main.rs 41.1 KB
Newer Older
1
use clap::{Parser, ValueEnum};
2
3
use nix::sys::signal::{self, Signal};
use nix::unistd::Pid;
4
use serde::Deserialize;
Nicolas Patry's avatar
Nicolas Patry committed
5
use std::env;
6
use std::ffi::OsString;
7
use std::io::{BufRead, BufReader, Lines, Read};
8
use std::os::unix::process::{CommandExt, ExitStatusExt};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
9
use std::path::Path;
OlivierDehaene's avatar
OlivierDehaene committed
10
use std::process::{Child, Command, ExitStatus, Stdio};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
11
12
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::TryRecvError;
13
use std::sync::{mpsc, Arc};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
14
15
16
17
use std::thread;
use std::thread::sleep;
use std::time::{Duration, Instant};
use std::{fs, io};
18
use tracing_subscriber::EnvFilter;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
19

20
21
mod env_runtime;

22
23
24
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Quantization {
    Bitsandbytes,
Nicolas Patry's avatar
Nicolas Patry committed
25
26
    BitsandbytesNF4,
    BitsandbytesFP4,
27
28
29
30
31
32
33
34
35
36
    Gptq,
}

impl std::fmt::Display for Quantization {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            Quantization::Bitsandbytes => {
                write!(f, "bitsandbytes")
            }
Nicolas Patry's avatar
Nicolas Patry committed
37
38
39
40
41
42
            Quantization::BitsandbytesNF4 => {
                write!(f, "bitsandbytes-nf4")
            }
            Quantization::BitsandbytesFP4 => {
                write!(f, "bitsandbytes-fp4")
            }
43
44
45
46
47
48
49
            Quantization::Gptq => {
                write!(f, "gptq")
            }
        }
    }
}

50
51
52
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Dtype {
    Float16,
53
    #[clap(name = "bfloat16")]
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
    BFloat16,
}

impl std::fmt::Display for Dtype {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            Dtype::Float16 => {
                write!(f, "float16")
            }
            Dtype::BFloat16 => {
                write!(f, "bfloat16")
            }
        }
    }
}

Nicolas Patry's avatar
Nicolas Patry committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#[derive(Clone, Copy, Debug, ValueEnum)]
enum RopeScaling {
    Linear,
    Dynamic,
}

impl std::fmt::Display for RopeScaling {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            RopeScaling::Linear => {
                write!(f, "linear")
            }
            RopeScaling::Dynamic => {
                write!(f, "dynamic")
            }
        }
    }
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
91
92
93
94
/// App Configuration
#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]
struct Args {
95
96
97
98
99
    /// The name of the model to load.
    /// Can be a MODEL_ID as listed on <https://hf.co/models> like
    /// `gpt2` or `OpenAssistant/oasst-sft-1-pythia-12b`.
    /// Or it can be a local directory containing the necessary files
    /// as saved by `save_pretrained(...)` methods of transformers
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
100
    #[clap(default_value = "bigscience/bloom-560m", long, env)]
101
    model_id: String,
102
103
104

    /// The actual revision of the model if you're referring to a model
    /// on the hub. You can use a specific commit id or a branch like `refs/pr/2`.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
105
    #[clap(long, env)]
106
    revision: Option<String>,
107

108
109
110
111
112
    /// The number of tokenizer workers used for payload validation and truncation inside the
    /// router.
    #[clap(default_value = "2", long, env)]
    validation_workers: usize,

113
    /// Whether to shard the model across multiple GPUs
114
115
    /// By default text-generation-inference will use all available GPUs to run
    /// the model. Setting it to `false` deactivates `num_shard`.
116
117
    #[clap(long, env)]
    sharded: Option<bool>,
118
119

    /// The number of shards to use if you don't want to use all GPUs on a given machine.
120
121
    /// You can use `CUDA_VISIBLE_DEVICES=0,1 text-generation-launcher... --num_shard 2`
    /// and `CUDA_VISIBLE_DEVICES=2,3 text-generation-launcher... --num_shard 2` to
122
    /// launch 2 copies with 2 shard each on a given machine with 4 GPUs for instance.
123
124
    #[clap(long, env)]
    num_shard: Option<usize>,
125

126
    /// Whether you want the model to be quantized. This will use `bitsandbytes` for
Nicolas Patry's avatar
Nicolas Patry committed
127
128
    /// quantization on the fly, or `gptq`. 4bit quantization is available through
    /// `bitsandbytes` by providing the `bitsandbytes-fp4` or `bitsandbytes-nf4` options.
129
130
    #[clap(long, env, value_enum)]
    quantize: Option<Quantization>,
131

132
133
134
135
    /// The dtype to be forced upon the model. This option cannot be used with `--quantize`.
    #[clap(long, env, value_enum)]
    dtype: Option<Dtype>,

136
137
138
139
140
141
    /// Whether you want to execute hub modelling code. Explicitly passing a `revision` is
    /// encouraged when loading a model with custom code to ensure no malicious code has been
    /// contributed in a newer revision.
    #[clap(long, env, value_enum)]
    trust_remote_code: bool,

142
143
144
    /// The maximum amount of concurrent requests for this particular deployment.
    /// Having a low limit will refuse clients requests instead of having them
    /// wait for too long and is usually good to handle backpressure correctly.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
145
146
    #[clap(default_value = "128", long, env)]
    max_concurrent_requests: usize,
147
148
149
150

    /// This is the maximum allowed value for clients to set `best_of`.
    /// Best of makes `n` generations at the same time, and return the best
    /// in terms of overall log probability over the entire generated sequence
151
152
    #[clap(default_value = "2", long, env)]
    max_best_of: usize,
153
154
155
156
157
158

    /// This is the maximum allowed value for clients to set `stop_sequences`.
    /// Stop sequences are used to allow the model to stop on more than just
    /// the EOS token, and enable more complex "prompting" where users can preprompt
    /// the model in a specific way and define their "own" stop token aligned with
    /// their prompt.
159
160
    #[clap(default_value = "4", long, env)]
    max_stop_sequences: usize,
161
162
163
164
165

    /// This is the maximum allowed input length (expressed in number of tokens)
    /// for users. The larger this value, the longer prompt users can send which
    /// can impact the overall memory required to handle the load.
    /// Please note that some models have a finite range of sequence they can handle.
166
    #[clap(default_value = "1024", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
167
    max_input_length: usize,
168
169
170
171
172
173
174
175
176

    /// This is the most important value to set as it defines the "memory budget"
    /// of running clients requests.
    /// Clients will send input sequences and ask to generate `max_new_tokens`
    /// on top. with a value of `1512` users can send either a prompt of
    /// `1000` and ask for `512` new tokens, or send a prompt of `1` and ask for
    /// `1511` max_new_tokens.
    /// The larger this value, the larger amount each request will be in your RAM
    /// and the less effective batching can be.
177
    #[clap(default_value = "2048", long, env)]
178
    max_total_tokens: usize,
179
180
181
182
183
184
185
186
187
188
189

    /// This represents the ratio of waiting queries vs running queries where
    /// you want to start considering pausing the running queries to include the waiting
    /// ones into the same batch.
    /// `waiting_served_ratio=1.2` Means when 12 queries are waiting and there's
    /// only 10 queries left in the current batch we check if we can fit those 12
    /// waiting queries into the batching strategy, and if yes, then batching happens
    /// delaying the 10 running queries by a `prefill` run.
    ///
    /// This setting is only applied if there is room in the batch
    /// as defined by `max_batch_total_tokens`.
190
191
    #[clap(default_value = "1.2", long, env)]
    waiting_served_ratio: f32,
192

193
194
195
196
197
198
    /// Limits the number of tokens for the prefill operation.
    /// Since this operation take the most memory and is compute bound, it is interesting
    /// to limit the number of requests that can be sent.
    #[clap(default_value = "4096", long, env)]
    max_batch_prefill_tokens: u32,

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    /// **IMPORTANT** This is one critical control to allow maximum usage
    /// of the available hardware.
    ///
    /// This represents the total amount of potential tokens within a batch.
    /// When using padding (not recommended) this would be equivalent of
    /// `batch_size` * `max_total_tokens`.
    ///
    /// However in the non-padded (flash attention) version this can be much finer.
    ///
    /// For `max_batch_total_tokens=1000`, you could fit `10` queries of `total_tokens=100`
    /// or a single query of `1000` tokens.
    ///
    /// Overall this number should be the largest possible amount that fits the
    /// remaining memory (after the model is loaded). Since the actual memory overhead
    /// depends on other parameters like if you're using quantization, flash attention
    /// or the model implementation, text-generation-inference cannot infer this number
    /// automatically.
216
217
    #[clap(long, env)]
    max_batch_total_tokens: Option<u32>,
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

    /// This setting defines how many tokens can be passed before forcing the waiting
    /// queries to be put on the batch (if the size of the batch allows for it).
    /// New queries require 1 `prefill` forward, which is different from `decode`
    /// and therefore you need to pause the running batch in order to run `prefill`
    /// to create the correct values for the waiting queries to be able to join the batch.
    ///
    /// With a value too small, queries will always "steal" the compute to run `prefill`
    /// and running queries will be delayed by a lot.
    ///
    /// With a value too big, waiting queries could wait for a very long time
    /// before being allowed a slot in the running batch. If your server is busy
    /// that means that requests that could run in ~2s on an empty server could
    /// end up running in ~20s because the query had to wait for 18s.
    ///
    /// This number is expressed in number of tokens to make it a bit more
    /// "model" agnostic, but what should really matter is the overall latency
    /// for end users.
236
237
    #[clap(default_value = "20", long, env)]
    max_waiting_tokens: usize,
238

239
240
241
242
    /// The IP address to listen on
    #[clap(default_value = "0.0.0.0", long, env)]
    hostname: String,

243
    /// The port to listen on.
244
    #[clap(default_value = "3000", long, short, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
245
    port: u16,
246
247
248

    /// The name of the socket for gRPC communication between the webserver
    /// and the shards.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
249
250
    #[clap(default_value = "/tmp/text-generation-server", long, env)]
    shard_uds_path: String,
251
252

    /// The address the master shard will listen on. (setting used by torch distributed)
253
    #[clap(default_value = "localhost", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
254
    master_addr: String,
255
256

    /// The address the master port will listen on. (setting used by torch distributed)
257
    #[clap(default_value = "29500", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
258
    master_port: usize,
259
260
261

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
262
    #[clap(long, env)]
263
    huggingface_hub_cache: Option<String>,
264
265
266

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
267
268
    #[clap(long, env)]
    weights_cache_override: Option<String>,
269
270
271
272
273

    /// For some models (like bloom), text-generation-inference implemented custom
    /// cuda kernels to speed up inference. Those kernels were only tested on A100.
    /// Use this flag to disable them if you're running on different hardware and
    /// encounter issues.
274
    #[clap(long, env)]
275
    disable_custom_kernels: bool,
276

277
278
279
280
281
    /// Limit the CUDA available memory.
    /// The allowed value equals the total visible memory multiplied by cuda-memory-fraction.
    #[clap(default_value = "1.0", long, env)]
    cuda_memory_fraction: f32,

Nicolas Patry's avatar
Nicolas Patry committed
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
    /// Rope scaling will only be used for RoPE models
    /// and allow rescaling the position rotary to accomodate for
    /// larger prompts.
    ///
    /// Goes together with `rope_factor`.
    ///
    /// `--rope-factor 2.0` gives linear scaling with a factor of 2.0
    /// `--rope-scaling dynamic` gives dynamic scaling with a factor of 1.0
    /// `--rope-scaling linear` gives linear scaling with a factor of 1.0 (Nothing will be changed
    /// basically)
    ///
    /// `--rope-scaling linear --rope-factor` fully describes the scaling you want
    #[clap(long, env)]
    rope_scaling: Option<RopeScaling>,

    /// Rope scaling will only be used for RoPE models
    /// See `rope_scaling`
    #[clap(long, env)]
    rope_factor: Option<f32>,

302
    /// Outputs the logs in JSON format (useful for telemetry)
303
    #[clap(long, env)]
304
    json_output: bool,
305

306
307
    #[clap(long, env)]
    otlp_endpoint: Option<String>,
308

309
310
    #[clap(long, env)]
    cors_allow_origin: Vec<String>,
311
312
313
314
    #[clap(long, env)]
    watermark_gamma: Option<f32>,
    #[clap(long, env)]
    watermark_delta: Option<f32>,
315

316
317
318
319
320
321
322
323
    /// Enable ngrok tunneling
    #[clap(long, env)]
    ngrok: bool,

    /// ngrok authentication token
    #[clap(long, env)]
    ngrok_authtoken: Option<String>,

324
    /// ngrok edge
325
    #[clap(long, env)]
326
    ngrok_edge: Option<String>,
327

328
329
330
    /// Display a lot of information about your runtime environment
    #[clap(long, short, action)]
    env: bool,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
331
332
}

333
334
335
#[derive(Debug)]
enum ShardStatus {
    Ready,
336
    Failed(usize),
337
}
338

339
340
341
342
#[allow(clippy::too_many_arguments)]
fn shard_manager(
    model_id: String,
    revision: Option<String>,
343
    quantize: Option<Quantization>,
344
    dtype: Option<Dtype>,
345
    trust_remote_code: bool,
346
347
348
349
350
351
352
353
354
355
    uds_path: String,
    rank: usize,
    world_size: usize,
    master_addr: String,
    master_port: usize,
    huggingface_hub_cache: Option<String>,
    weights_cache_override: Option<String>,
    disable_custom_kernels: bool,
    watermark_gamma: Option<f32>,
    watermark_delta: Option<f32>,
356
    cuda_memory_fraction: f32,
Nicolas Patry's avatar
Nicolas Patry committed
357
358
    rope_scaling: Option<RopeScaling>,
    rope_factor: Option<f32>,
359
360
    otlp_endpoint: Option<String>,
    status_sender: mpsc::Sender<ShardStatus>,
361
    shutdown: Arc<AtomicBool>,
362
363
    _shutdown_sender: mpsc::Sender<()>,
) {
364
365
366
    // Enter shard-manager tracing span
    let _span = tracing::span!(tracing::Level::INFO, "shard-manager", rank = rank).entered();

367
368
369
370
    // Get UDS path
    let uds_string = format!("{uds_path}-{rank}");
    let uds = Path::new(&uds_string);
    // Clean previous runs
371
372
373
    if uds.exists() {
        fs::remove_file(uds).unwrap();
    }
374
375

    // Process args
OlivierDehaene's avatar
OlivierDehaene committed
376
    let mut shard_args = vec![
377
378
379
380
381
382
383
384
385
        "serve".to_string(),
        model_id,
        "--uds-path".to_string(),
        uds_path,
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];

386
387
    // Activate trust remote code
    if trust_remote_code {
OlivierDehaene's avatar
OlivierDehaene committed
388
        shard_args.push("--trust-remote-code".to_string());
389
390
    }

391
392
    // Activate tensor parallelism
    if world_size > 1 {
OlivierDehaene's avatar
OlivierDehaene committed
393
        shard_args.push("--sharded".to_string());
394
395
    }

396
    if let Some(quantize) = quantize {
OlivierDehaene's avatar
OlivierDehaene committed
397
398
        shard_args.push("--quantize".to_string());
        shard_args.push(quantize.to_string())
399
    }
400

401
    if let Some(dtype) = dtype {
OlivierDehaene's avatar
OlivierDehaene committed
402
403
        shard_args.push("--dtype".to_string());
        shard_args.push(dtype.to_string())
404
405
    }

406
407
    // Model optional revision
    if let Some(revision) = revision {
OlivierDehaene's avatar
OlivierDehaene committed
408
409
        shard_args.push("--revision".to_string());
        shard_args.push(revision)
410
    }
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
411

Nicolas Patry's avatar
Nicolas Patry committed
412
413
414
415
416
417
    let rope = match (rope_scaling, rope_factor) {
        (None, None) => None,
        (Some(scaling), None) => Some((scaling, 1.0)),
        (Some(scaling), Some(factor)) => Some((scaling, factor)),
        (None, Some(factor)) => Some((RopeScaling::Linear, factor)),
    };
418
419
    // OpenTelemetry
    if let Some(otlp_endpoint) = otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
420
421
        shard_args.push("--otlp-endpoint".to_string());
        shard_args.push(otlp_endpoint);
422
423
424
    }

    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
425
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
426
427

    // Torch Distributed Env vars
OlivierDehaene's avatar
OlivierDehaene committed
428
429
430
431
432
    envs.push(("RANK".into(), rank.to_string().into()));
    envs.push(("WORLD_SIZE".into(), world_size.to_string().into()));
    envs.push(("MASTER_ADDR".into(), master_addr.into()));
    envs.push(("MASTER_PORT".into(), master_port.to_string().into()));
    envs.push(("NCCL_ASYNC_ERROR_HANDLING".into(), "1".into()));
433

434
435
436
437
438
439
    // CUDA memory fraction
    envs.push((
        "CUDA_MEMORY_FRACTION".into(),
        cuda_memory_fraction.to_string().into(),
    ));

440
    // Safetensors load fast
OlivierDehaene's avatar
OlivierDehaene committed
441
    envs.push(("SAFETENSORS_FAST_GPU".into(), "1".into()));
442
443
444

    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
445
    envs.push((
446
447
448
449
450
451
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));

    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
OlivierDehaene's avatar
OlivierDehaene committed
452
        envs.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
453
454
    };

Nicolas Patry's avatar
Nicolas Patry committed
455
456
457
458
459
460
461
462
463
    // Detect rope scaling
    // Sending as env instead of CLI args to not bloat everything
    // those only can be used by RoPE models, so passing information around
    // for all models will complexify code unnecessarily
    if let Some((scaling, factor)) = rope {
        envs.push(("ROPE_SCALING".into(), scaling.to_string().into()));
        envs.push(("ROPE_FACTOR".into(), factor.to_string().into()));
    }

464
465
466
    // If huggingface_hub_cache is some, pass it to the shard
    // Useful when running inside a docker container
    if let Some(huggingface_hub_cache) = huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
467
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
468
469
470
471
472
    };

    // If weights_cache_override is some, pass it to the shard
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
473
        envs.push((
474
475
476
477
478
479
480
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

    // If disable_custom_kernels is true, pass it to the shard as an env var
    if disable_custom_kernels {
OlivierDehaene's avatar
OlivierDehaene committed
481
        envs.push(("DISABLE_CUSTOM_KERNELS".into(), "True".into()))
482
483
484
485
    }

    // Watermark Gamma
    if let Some(watermark_gamma) = watermark_gamma {
OlivierDehaene's avatar
OlivierDehaene committed
486
        envs.push(("WATERMARK_GAMMA".into(), watermark_gamma.to_string().into()))
487
488
489
490
    }

    // Watermark Delta
    if let Some(watermark_delta) = watermark_delta {
OlivierDehaene's avatar
OlivierDehaene committed
491
        envs.push(("WATERMARK_DELTA".into(), watermark_delta.to_string().into()))
492
493
494
    }

    // Start process
495
    tracing::info!("Starting shard");
496
    let mut p = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
497
498
        .args(shard_args)
        .envs(envs)
499
500
501
502
503
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
504
505
        Ok(p) => p,
        Err(err) => {
506
507
508
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
509
510
            }
            {
511
                tracing::error!("{}", err);
512
            }
513

514
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
515
516
517
518
519
            return;
        }
    };

    // Redirect STDOUT to the console
520
    let shard_stdout_reader = BufReader::new(p.stdout.take().unwrap());
521
    let shard_stderr_reader = BufReader::new(p.stderr.take().unwrap());
522

523
    //stdout tracing thread
524
    thread::spawn(move || {
525
        log_lines(shard_stdout_reader.lines());
526
527
528
529
530
531
532
    });

    let mut ready = false;
    let start_time = Instant::now();
    let mut wait_time = Instant::now();
    loop {
        // Process exited
533
        if let Some(exit_status) = p.try_wait().unwrap() {
534
            // We read stderr in another thread as it seems that lines() can block in some cases
535
536
            let (err_sender, err_receiver) = mpsc::channel();
            thread::spawn(move || {
537
538
539
                for line in shard_stderr_reader.lines().flatten() {
                    err_sender.send(line).unwrap_or(());
                }
540
            });
541
542
543
544
            let mut err = String::new();
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }
545

546
            tracing::error!("Shard complete standard error output:\n{err}");
547

548
            if let Some(signal) = exit_status.signal() {
549
550
551
                tracing::error!("Shard process was signaled to shutdown with signal {signal}");
            }

552
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
553
554
555
556
            return;
        }

        // We received a shutdown signal
557
        if shutdown.load(Ordering::SeqCst) {
558
            p.kill().unwrap();
559
            let _ = p.wait();
560
            tracing::info!("Shard terminated");
561
562
563
564
565
            return;
        }

        // Shard is ready
        if uds.exists() && !ready {
566
            tracing::info!("Shard ready in {:?}", start_time.elapsed());
567
568
569
            status_sender.send(ShardStatus::Ready).unwrap();
            ready = true;
        } else if !ready && wait_time.elapsed() > Duration::from_secs(10) {
570
            tracing::info!("Waiting for shard to be ready...");
571
572
573
574
575
576
            wait_time = Instant::now();
        }
        sleep(Duration::from_millis(100));
    }
}

577
fn shutdown_shards(shutdown: Arc<AtomicBool>, shutdown_receiver: &mpsc::Receiver<()>) {
578
579
580
    tracing::info!("Shutting down shards");
    // Update shutdown value to true
    // This will be picked up by the shard manager
581
    shutdown.store(true, Ordering::SeqCst);
582
583
584
585
586
587
588

    // Wait for shards to shutdown
    // This will block till all shutdown_sender are dropped
    let _ = shutdown_receiver.recv();
}

fn num_cuda_devices() -> Option<usize> {
589
590
591
592
    let devices = match env::var("CUDA_VISIBLE_DEVICES") {
        Ok(devices) => devices,
        Err(_) => env::var("NVIDIA_VISIBLE_DEVICES").ok()?,
    };
593
594
    let n_devices = devices.split(',').count();
    Some(n_devices)
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
}

#[derive(Deserialize)]
#[serde(rename_all = "UPPERCASE")]
enum PythonLogLevelEnum {
    Trace,
    Debug,
    Info,
    Success,
    Warning,
    Error,
    Critical,
}

#[derive(Deserialize)]
struct PythonLogLevel {
    name: PythonLogLevelEnum,
}

#[derive(Deserialize)]
struct PythonLogRecord {
    level: PythonLogLevel,
}

#[derive(Deserialize)]
struct PythonLogMessage {
    text: String,
    record: PythonLogRecord,
}

impl PythonLogMessage {
    fn trace(&self) {
        match self.record.level.name {
            PythonLogLevelEnum::Trace => tracing::trace!("{}", self.text),
            PythonLogLevelEnum::Debug => tracing::debug!("{}", self.text),
            PythonLogLevelEnum::Info => tracing::info!("{}", self.text),
            PythonLogLevelEnum::Success => tracing::info!("{}", self.text),
            PythonLogLevelEnum::Warning => tracing::warn!("{}", self.text),
            PythonLogLevelEnum::Error => tracing::error!("{}", self.text),
            PythonLogLevelEnum::Critical => tracing::error!("{}", self.text),
        }
    }
}

639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
impl TryFrom<&String> for PythonLogMessage {
    type Error = serde_json::Error;

    fn try_from(value: &String) -> Result<Self, Self::Error> {
        serde_json::from_str::<Self>(value)
    }
}

fn log_lines<S: Sized + BufRead>(lines: Lines<S>) {
    for line in lines.flatten() {
        match PythonLogMessage::try_from(&line) {
            Ok(log) => log.trace(),
            Err(_) => tracing::debug!("{line}"),
        }
    }
}

656
657
658
659
fn find_num_shards(
    sharded: Option<bool>,
    num_shard: Option<usize>,
) -> Result<usize, LauncherError> {
660
661
662
663
    // get the number of shards given `sharded` and `num_shard`
    let num_shard = match (sharded, num_shard) {
        (Some(true), None) => {
            // try to default to the number of available GPUs
664
665
666
            tracing::info!("Parsing num_shard from CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES");
            let n_devices = num_cuda_devices()
                .expect("--num-shard and CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES are not set");
667
            if n_devices <= 1 {
668
669
670
                return Err(LauncherError::NotEnoughCUDADevices(format!(
                    "`sharded` is true but only found {n_devices} CUDA devices"
                )));
671
            }
672
            n_devices
673
        }
674
675
676
        (Some(true), Some(num_shard)) => {
            // we can't have only one shard while sharded
            if num_shard <= 1 {
677
678
679
                return Err(LauncherError::ArgumentValidation(
                    "`sharded` is true but `num_shard` <= 1".to_string(),
                ));
680
681
            }
            num_shard
682
        }
683
684
685
686
        (Some(false), Some(num_shard)) => num_shard,
        (Some(false), None) => 1,
        (None, None) => num_cuda_devices().unwrap_or(1),
        (None, Some(num_shard)) => num_shard,
687
    };
688
    if num_shard < 1 {
689
690
691
        return Err(LauncherError::ArgumentValidation(
            "`num_shard` cannot be < 1".to_string(),
        ));
692
    }
693
    Ok(num_shard)
694
}
695

696
697
#[derive(Debug)]
enum LauncherError {
698
699
    ArgumentValidation(String),
    NotEnoughCUDADevices(String),
700
701
702
703
704
705
706
    DownloadError,
    ShardCannotStart,
    ShardDisconnected,
    ShardFailed,
    WebserverFailed,
    WebserverCannotStart,
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
707

708
fn download_convert_model(args: &Args, running: Arc<AtomicBool>) -> Result<(), LauncherError> {
709
710
711
    // Enter download tracing span
    let _span = tracing::span!(tracing::Level::INFO, "download").entered();

OlivierDehaene's avatar
OlivierDehaene committed
712
    let mut download_args = vec![
713
714
715
716
717
718
719
720
        "download-weights".to_string(),
        args.model_id.to_string(),
        "--extension".to_string(),
        ".safetensors".to_string(),
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];
721

722
723
    // Model optional revision
    if let Some(revision) = &args.revision {
OlivierDehaene's avatar
OlivierDehaene committed
724
725
        download_args.push("--revision".to_string());
        download_args.push(revision.to_string())
726
    }
727

728
729
730
731
732
    // Trust remote code for automatic peft fusion
    if args.trust_remote_code {
        download_args.push("--trust-remote-code".to_string());
    }

733
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
734
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
735

736
    // If huggingface_hub_cache is set, pass it to the download process
737
738
    // Useful when running inside a docker container
    if let Some(ref huggingface_hub_cache) = args.huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
739
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
740
    };
741

742
743
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
744
    envs.push((
745
746
747
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));
748

749
750
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
OlivierDehaene's avatar
OlivierDehaene committed
751
        envs.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
752
    };
753

754
755
756
    // If args.weights_cache_override is some, pass it to the download process
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = &args.weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
757
        envs.push((
758
759
760
761
762
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

763
764
    // Start process
    tracing::info!("Starting download process.");
765
    let mut download_process = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
766
767
        .args(download_args)
        .envs(envs)
768
769
770
771
772
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
773
774
        Ok(p) => p,
        Err(err) => {
775
776
777
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
778
779
            } else {
                tracing::error!("{}", err);
780
            }
781

782
783
784
            return Err(LauncherError::DownloadError);
        }
    };
785

786
787
    // Redirect STDOUT to the console
    let download_stdout = download_process.stdout.take().unwrap();
788
789
    let stdout = BufReader::new(download_stdout);

790
    thread::spawn(move || {
791
        log_lines(stdout.lines());
792
    });
793

794
    loop {
795
796
797
798
        if let Some(status) = download_process.try_wait().unwrap() {
            if status.success() {
                tracing::info!("Successfully downloaded weights.");
                break;
799
            }
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816

            let mut err = String::new();
            download_process
                .stderr
                .take()
                .unwrap()
                .read_to_string(&mut err)
                .unwrap();
            if let Some(signal) = status.signal() {
                tracing::error!(
                    "Download process was signaled to shutdown with signal {signal}: {err}"
                );
            } else {
                tracing::error!("Download encountered an error: {err}");
            }

            return Err(LauncherError::DownloadError);
817
        }
818
        if !running.load(Ordering::SeqCst) {
OlivierDehaene's avatar
OlivierDehaene committed
819
            terminate("download", download_process, Duration::from_secs(10)).unwrap();
820
821
822
            return Ok(());
        }
        sleep(Duration::from_millis(100));
823
    }
824
825
    Ok(())
}
826

827
#[allow(clippy::too_many_arguments)]
828
829
830
fn spawn_shards(
    num_shard: usize,
    args: &Args,
831
    shutdown: Arc<AtomicBool>,
832
833
834
835
836
837
    shutdown_receiver: &mpsc::Receiver<()>,
    shutdown_sender: mpsc::Sender<()>,
    status_receiver: &mpsc::Receiver<ShardStatus>,
    status_sender: mpsc::Sender<ShardStatus>,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
838
839
    // Start shard processes
    for rank in 0..num_shard {
840
841
842
843
844
845
        let model_id = args.model_id.clone();
        let revision = args.revision.clone();
        let uds_path = args.shard_uds_path.clone();
        let master_addr = args.master_addr.clone();
        let huggingface_hub_cache = args.huggingface_hub_cache.clone();
        let weights_cache_override = args.weights_cache_override.clone();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
846
847
848
        let status_sender = status_sender.clone();
        let shutdown = shutdown.clone();
        let shutdown_sender = shutdown_sender.clone();
849
        let otlp_endpoint = args.otlp_endpoint.clone();
850
        let quantize = args.quantize;
851
        let dtype = args.dtype;
852
        let trust_remote_code = args.trust_remote_code;
853
854
855
856
        let master_port = args.master_port;
        let disable_custom_kernels = args.disable_custom_kernels;
        let watermark_gamma = args.watermark_gamma;
        let watermark_delta = args.watermark_delta;
857
        let cuda_memory_fraction = args.cuda_memory_fraction;
Nicolas Patry's avatar
Nicolas Patry committed
858
859
        let rope_scaling = args.rope_scaling;
        let rope_factor = args.rope_factor;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
860
861
        thread::spawn(move || {
            shard_manager(
862
                model_id,
863
                revision,
864
                quantize,
865
                dtype,
866
                trust_remote_code,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
867
868
869
870
871
                uds_path,
                rank,
                num_shard,
                master_addr,
                master_port,
872
873
                huggingface_hub_cache,
                weights_cache_override,
874
                disable_custom_kernels,
875
876
                watermark_gamma,
                watermark_delta,
877
                cuda_memory_fraction,
Nicolas Patry's avatar
Nicolas Patry committed
878
879
                rope_scaling,
                rope_factor,
880
                otlp_endpoint,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
                status_sender,
                shutdown,
                shutdown_sender,
            )
        });
    }
    drop(shutdown_sender);

    // Wait for shard to start
    let mut shard_ready = 0;
    while running.load(Ordering::SeqCst) {
        match status_receiver.try_recv() {
            Ok(ShardStatus::Ready) => {
                shard_ready += 1;
                if shard_ready == num_shard {
                    break;
                }
            }
            Err(TryRecvError::Empty) => {
                sleep(Duration::from_millis(100));
            }
902
            Ok(ShardStatus::Failed(rank)) => {
903
                tracing::error!("Shard {rank} failed to start");
904
                shutdown_shards(shutdown, shutdown_receiver);
905
                return Err(LauncherError::ShardCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
906
907
908
            }
            Err(TryRecvError::Disconnected) => {
                tracing::error!("Shard status channel disconnected");
909
                shutdown_shards(shutdown, shutdown_receiver);
910
                return Err(LauncherError::ShardDisconnected);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
911
912
913
            }
        }
    }
914
915
    Ok(())
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
916

917
918
fn spawn_webserver(
    args: Args,
919
    shutdown: Arc<AtomicBool>,
920
    shutdown_receiver: &mpsc::Receiver<()>,
921
) -> Result<Child, LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
922
923
924
    // All shard started
    // Start webserver
    tracing::info!("Starting Webserver");
OlivierDehaene's avatar
OlivierDehaene committed
925
    let mut router_args = vec![
926
        "--max-concurrent-requests".to_string(),
927
        args.max_concurrent_requests.to_string(),
928
        "--max-best-of".to_string(),
929
        args.max_best_of.to_string(),
930
        "--max-stop-sequences".to_string(),
931
        args.max_stop_sequences.to_string(),
932
        "--max-input-length".to_string(),
933
        args.max_input_length.to_string(),
934
        "--max-total-tokens".to_string(),
935
        args.max_total_tokens.to_string(),
936
937
        "--max-batch-prefill-tokens".to_string(),
        args.max_batch_prefill_tokens.to_string(),
938
        "--waiting-served-ratio".to_string(),
939
        args.waiting_served_ratio.to_string(),
940
        "--max-waiting-tokens".to_string(),
941
        args.max_waiting_tokens.to_string(),
942
943
        "--validation-workers".to_string(),
        args.validation_workers.to_string(),
944
945
        "--hostname".to_string(),
        args.hostname.to_string(),
946
        "--port".to_string(),
947
        args.port.to_string(),
948
        "--master-shard-uds-path".to_string(),
949
        format!("{}-0", args.shard_uds_path),
950
        "--tokenizer-name".to_string(),
951
        args.model_id,
952
953
    ];

954
955
956
957
958
959
    // Model optional max batch total tokens
    if let Some(max_batch_total_tokens) = args.max_batch_total_tokens {
        router_args.push("--max-batch-total-tokens".to_string());
        router_args.push(max_batch_total_tokens.to_string());
    }

960
961
    // Model optional revision
    if let Some(ref revision) = args.revision {
OlivierDehaene's avatar
OlivierDehaene committed
962
963
        router_args.push("--revision".to_string());
        router_args.push(revision.to_string())
964
965
    }

966
    if args.json_output {
OlivierDehaene's avatar
OlivierDehaene committed
967
        router_args.push("--json-output".to_string());
968
969
    }

970
    // OpenTelemetry
971
    if let Some(otlp_endpoint) = args.otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
972
973
        router_args.push("--otlp-endpoint".to_string());
        router_args.push(otlp_endpoint);
974
975
976
977
    }

    // CORS origins
    for origin in args.cors_allow_origin.into_iter() {
OlivierDehaene's avatar
OlivierDehaene committed
978
979
        router_args.push("--cors-allow-origin".to_string());
        router_args.push(origin);
980
981
    }

982
983
    // Ngrok
    if args.ngrok {
OlivierDehaene's avatar
OlivierDehaene committed
984
985
        router_args.push("--ngrok".to_string());
        router_args.push("--ngrok-authtoken".to_string());
986
987
988
        router_args.push(args.ngrok_authtoken.unwrap());
        router_args.push("--ngrok-edge".to_string());
        router_args.push(args.ngrok_edge.unwrap());
989
990
    }

991
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
992
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
993

994
995
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
OlivierDehaene's avatar
OlivierDehaene committed
996
        envs.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
997
    };
998

999
    let mut webserver = match Command::new("text-generation-router")
OlivierDehaene's avatar
OlivierDehaene committed
1000
1001
        .args(router_args)
        .envs(envs)
1002
1003
1004
1005
1006
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1007
1008
        Ok(p) => p,
        Err(err) => {
1009
            tracing::error!("Failed to start webserver: {}", err);
1010
1011
1012
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-router not found in PATH");
                tracing::error!("Please install it with `make install-router`")
1013
1014
            } else {
                tracing::error!("{}", err);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1015
            }
1016

1017
            shutdown_shards(shutdown, shutdown_receiver);
1018
            return Err(LauncherError::WebserverCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1019
1020
1021
        }
    };

1022
1023
1024
    // Redirect STDOUT and STDERR to the console
    let webserver_stdout = webserver.stdout.take().unwrap();
    let webserver_stderr = webserver.stderr.take().unwrap();
1025
1026

    thread::spawn(move || {
1027
1028
        let stdout = BufReader::new(webserver_stdout);
        let stderr = BufReader::new(webserver_stderr);
1029
        for line in stdout.lines() {
1030
            println!("{}", line.unwrap());
1031
        }
1032
1033
        for line in stderr.lines() {
            println!("{}", line.unwrap());
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1034
        }
1035
1036
1037
    });
    Ok(webserver)
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1038

OlivierDehaene's avatar
OlivierDehaene committed
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
fn terminate(process_name: &str, mut process: Child, timeout: Duration) -> io::Result<ExitStatus> {
    tracing::info!("Terminating {process_name}");

    let terminate_time = Instant::now();
    signal::kill(Pid::from_raw(process.id() as i32), Signal::SIGTERM).unwrap();

    tracing::info!("Waiting for {process_name} to gracefully shutdown");

    while terminate_time.elapsed() < timeout {
        if let Some(status) = process.try_wait()? {
            tracing::info!("{process_name} terminated");
            return Ok(status);
        }
        sleep(Duration::from_millis(100));
    }

    tracing::info!("Killing {process_name}");

    process.kill()?;
    let exit_status = process.wait()?;

    tracing::info!("{process_name} killed");
    Ok(exit_status)
}

1064
1065
fn main() -> Result<(), LauncherError> {
    // Pattern match configuration
1066
    let args: Args = Args::parse();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1067

1068
1069
1070
1071
    // Filter events with LOG_LEVEL
    let env_filter =
        EnvFilter::try_from_env("LOG_LEVEL").unwrap_or_else(|_| EnvFilter::new("info"));

1072
    if args.json_output {
1073
1074
1075
1076
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .json()
            .init();
1077
    } else {
1078
1079
1080
1081
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .compact()
            .init();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1082
1083
    }

1084
1085
1086
1087
1088
    if args.env {
        let env_runtime = env_runtime::Env::new();
        tracing::info!("{}", env_runtime);
    }

1089
1090
    tracing::info!("{:?}", args);

1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
    // Validate args
    if args.max_input_length >= args.max_total_tokens {
        return Err(LauncherError::ArgumentValidation(
            "`max_input_length` must be < `max_total_tokens`".to_string(),
        ));
    }
    if args.max_input_length as u32 > args.max_batch_prefill_tokens {
        return Err(LauncherError::ArgumentValidation(format!(
            "`max_batch_prefill_tokens` must be >= `max_input_length`. Given: {} and {}",
            args.max_batch_prefill_tokens, args.max_input_length
        )));
    }
1103

1104
1105
1106
1107
1108
    if args.validation_workers == 0 {
        return Err(LauncherError::ArgumentValidation(
            "`validation_workers` must be > 0".to_string(),
        ));
    }
1109
1110
1111
1112
1113
1114
    if args.trust_remote_code {
        tracing::warn!(
            "`trust_remote_code` is set. Trusting that model `{}` do not contain malicious code.",
            args.model_id
        );
    }
1115
1116

    let num_shard = find_num_shards(args.sharded, args.num_shard)?;
1117
1118
    if num_shard > 1 {
        tracing::info!("Sharding model on {num_shard} processes");
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1119
1120
    }

1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
    if let Some(ref max_batch_total_tokens) = args.max_batch_total_tokens {
        if args.max_batch_prefill_tokens > *max_batch_total_tokens {
            return Err(LauncherError::ArgumentValidation(format!(
                "`max_batch_prefill_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
                args.max_batch_prefill_tokens, max_batch_total_tokens
            )));
        }
        if args.max_total_tokens as u32 > *max_batch_total_tokens {
            return Err(LauncherError::ArgumentValidation(format!(
                "`max_total_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
                args.max_total_tokens, max_batch_total_tokens
            )));
        }
    }

1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
    if args.ngrok {
        if args.ngrok_authtoken.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-authtoken` must be set when using ngrok tunneling".to_string(),
            ));
        }

        if args.ngrok_edge.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-edge` must be set when using ngrok tunneling".to_string(),
            ));
        }
    }

1150
1151
1152
1153
1154
1155
1156
    // Signal handler
    let running = Arc::new(AtomicBool::new(true));
    let r = running.clone();
    ctrlc::set_handler(move || {
        r.store(false, Ordering::SeqCst);
    })
    .expect("Error setting Ctrl-C handler");
1157

1158
    // Download and convert model weights
1159
    download_convert_model(&args, running.clone())?;
1160

OlivierDehaene's avatar
OlivierDehaene committed
1161
1162
1163
1164
1165
    if !running.load(Ordering::SeqCst) {
        // Launcher was asked to stop
        return Ok(());
    }

1166
    // Shared shutdown bool
1167
    let shutdown = Arc::new(AtomicBool::new(false));
1168
1169
1170
    // Shared shutdown channel
    // When shutting down, the main thread will wait for all senders to be dropped
    let (shutdown_sender, shutdown_receiver) = mpsc::channel();
1171

1172
1173
    // Shared channel to track shard status
    let (status_sender, status_receiver) = mpsc::channel();
1174

1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
    spawn_shards(
        num_shard,
        &args,
        shutdown.clone(),
        &shutdown_receiver,
        shutdown_sender,
        &status_receiver,
        status_sender,
        running.clone(),
    )?;
1185

1186
1187
1188
1189
1190
    // We might have received a termination signal
    if !running.load(Ordering::SeqCst) {
        shutdown_shards(shutdown, &shutdown_receiver);
        return Ok(());
    }
1191

OlivierDehaene's avatar
OlivierDehaene committed
1192
1193
1194
1195
1196
    let mut webserver =
        spawn_webserver(args, shutdown.clone(), &shutdown_receiver).map_err(|err| {
            shutdown_shards(shutdown.clone(), &shutdown_receiver);
            err
        })?;
1197
1198
1199
1200
1201

    // Default exit code
    let mut exit_code = Ok(());

    while running.load(Ordering::SeqCst) {
1202
        if let Ok(ShardStatus::Failed(rank)) = status_receiver.try_recv() {
OlivierDehaene's avatar
OlivierDehaene committed
1203
            tracing::error!("Shard {rank} crashed");
1204
1205
1206
1207
            exit_code = Err(LauncherError::ShardFailed);
            break;
        };

1208
        match webserver.try_wait().unwrap() {
1209
1210
1211
1212
1213
1214
1215
1216
1217
            Some(_) => {
                tracing::error!("Webserver Crashed");
                shutdown_shards(shutdown, &shutdown_receiver);
                return Err(LauncherError::WebserverFailed);
            }
            None => {
                sleep(Duration::from_millis(100));
            }
        };
1218
    }
1219
1220

    // Graceful termination
OlivierDehaene's avatar
OlivierDehaene committed
1221
    terminate("webserver", webserver, Duration::from_secs(90)).unwrap();
1222
1223
1224
    shutdown_shards(shutdown, &shutdown_receiver);

    exit_code
1225
}