
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
}

#[derive(Deserialize)]
#[serde(rename_all = "UPPERCASE")]
enum PythonLogLevelEnum {
    Trace,
    Debug,
    Info,
    Success,
    Warning,
    Error,
    Critical,
}

#[derive(Deserialize)]
struct PythonLogLevel {
    name: PythonLogLevelEnum,
}

#[derive(Deserialize)]
struct PythonLogRecord {
    level: PythonLogLevel,
}

#[derive(Deserialize)]
struct PythonLogMessage {
    text: String,
    record: PythonLogRecord,
}

impl PythonLogMessage {
    fn trace(&self) {
        match self.record.level.name {
781
782
783
784
785
786
787
            PythonLogLevelEnum::Trace => tracing::trace!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Debug => tracing::debug!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Info => tracing::info!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Success => tracing::info!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Warning => tracing::warn!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Error => tracing::error!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Critical => tracing::error!("{}", self.text.trim_end()),
788
789
790
791
        }
    }
}

792
793
794
795
796
797
798
799
800
impl TryFrom<&String> for PythonLogMessage {
    type Error = serde_json::Error;

    fn try_from(value: &String) -> Result<Self, Self::Error> {
        serde_json::from_str::<Self>(value)
    }
}

fn log_lines<S: Sized + BufRead>(lines: Lines<S>) {
OlivierDehaene's avatar
OlivierDehaene committed
801
    for line in lines.map_while(Result::ok) {
802
803
804
805
806
807
808
        match PythonLogMessage::try_from(&line) {
            Ok(log) => log.trace(),
            Err(_) => tracing::debug!("{line}"),
        }
    }
}

809
810
811
812
fn find_num_shards(
    sharded: Option<bool>,
    num_shard: Option<usize>,
) -> Result<usize, LauncherError> {
813
814
815
816
    // get the number of shards given `sharded` and `num_shard`
    let num_shard = match (sharded, num_shard) {
        (Some(true), None) => {
            // try to default to the number of available GPUs
817
818
819
            tracing::info!("Parsing num_shard from CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES");
            let n_devices = num_cuda_devices()
                .expect("--num-shard and CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES are not set");
820
            if n_devices <= 1 {
821
822
823
                return Err(LauncherError::NotEnoughCUDADevices(format!(
                    "`sharded` is true but only found {n_devices} CUDA devices"
                )));
824
            }
825
            n_devices
826
        }
827
828
829
        (Some(true), Some(num_shard)) => {
            // we can't have only one shard while sharded
            if num_shard <= 1 {
830
831
832
                return Err(LauncherError::ArgumentValidation(
                    "`sharded` is true but `num_shard` <= 1".to_string(),
                ));
833
834
            }
            num_shard
835
        }
836
837
838
839
        (Some(false), Some(num_shard)) => num_shard,
        (Some(false), None) => 1,
        (None, None) => num_cuda_devices().unwrap_or(1),
        (None, Some(num_shard)) => num_shard,
840
    };
841
    if num_shard < 1 {
842
843
844
        return Err(LauncherError::ArgumentValidation(
            "`num_shard` cannot be < 1".to_string(),
        ));
845
    }
846
    Ok(num_shard)
847
}
848

849
#[derive(Debug, Error)]
850
enum LauncherError {
851
    #[error("Invalid argument: {0}")]
852
    ArgumentValidation(String),
853
    #[error("not enough cuda devices: {0}")]
854
    NotEnoughCUDADevices(String),
855
    #[error("Download error")]
856
    DownloadError,
857
    #[error("Shard cannot start")]
858
    ShardCannotStart,
859
    #[error("Shard disconnected")]
860
    ShardDisconnected,
861
    #[error("Shard failed")]
862
    ShardFailed,
863
    #[error("Webserver failed")]
864
    WebserverFailed,
865
    #[error("Webserver cannot start")]
866
867
    WebserverCannotStart,
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
868

869
fn download_convert_model(args: &Args, running: Arc<AtomicBool>) -> Result<(), LauncherError> {
870
871
872
    // Enter download tracing span
    let _span = tracing::span!(tracing::Level::INFO, "download").entered();

OlivierDehaene's avatar
OlivierDehaene committed
873
    let mut download_args = vec![
874
875
876
877
878
879
880
881
        "download-weights".to_string(),
        args.model_id.to_string(),
        "--extension".to_string(),
        ".safetensors".to_string(),
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];
882

883
884
    // Model optional revision
    if let Some(revision) = &args.revision {
OlivierDehaene's avatar
OlivierDehaene committed
885
886
        download_args.push("--revision".to_string());
        download_args.push(revision.to_string())
887
    }
888

889
890
891
892
893
    // Trust remote code for automatic peft fusion
    if args.trust_remote_code {
        download_args.push("--trust-remote-code".to_string());
    }

894
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
895
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
896

897
898
899
    // Remove LOG_LEVEL if present
    envs.retain(|(name, _)| name != "LOG_LEVEL");

900
901
902
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

903
    // If huggingface_hub_cache is set, pass it to the download process
904
905
    // Useful when running inside a docker container
    if let Some(ref huggingface_hub_cache) = args.huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
906
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
907
    };
908

909
910
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
911
    envs.push((
912
913
914
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));
915

916
917
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
OlivierDehaene's avatar
OlivierDehaene committed
918
        envs.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
919
    };
920

921
922
923
    // If args.weights_cache_override is some, pass it to the download process
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = &args.weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
924
        envs.push((
925
926
927
928
929
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

930
931
    // Start process
    tracing::info!("Starting download process.");
932
    let mut download_process = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
933
        .args(download_args)
934
        .env_clear()
OlivierDehaene's avatar
OlivierDehaene committed
935
        .envs(envs)
936
937
938
939
940
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
941
942
        Ok(p) => p,
        Err(err) => {
943
944
945
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
946
947
            } else {
                tracing::error!("{}", err);
948
            }
949

950
951
952
            return Err(LauncherError::DownloadError);
        }
    };
953

954
    let download_stdout = BufReader::new(download_process.stdout.take().unwrap());
955

956
    thread::spawn(move || {
957
958
959
960
961
962
963
964
        log_lines(download_stdout.lines());
    });

    let download_stderr = BufReader::new(download_process.stderr.take().unwrap());

    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
OlivierDehaene's avatar
OlivierDehaene committed
965
        for line in download_stderr.lines().map_while(Result::ok) {
966
967
            err_sender.send(line).unwrap_or(());
        }
968
    });
969

970
    loop {
971
972
973
974
        if let Some(status) = download_process.try_wait().unwrap() {
            if status.success() {
                tracing::info!("Successfully downloaded weights.");
                break;
975
            }
976
977

            let mut err = String::new();
978
979
980
981
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }

982
983
984
985
986
987
988
989
990
            if let Some(signal) = status.signal() {
                tracing::error!(
                    "Download process was signaled to shutdown with signal {signal}: {err}"
                );
            } else {
                tracing::error!("Download encountered an error: {err}");
            }

            return Err(LauncherError::DownloadError);
991
        }
992
        if !running.load(Ordering::SeqCst) {
OlivierDehaene's avatar
OlivierDehaene committed
993
            terminate("download", download_process, Duration::from_secs(10)).unwrap();
994
995
996
            return Ok(());
        }
        sleep(Duration::from_millis(100));
997
    }
998
999
    Ok(())
}
1000

1001
#[allow(clippy::too_many_arguments)]
1002
1003
1004
fn spawn_shards(
    num_shard: usize,
    args: &Args,
1005
    cuda_graphs: Vec<usize>,
1006
    max_total_tokens: usize,
1007
    max_log_level: LevelFilter,
1008
    shutdown: Arc<AtomicBool>,
1009
1010
1011
1012
1013
1014
    shutdown_receiver: &mpsc::Receiver<()>,
    shutdown_sender: mpsc::Sender<()>,
    status_receiver: &mpsc::Receiver<ShardStatus>,
    status_sender: mpsc::Sender<ShardStatus>,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1015
1016
    // Start shard processes
    for rank in 0..num_shard {
1017
1018
1019
1020
1021
1022
        let model_id = args.model_id.clone();
        let revision = args.revision.clone();
        let uds_path = args.shard_uds_path.clone();
        let master_addr = args.master_addr.clone();
        let huggingface_hub_cache = args.huggingface_hub_cache.clone();
        let weights_cache_override = args.weights_cache_override.clone();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1023
1024
1025
        let status_sender = status_sender.clone();
        let shutdown = shutdown.clone();
        let shutdown_sender = shutdown_sender.clone();
1026
        let otlp_endpoint = args.otlp_endpoint.clone();
1027
        let quantize = args.quantize;
Nicolas Patry's avatar
Nicolas Patry committed
1028
        let speculate = args.speculate;
1029
        let dtype = args.dtype;
1030
        let trust_remote_code = args.trust_remote_code;
1031
1032
1033
1034
        let master_port = args.master_port;
        let disable_custom_kernels = args.disable_custom_kernels;
        let watermark_gamma = args.watermark_gamma;
        let watermark_delta = args.watermark_delta;
1035
        let cuda_graphs_clone = cuda_graphs.clone();
1036
        let cuda_memory_fraction = args.cuda_memory_fraction;
Nicolas Patry's avatar
Nicolas Patry committed
1037
1038
        let rope_scaling = args.rope_scaling;
        let rope_factor = args.rope_factor;
1039
        let max_batch_size = args.max_batch_size;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1040
1041
        thread::spawn(move || {
            shard_manager(
1042
                model_id,
1043
                revision,
1044
                quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1045
                speculate,
1046
                dtype,
1047
                trust_remote_code,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1048
1049
1050
1051
1052
                uds_path,
                rank,
                num_shard,
                master_addr,
                master_port,
1053
1054
                huggingface_hub_cache,
                weights_cache_override,
1055
                disable_custom_kernels,
1056
1057
                watermark_gamma,
                watermark_delta,
1058
                cuda_graphs_clone,
1059
                cuda_memory_fraction,
Nicolas Patry's avatar
Nicolas Patry committed
1060
1061
                rope_scaling,
                rope_factor,
1062
1063
                max_total_tokens,
                max_batch_size,
1064
                otlp_endpoint,
1065
                max_log_level,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
                status_sender,
                shutdown,
                shutdown_sender,
            )
        });
    }
    drop(shutdown_sender);

    // Wait for shard to start
    let mut shard_ready = 0;
    while running.load(Ordering::SeqCst) {
        match status_receiver.try_recv() {
            Ok(ShardStatus::Ready) => {
                shard_ready += 1;
                if shard_ready == num_shard {
                    break;
                }
            }
            Err(TryRecvError::Empty) => {
                sleep(Duration::from_millis(100));
            }
1087
            Ok(ShardStatus::Failed(rank)) => {
1088
                tracing::error!("Shard {rank} failed to start");
1089
                shutdown_shards(shutdown, shutdown_receiver);
1090
                return Err(LauncherError::ShardCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1091
1092
1093
            }
            Err(TryRecvError::Disconnected) => {
                tracing::error!("Shard status channel disconnected");
1094
                shutdown_shards(shutdown, shutdown_receiver);
1095
                return Err(LauncherError::ShardDisconnected);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1096
1097
1098
            }
        }
    }
1099
1100
    Ok(())
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1101

1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
fn compute_type(num_shard: usize) -> Option<String> {
    let output = Command::new("nvidia-smi")
        .args(["--query-gpu=gpu_name", "--format=csv"])
        .output()
        .ok()?;
    let output = String::from_utf8(output.stdout).ok()?;
    let fullname = output.split('\n').nth(1)?;
    let cardname = fullname.replace(' ', "-").to_lowercase();
    let compute_type = format!("{num_shard}-{cardname}");
    Some(compute_type)
}

1114
fn spawn_webserver(
1115
    num_shard: usize,
1116
    args: Args,
1117
1118
1119
    max_input_tokens: usize,
    max_total_tokens: usize,
    max_batch_prefill_tokens: u32,
1120
    shutdown: Arc<AtomicBool>,
1121
    shutdown_receiver: &mpsc::Receiver<()>,
1122
) -> Result<Child, LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1123
1124
1125
    // All shard started
    // Start webserver
    tracing::info!("Starting Webserver");
OlivierDehaene's avatar
OlivierDehaene committed
1126
    let mut router_args = vec![
1127
1128
        "--max-client-batch-size".to_string(),
        args.max_client_batch_size.to_string(),
1129
        "--max-concurrent-requests".to_string(),
1130
        args.max_concurrent_requests.to_string(),
1131
        "--max-best-of".to_string(),
1132
        args.max_best_of.to_string(),
1133
        "--max-stop-sequences".to_string(),
1134
        args.max_stop_sequences.to_string(),
Nicolas Patry's avatar
Nicolas Patry committed
1135
1136
        "--max-top-n-tokens".to_string(),
        args.max_top_n_tokens.to_string(),
1137
1138
        "--max-input-tokens".to_string(),
        max_input_tokens.to_string(),
1139
        "--max-total-tokens".to_string(),
1140
        max_total_tokens.to_string(),
1141
        "--max-batch-prefill-tokens".to_string(),
1142
        max_batch_prefill_tokens.to_string(),
1143
        "--waiting-served-ratio".to_string(),
1144
        args.waiting_served_ratio.to_string(),
1145
        "--max-waiting-tokens".to_string(),
1146
        args.max_waiting_tokens.to_string(),
1147
1148
        "--validation-workers".to_string(),
        args.validation_workers.to_string(),
1149
1150
        "--hostname".to_string(),
        args.hostname.to_string(),
1151
        "--port".to_string(),
1152
        args.port.to_string(),
1153
        "--master-shard-uds-path".to_string(),
1154
        format!("{}-0", args.shard_uds_path),
1155
        "--tokenizer-name".to_string(),
1156
        args.model_id,
1157
1158
    ];

drbh's avatar
drbh committed
1159
1160
1161
1162
1163
    // Grammar support
    if args.disable_grammar_support {
        router_args.push("--disable-grammar-support".to_string());
    }

1164
1165
1166
1167
1168
1169
    // Tokenizer config path
    if let Some(ref tokenizer_config_path) = args.tokenizer_config_path {
        router_args.push("--tokenizer-config-path".to_string());
        router_args.push(tokenizer_config_path.to_string());
    }

1170
1171
1172
1173
1174
1175
    // Model optional max batch total tokens
    if let Some(max_batch_total_tokens) = args.max_batch_total_tokens {
        router_args.push("--max-batch-total-tokens".to_string());
        router_args.push(max_batch_total_tokens.to_string());
    }

1176
1177
1178
1179
1180
1181
    // Router optional max batch size
    if let Some(max_batch_size) = args.max_batch_size {
        router_args.push("--max-batch-size".to_string());
        router_args.push(max_batch_size.to_string());
    }

1182
1183
    // Model optional revision
    if let Some(ref revision) = args.revision {
OlivierDehaene's avatar
OlivierDehaene committed
1184
1185
        router_args.push("--revision".to_string());
        router_args.push(revision.to_string())
1186
1187
    }

1188
    if args.json_output {
OlivierDehaene's avatar
OlivierDehaene committed
1189
        router_args.push("--json-output".to_string());
1190
1191
    }

1192
    // OpenTelemetry
1193
    if let Some(otlp_endpoint) = args.otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
1194
1195
        router_args.push("--otlp-endpoint".to_string());
        router_args.push(otlp_endpoint);
1196
1197
1198
1199
    }

    // CORS origins
    for origin in args.cors_allow_origin.into_iter() {
OlivierDehaene's avatar
OlivierDehaene committed
1200
1201
        router_args.push("--cors-allow-origin".to_string());
        router_args.push(origin);
1202
1203
    }

1204
1205
    // Ngrok
    if args.ngrok {
OlivierDehaene's avatar
OlivierDehaene committed
1206
1207
        router_args.push("--ngrok".to_string());
        router_args.push("--ngrok-authtoken".to_string());
1208
1209
1210
        router_args.push(args.ngrok_authtoken.unwrap());
        router_args.push("--ngrok-edge".to_string());
        router_args.push(args.ngrok_edge.unwrap());
1211
1212
    }

1213
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
1214
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
1215

1216
1217
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
OlivierDehaene's avatar
OlivierDehaene committed
1218
        envs.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
1219
    };
1220

1221
1222
1223
1224
1225
1226
1227
    // Parse Compute type
    if let Ok(compute_type) = env::var("COMPUTE_TYPE") {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    } else if let Some(compute_type) = compute_type(num_shard) {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    }

1228
    let mut webserver = match Command::new("text-generation-router")
OlivierDehaene's avatar
OlivierDehaene committed
1229
1230
        .args(router_args)
        .envs(envs)
1231
1232
1233
1234
1235
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1236
1237
        Ok(p) => p,
        Err(err) => {
1238
            tracing::error!("Failed to start webserver: {}", err);
1239
1240
1241
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-router not found in PATH");
                tracing::error!("Please install it with `make install-router`")
1242
1243
            } else {
                tracing::error!("{}", err);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1244
            }
1245

1246
            shutdown_shards(shutdown, shutdown_receiver);
1247
            return Err(LauncherError::WebserverCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1248
1249
1250
        }
    };

1251
1252
1253
    // Redirect STDOUT and STDERR to the console
    let webserver_stdout = webserver.stdout.take().unwrap();
    let webserver_stderr = webserver.stderr.take().unwrap();
1254
1255

    thread::spawn(move || {
1256
1257
        let stdout = BufReader::new(webserver_stdout);
        let stderr = BufReader::new(webserver_stderr);
1258
        for line in stdout.lines() {
1259
            println!("{}", line.unwrap());
1260
        }
1261
1262
        for line in stderr.lines() {
            println!("{}", line.unwrap());
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1263
        }
1264
1265
1266
    });
    Ok(webserver)
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1267

OlivierDehaene's avatar
OlivierDehaene committed
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
fn terminate(process_name: &str, mut process: Child, timeout: Duration) -> io::Result<ExitStatus> {
    tracing::info!("Terminating {process_name}");

    let terminate_time = Instant::now();
    signal::kill(Pid::from_raw(process.id() as i32), Signal::SIGTERM).unwrap();

    tracing::info!("Waiting for {process_name} to gracefully shutdown");
    while terminate_time.elapsed() < timeout {
        if let Some(status) = process.try_wait()? {
            tracing::info!("{process_name} terminated");
            return Ok(status);
        }
        sleep(Duration::from_millis(100));
    }
    tracing::info!("Killing {process_name}");

    process.kill()?;
    let exit_status = process.wait()?;

    tracing::info!("{process_name} killed");
    Ok(exit_status)
}

1291
1292
fn main() -> Result<(), LauncherError> {
    // Pattern match configuration
1293
    let args: Args = Args::parse();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1294

1295
    // Filter events with LOG_LEVEL
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
    let varname = "LOG_LEVEL";
    let env_filter = if let Ok(log_level) = std::env::var(varname) {
        // Override to avoid simple logs to be spammed with tokio level informations
        let log_level = match &log_level[..] {
            "warn" => "text_generation_launcher=warn,text_generation_router=warn",
            "info" => "text_generation_launcher=info,text_generation_router=info",
            "debug" => "text_generation_launcher=debug,text_generation_router=debug",
            log_level => log_level,
        };
        EnvFilter::builder()
            .with_default_directive(LevelFilter::INFO.into())
            .parse_lossy(log_level)
    } else {
        EnvFilter::new("info")
    };
    let max_log_level = env_filter.max_level_hint().unwrap_or(LevelFilter::INFO);
1312

1313
    if args.json_output {
1314
1315
1316
1317
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .json()
            .init();
1318
    } else {
1319
1320
1321
1322
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .compact()
            .init();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1323
1324
    }

1325
1326
1327
1328
1329
    if args.env {
        let env_runtime = env_runtime::Env::new();
        tracing::info!("{}", env_runtime);
    }

Nicolas Patry's avatar
Nicolas Patry committed
1330
    tracing::info!("{:#?}", args);
1331

1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
    let get_max_position_embeddings = || -> Result<usize, Box<dyn std::error::Error>> {
        let model_id = args.model_id.clone();
        let mut path = std::path::Path::new(&args.model_id).to_path_buf();
        let filename = if !path.exists() {
            // Assume it's a hub id
            let api = Api::new()?;
            let repo = if let Some(ref revision) = args.revision {
                api.repo(Repo::with_revision(
                    model_id,
                    RepoType::Model,
                    revision.to_string(),
                ))
            } else {
                api.model(model_id)
            };
            repo.get("config.json")?
        } else {
            path.push("config.json");
            path
        };

        let content = std::fs::read_to_string(filename)?;
1354
1355
        let config: RawConfig = serde_json::from_str(&content)?;
        let config: Config = config.into();
1356
1357
1358
1359

        // Quantization usually means you're even more RAM constrained.
        let max_default = 4096;

1360
1361
1362
1363
1364
1365
1366
1367
        if let Some(max_position_embeddings) = config.max_position_embeddings {
            if max_position_embeddings > max_default {
                let max = max_position_embeddings;
                if args.max_input_tokens.is_none()
                    && args.max_total_tokens.is_none()
                    && args.max_batch_prefill_tokens.is_none()
                {
                    tracing::info!("Model supports up to {max} but tgi will now set its default to {max_default} instead. This is to save VRAM by refusing large prompts in order to allow more users on the same hardware. You can increase that size using `--max-batch-prefill-tokens={} --max-total-tokens={max} --max-input-tokens={}`.", max + 50, max - 1);
1368
                }
1369
1370
1371
                Ok(max_default)
            } else {
                Ok(max_position_embeddings)
1372
            }
1373
1374
1375
1376
1377
        } else {
            Err(Box::new(LauncherError::ArgumentValidation(
                "no max defined".to_string(),
            )))
        }
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
    };
    let max_position_embeddings: usize = get_max_position_embeddings().unwrap_or(4096);

    let max_input_tokens = {
        match (args.max_input_tokens, args.max_input_length) {
            (Some(max_input_tokens), Some(max_input_length)) => {
                return Err(LauncherError::ArgumentValidation(
                    format!("Both `max_input_tokens` ({max_input_tokens}) and `max_input_length` ({max_input_length}) are set. Please define only `max_input_tokens` as `max_input_length is deprecated for naming consistency.",
                )));
            }
            (Some(max_input_tokens), None) | (None, Some(max_input_tokens)) => max_input_tokens,
            (None, None) => {
                let value = max_position_embeddings - 1;
                tracing::info!("Default `max_input_tokens` to {value}");
                value
            }
        }
    };
    let max_total_tokens = {
        match args.max_total_tokens {
            Some(max_total_tokens) => max_total_tokens,
            None => {
                let value = max_position_embeddings;
                tracing::info!("Default `max_total_tokens` to {value}");
                value
            }
        }
    };
    let max_batch_prefill_tokens = {
        match args.max_batch_prefill_tokens {
            Some(max_batch_prefill_tokens) => max_batch_prefill_tokens,
            None => {
                let value: u32 = if let Some(max_batch_size) = args.max_batch_size {
                    max_batch_size * max_input_tokens
                } else {
                    // Adding some edge in order to account for potential block_size alignement
                    // issue.
                    max_input_tokens + 50
                } as u32;
                tracing::info!("Default `max_batch_prefill_tokens` to {value}");
                value
            }
        }
    };

1423
    // Validate args
1424
    if max_input_tokens >= max_total_tokens {
1425
        return Err(LauncherError::ArgumentValidation(
1426
            "`max_input_tokens must be < `max_total_tokens`".to_string(),
1427
1428
        ));
    }
1429
    if max_input_tokens as u32 > max_batch_prefill_tokens {
1430
        return Err(LauncherError::ArgumentValidation(format!(
1431
1432
            "`max_batch_prefill_tokens` must be >= `max_input_tokens`. Given: {} and {}",
            max_batch_prefill_tokens, max_input_tokens
1433
1434
        )));
    }
1435

1436
    let cuda_graphs = match (&args.cuda_graphs, &args.quantize) {
Nicolas Patry's avatar
Nicolas Patry committed
1437
        (Some(cuda_graphs), _) => cuda_graphs.iter().cloned().filter(|&c| c > 0).collect(),
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
        #[allow(deprecated)]
        (
            None,
            Some(
                Quantization::Bitsandbytes
                | Quantization::BitsandbytesNF4
                | Quantization::BitsandbytesFP4,
            ),
        ) => {
            tracing::info!("Bitsandbytes doesn't work with cuda graphs, deactivating them");
            vec![]
        }
        _ => {
            let cuda_graphs = vec![1, 2, 4, 8, 16, 32];
            tracing::info!("Using default cuda graphs {cuda_graphs:?}");
            cuda_graphs
        }
    };

1457
1458
1459
1460
1461
    if args.validation_workers == 0 {
        return Err(LauncherError::ArgumentValidation(
            "`validation_workers` must be > 0".to_string(),
        ));
    }
1462
1463
1464
1465
1466
1467
    if args.trust_remote_code {
        tracing::warn!(
            "`trust_remote_code` is set. Trusting that model `{}` do not contain malicious code.",
            args.model_id
        );
    }
1468
1469

    let num_shard = find_num_shards(args.sharded, args.num_shard)?;
1470
    if num_shard > 1 {
1471
1472
1473
1474
1475
        if matches!(args.quantize, Some(Quantization::Exl2)) {
            return Err(LauncherError::ArgumentValidation(
                "Sharding is currently not supported with `exl2` quantization".into(),
            ));
        }
1476
        tracing::info!("Sharding model on {num_shard} processes");
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1477
1478
    }

1479
    if let Some(ref max_batch_total_tokens) = args.max_batch_total_tokens {
1480
        if max_batch_prefill_tokens > *max_batch_total_tokens {
1481
1482
            return Err(LauncherError::ArgumentValidation(format!(
                "`max_batch_prefill_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
1483
                max_batch_prefill_tokens, max_batch_total_tokens
1484
1485
            )));
        }
1486
        if max_total_tokens as u32 > *max_batch_total_tokens {
1487
1488
            return Err(LauncherError::ArgumentValidation(format!(
                "`max_total_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
1489
                max_total_tokens, max_batch_total_tokens
1490
1491
1492
1493
            )));
        }
    }

1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
    if args.ngrok {
        if args.ngrok_authtoken.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-authtoken` must be set when using ngrok tunneling".to_string(),
            ));
        }

        if args.ngrok_edge.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-edge` must be set when using ngrok tunneling".to_string(),
            ));
        }
    }

1508
1509
1510
1511
1512
1513
1514
    // Signal handler
    let running = Arc::new(AtomicBool::new(true));
    let r = running.clone();
    ctrlc::set_handler(move || {
        r.store(false, Ordering::SeqCst);
    })
    .expect("Error setting Ctrl-C handler");
1515

1516
    // Download and convert model weights
1517
    download_convert_model(&args, running.clone())?;
1518

OlivierDehaene's avatar
OlivierDehaene committed
1519
1520
1521
1522
1523
    if !running.load(Ordering::SeqCst) {
        // Launcher was asked to stop
        return Ok(());
    }

1524
    // Shared shutdown bool
1525
    let shutdown = Arc::new(AtomicBool::new(false));
1526
1527
1528
    // Shared shutdown channel
    // When shutting down, the main thread will wait for all senders to be dropped
    let (shutdown_sender, shutdown_receiver) = mpsc::channel();
1529

1530
1531
    // Shared channel to track shard status
    let (status_sender, status_receiver) = mpsc::channel();
1532

1533
1534
1535
    spawn_shards(
        num_shard,
        &args,
1536
        cuda_graphs,
1537
        max_total_tokens,
1538
        max_log_level,
1539
1540
1541
1542
1543
1544
1545
        shutdown.clone(),
        &shutdown_receiver,
        shutdown_sender,
        &status_receiver,
        status_sender,
        running.clone(),
    )?;
1546

1547
1548
1549
1550
1551
    // We might have received a termination signal
    if !running.load(Ordering::SeqCst) {
        shutdown_shards(shutdown, &shutdown_receiver);
        return Ok(());
    }
1552

1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
    let mut webserver = spawn_webserver(
        num_shard,
        args,
        max_input_tokens,
        max_total_tokens,
        max_batch_prefill_tokens,
        shutdown.clone(),
        &shutdown_receiver,
    )
    .map_err(|err| {
        shutdown_shards(shutdown.clone(), &shutdown_receiver);
        err
    })?;
1566
1567
1568
1569
1570

    // Default exit code
    let mut exit_code = Ok(());

    while running.load(Ordering::SeqCst) {
1571
        if let Ok(ShardStatus::Failed(rank)) = status_receiver.try_recv() {
OlivierDehaene's avatar
OlivierDehaene committed
1572
            tracing::error!("Shard {rank} crashed");
1573
1574
1575
1576
            exit_code = Err(LauncherError::ShardFailed);
            break;
        };

1577
        match webserver.try_wait().unwrap() {
1578
1579
1580
1581
1582
1583
1584
1585
1586
            Some(_) => {
                tracing::error!("Webserver Crashed");
                shutdown_shards(shutdown, &shutdown_receiver);
                return Err(LauncherError::WebserverFailed);
            }
            None => {
                sleep(Duration::from_millis(100));
            }
        };
1587
    }
1588
1589

    // Graceful termination
OlivierDehaene's avatar
OlivierDehaene committed
1590
    terminate("webserver", webserver, Duration::from_secs(90)).unwrap();
1591
1592
1593
    shutdown_shards(shutdown, &shutdown_receiver);

    exit_code
1594
}