main.rs 54.7 KB
Newer Older
1
use clap::{Parser, ValueEnum};
2
use hf_hub::{api::sync::Api, Repo, RepoType};
3
4
use nix::sys::signal::{self, Signal};
use nix::unistd::Pid;
5
use serde::Deserialize;
Nicolas Patry's avatar
Nicolas Patry committed
6
use std::env;
7
use std::ffi::OsString;
8
use std::io::{BufRead, BufReader, Lines};
9
use std::os::unix::process::{CommandExt, ExitStatusExt};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
10
use std::path::Path;
OlivierDehaene's avatar
OlivierDehaene committed
11
use std::process::{Child, Command, ExitStatus, Stdio};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
12
13
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::TryRecvError;
14
use std::sync::{mpsc, Arc};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
15
16
17
18
use std::thread;
use std::thread::sleep;
use std::time::{Duration, Instant};
use std::{fs, io};
19
use thiserror::Error;
20
use tracing_subscriber::{filter::LevelFilter, EnvFilter};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
21

22
23
mod env_runtime;

24
#[derive(Deserialize)]
25
struct RawConfig {
26
    max_position_embeddings: Option<usize>,
27
    n_positions: Option<usize>,
28
29
30
    max_seq_len: Option<usize>,
}

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#[derive(Deserialize)]
struct Config {
    max_position_embeddings: Option<usize>,
}

impl From<RawConfig> for Config {
    fn from(other: RawConfig) -> Self {
        let max_position_embeddings = other
            .max_position_embeddings
            .or(other.max_seq_len)
            .or(other.n_positions);
        Config {
            max_position_embeddings,
        }
    }
}

48
49
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Quantization {
50
    /// 4 bit quantization. Requires a specific AWQ quantized model:
51
    ///   <https://hf.co/models?search=awq>.
52
    /// Should replace GPTQ models wherever possible because of the better latency
53
54
55
    Awq,
    /// 8 bit quantization, doesn't require specific model.
    /// Should be a drop-in replacement to bitsandbytes with much better performance.
56
    /// Kernels are from <https://github.com/NetEase-FuXi/EETQ.git>
57
    Eetq,
58
    /// 4 bit quantization. Requires a specific GTPQ quantized model: <https://hf.co/models?search=gptq>.
59
    /// text-generation-inference will use exllama (faster) kernels wherever possible, and use
60
61
62
63
64
65
66
67
68
    /// triton kernel (wider support) when it's not.
    /// AWQ has faster kernels.
    Gptq,
    /// Bitsandbytes 8bit. Can be applied on any model, will cut the memory requirement in half,
    /// but it is known that the model will be much slower to run than the native f16.
    #[deprecated(
        since = "1.1.0",
        note = "Use `eetq` instead, which provides better latencies overall and is drop-in in most cases"
    )]
69
    Bitsandbytes,
70
71
    /// Bitsandbytes 4bit. Can be applied on any model, will cut the memory requirement by 4x,
    /// but it is known that the model will be much slower to run than the native f16.
Nicolas Patry's avatar
Nicolas Patry committed
72
    BitsandbytesNF4,
73
74
    /// Bitsandbytes 4bit. nf4 should be preferred in most cases but maybe this one has better
    /// perplexity performance for you model
Nicolas Patry's avatar
Nicolas Patry committed
75
    BitsandbytesFP4,
Nicolas Patry's avatar
Nicolas Patry committed
76
77
78
79
80
    /// [FP8](https://developer.nvidia.com/blog/nvidia-arm-and-intel-publish-fp8-specification-for-standardization-as-an-interchange-format-for-ai/) (e4m3) works on H100 and above
    /// This dtype has native ops should be the fastest if available.
    /// This is currently not the fastest because of local unpacking + padding to satisfy matrix
    /// multiplication limitations.
    Fp8,
81
82
83
84
85
86
}

impl std::fmt::Display for Quantization {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
87
88
            #[allow(deprecated)]
            // Use `eetq` instead, which provides better latencies overall and is drop-in in most cases
89
90
91
            Quantization::Bitsandbytes => {
                write!(f, "bitsandbytes")
            }
Nicolas Patry's avatar
Nicolas Patry committed
92
93
94
95
96
97
            Quantization::BitsandbytesNF4 => {
                write!(f, "bitsandbytes-nf4")
            }
            Quantization::BitsandbytesFP4 => {
                write!(f, "bitsandbytes-fp4")
            }
98
99
100
            Quantization::Gptq => {
                write!(f, "gptq")
            }
101
102
103
            Quantization::Awq => {
                write!(f, "awq")
            }
104
105
106
            Quantization::Eetq => {
                write!(f, "eetq")
            }
Nicolas Patry's avatar
Nicolas Patry committed
107
108
109
            Quantization::Fp8 => {
                write!(f, "fp8")
            }
110
111
112
113
        }
    }
}

114
115
116
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Dtype {
    Float16,
117
    #[clap(name = "bfloat16")]
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
    BFloat16,
}

impl std::fmt::Display for Dtype {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            Dtype::Float16 => {
                write!(f, "float16")
            }
            Dtype::BFloat16 => {
                write!(f, "bfloat16")
            }
        }
    }
}

Nicolas Patry's avatar
Nicolas Patry committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
#[derive(Clone, Copy, Debug, ValueEnum)]
enum RopeScaling {
    Linear,
    Dynamic,
}

impl std::fmt::Display for RopeScaling {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            RopeScaling::Linear => {
                write!(f, "linear")
            }
            RopeScaling::Dynamic => {
                write!(f, "dynamic")
            }
        }
    }
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
155
156
157
158
/// App Configuration
#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]
struct Args {
159
160
161
162
163
    /// The name of the model to load.
    /// Can be a MODEL_ID as listed on <https://hf.co/models> like
    /// `gpt2` or `OpenAssistant/oasst-sft-1-pythia-12b`.
    /// Or it can be a local directory containing the necessary files
    /// as saved by `save_pretrained(...)` methods of transformers
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
164
    #[clap(default_value = "bigscience/bloom-560m", long, env)]
165
    model_id: String,
166
167
168

    /// The actual revision of the model if you're referring to a model
    /// on the hub. You can use a specific commit id or a branch like `refs/pr/2`.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
169
    #[clap(long, env)]
170
    revision: Option<String>,
171

172
173
174
175
176
    /// The number of tokenizer workers used for payload validation and truncation inside the
    /// router.
    #[clap(default_value = "2", long, env)]
    validation_workers: usize,

177
    /// Whether to shard the model across multiple GPUs
178
179
    /// By default text-generation-inference will use all available GPUs to run
    /// the model. Setting it to `false` deactivates `num_shard`.
180
181
    #[clap(long, env)]
    sharded: Option<bool>,
182
183

    /// The number of shards to use if you don't want to use all GPUs on a given machine.
184
185
    /// You can use `CUDA_VISIBLE_DEVICES=0,1 text-generation-launcher... --num_shard 2`
    /// and `CUDA_VISIBLE_DEVICES=2,3 text-generation-launcher... --num_shard 2` to
186
    /// launch 2 copies with 2 shard each on a given machine with 4 GPUs for instance.
187
188
    #[clap(long, env)]
    num_shard: Option<usize>,
189

190
    /// Whether you want the model to be quantized.
191
192
    #[clap(long, env, value_enum)]
    quantize: Option<Quantization>,
193

Nicolas Patry's avatar
Nicolas Patry committed
194
195
196
197
198
199
200
    /// The number of input_ids to speculate on
    /// If using a medusa model, the heads will be picked up automatically
    /// Other wise, it will use n-gram speculation which is relatively free
    /// in terms of compute, but the speedup heavily depends on the task.
    #[clap(long, env)]
    speculate: Option<usize>,

201
202
203
204
    /// The dtype to be forced upon the model. This option cannot be used with `--quantize`.
    #[clap(long, env, value_enum)]
    dtype: Option<Dtype>,

205
206
207
208
209
210
    /// Whether you want to execute hub modelling code. Explicitly passing a `revision` is
    /// encouraged when loading a model with custom code to ensure no malicious code has been
    /// contributed in a newer revision.
    #[clap(long, env, value_enum)]
    trust_remote_code: bool,

211
212
213
    /// The maximum amount of concurrent requests for this particular deployment.
    /// Having a low limit will refuse clients requests instead of having them
    /// wait for too long and is usually good to handle backpressure correctly.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
214
215
    #[clap(default_value = "128", long, env)]
    max_concurrent_requests: usize,
216
217
218
219

    /// This is the maximum allowed value for clients to set `best_of`.
    /// Best of makes `n` generations at the same time, and return the best
    /// in terms of overall log probability over the entire generated sequence
220
221
    #[clap(default_value = "2", long, env)]
    max_best_of: usize,
222
223
224
225
226
227

    /// This is the maximum allowed value for clients to set `stop_sequences`.
    /// Stop sequences are used to allow the model to stop on more than just
    /// the EOS token, and enable more complex "prompting" where users can preprompt
    /// the model in a specific way and define their "own" stop token aligned with
    /// their prompt.
228
229
    #[clap(default_value = "4", long, env)]
    max_stop_sequences: usize,
230

Nicolas Patry's avatar
Nicolas Patry committed
231
232
233
234
235
236
237
238
    /// This is the maximum allowed value for clients to set `top_n_tokens`.
    /// `top_n_tokens is used to return information about the the `n` most likely
    /// tokens at each generation step, instead of just the sampled token. This
    /// information can be used for downstream tasks like for classification or
    /// ranking.
    #[clap(default_value = "5", long, env)]
    max_top_n_tokens: u32,

239
240
241
242
    /// This is the maximum allowed input length (expressed in number of tokens)
    /// for users. The larger this value, the longer prompt users can send which
    /// can impact the overall memory required to handle the load.
    /// Please note that some models have a finite range of sequence they can handle.
243
244
245
246
247
248
249
    /// Default to min(max_position_embeddings - 1, 4095)
    #[clap(long, env)]
    max_input_tokens: Option<usize>,

    /// Legacy version of [`Args::max_input_tokens`].
    #[clap(long, env)]
    max_input_length: Option<usize>,
250
251
252
253
254
255
256
257
258

    /// This is the most important value to set as it defines the "memory budget"
    /// of running clients requests.
    /// Clients will send input sequences and ask to generate `max_new_tokens`
    /// on top. with a value of `1512` users can send either a prompt of
    /// `1000` and ask for `512` new tokens, or send a prompt of `1` and ask for
    /// `1511` max_new_tokens.
    /// The larger this value, the larger amount each request will be in your RAM
    /// and the less effective batching can be.
259
260
261
    /// Default to min(max_position_embeddings, 4096)
    #[clap(long, env)]
    max_total_tokens: Option<usize>,
262
263
264
265
266
267
268
269
270
271
272

    /// This represents the ratio of waiting queries vs running queries where
    /// you want to start considering pausing the running queries to include the waiting
    /// ones into the same batch.
    /// `waiting_served_ratio=1.2` Means when 12 queries are waiting and there's
    /// only 10 queries left in the current batch we check if we can fit those 12
    /// waiting queries into the batching strategy, and if yes, then batching happens
    /// delaying the 10 running queries by a `prefill` run.
    ///
    /// This setting is only applied if there is room in the batch
    /// as defined by `max_batch_total_tokens`.
273
    #[clap(default_value = "0.3", long, env)]
274
    waiting_served_ratio: f32,
275

276
277
278
    /// Limits the number of tokens for the prefill operation.
    /// Since this operation take the most memory and is compute bound, it is interesting
    /// to limit the number of requests that can be sent.
279
280
281
    /// Default to `max_input_tokens + 50` to give a bit of room.
    #[clap(long, env)]
    max_batch_prefill_tokens: Option<u32>,
282

283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
    /// **IMPORTANT** This is one critical control to allow maximum usage
    /// of the available hardware.
    ///
    /// This represents the total amount of potential tokens within a batch.
    /// When using padding (not recommended) this would be equivalent of
    /// `batch_size` * `max_total_tokens`.
    ///
    /// However in the non-padded (flash attention) version this can be much finer.
    ///
    /// For `max_batch_total_tokens=1000`, you could fit `10` queries of `total_tokens=100`
    /// or a single query of `1000` tokens.
    ///
    /// Overall this number should be the largest possible amount that fits the
    /// remaining memory (after the model is loaded). Since the actual memory overhead
    /// depends on other parameters like if you're using quantization, flash attention
    /// or the model implementation, text-generation-inference cannot infer this number
    /// automatically.
300
301
    #[clap(long, env)]
    max_batch_total_tokens: Option<u32>,
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319

    /// This setting defines how many tokens can be passed before forcing the waiting
    /// queries to be put on the batch (if the size of the batch allows for it).
    /// New queries require 1 `prefill` forward, which is different from `decode`
    /// and therefore you need to pause the running batch in order to run `prefill`
    /// to create the correct values for the waiting queries to be able to join the batch.
    ///
    /// With a value too small, queries will always "steal" the compute to run `prefill`
    /// and running queries will be delayed by a lot.
    ///
    /// With a value too big, waiting queries could wait for a very long time
    /// before being allowed a slot in the running batch. If your server is busy
    /// that means that requests that could run in ~2s on an empty server could
    /// end up running in ~20s because the query had to wait for 18s.
    ///
    /// This number is expressed in number of tokens to make it a bit more
    /// "model" agnostic, but what should really matter is the overall latency
    /// for end users.
320
321
    #[clap(default_value = "20", long, env)]
    max_waiting_tokens: usize,
322

323
324
325
326
327
    /// Enforce a maximum number of requests per batch
    /// Specific flag for hardware targets that do not support unpadded inference
    #[clap(long, env)]
    max_batch_size: Option<usize>,

328
329
    /// Specify the batch sizes to compute cuda graphs for.
    /// Use "0" to disable.
330
331
332
    /// Default = "1,2,4,8,16,32"
    #[clap(long, env, value_delimiter = ',')]
    cuda_graphs: Option<Vec<usize>>,
333

334
335
336
337
    /// The IP address to listen on
    #[clap(default_value = "0.0.0.0", long, env)]
    hostname: String,

338
    /// The port to listen on.
339
    #[clap(default_value = "3000", long, short, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
340
    port: u16,
341
342
343

    /// The name of the socket for gRPC communication between the webserver
    /// and the shards.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
344
345
    #[clap(default_value = "/tmp/text-generation-server", long, env)]
    shard_uds_path: String,
346
347

    /// The address the master shard will listen on. (setting used by torch distributed)
348
    #[clap(default_value = "localhost", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
349
    master_addr: String,
350
351

    /// The address the master port will listen on. (setting used by torch distributed)
352
    #[clap(default_value = "29500", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
353
    master_port: usize,
354
355
356

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
357
    #[clap(long, env)]
358
    huggingface_hub_cache: Option<String>,
359
360
361

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
362
363
    #[clap(long, env)]
    weights_cache_override: Option<String>,
364
365
366
367
368

    /// For some models (like bloom), text-generation-inference implemented custom
    /// cuda kernels to speed up inference. Those kernels were only tested on A100.
    /// Use this flag to disable them if you're running on different hardware and
    /// encounter issues.
369
    #[clap(long, env)]
370
    disable_custom_kernels: bool,
371

372
373
374
375
376
    /// Limit the CUDA available memory.
    /// The allowed value equals the total visible memory multiplied by cuda-memory-fraction.
    #[clap(default_value = "1.0", long, env)]
    cuda_memory_fraction: f32,

Nicolas Patry's avatar
Nicolas Patry committed
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
    /// Rope scaling will only be used for RoPE models
    /// and allow rescaling the position rotary to accomodate for
    /// larger prompts.
    ///
    /// Goes together with `rope_factor`.
    ///
    /// `--rope-factor 2.0` gives linear scaling with a factor of 2.0
    /// `--rope-scaling dynamic` gives dynamic scaling with a factor of 1.0
    /// `--rope-scaling linear` gives linear scaling with a factor of 1.0 (Nothing will be changed
    /// basically)
    ///
    /// `--rope-scaling linear --rope-factor` fully describes the scaling you want
    #[clap(long, env)]
    rope_scaling: Option<RopeScaling>,

    /// Rope scaling will only be used for RoPE models
    /// See `rope_scaling`
    #[clap(long, env)]
    rope_factor: Option<f32>,

397
    /// Outputs the logs in JSON format (useful for telemetry)
398
    #[clap(long, env)]
399
    json_output: bool,
400

401
402
    #[clap(long, env)]
    otlp_endpoint: Option<String>,
403

404
405
    #[clap(long, env)]
    cors_allow_origin: Vec<String>,
406
407
408
409
    #[clap(long, env)]
    watermark_gamma: Option<f32>,
    #[clap(long, env)]
    watermark_delta: Option<f32>,
410

411
412
413
414
415
416
417
418
    /// Enable ngrok tunneling
    #[clap(long, env)]
    ngrok: bool,

    /// ngrok authentication token
    #[clap(long, env)]
    ngrok_authtoken: Option<String>,

419
    /// ngrok edge
420
    #[clap(long, env)]
421
    ngrok_edge: Option<String>,
422

423
424
425
426
427
    /// The path to the tokenizer config file. This path is used to load the tokenizer configuration which may
    /// include a `chat_template`. If not provided, the default config will be used from the model hub.
    #[clap(long, env)]
    tokenizer_config_path: Option<String>,

drbh's avatar
drbh committed
428
429
430
431
432
    /// Disable outlines grammar constrained generation.
    /// This is a feature that allows you to generate text that follows a specific grammar.
    #[clap(long, env)]
    disable_grammar_support: bool,

433
434
435
    /// Display a lot of information about your runtime environment
    #[clap(long, short, action)]
    env: bool,
436
437
438
439

    /// Control the maximum number of inputs that a client can send in a single request
    #[clap(default_value = "4", long, env)]
    max_client_batch_size: usize,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
440
441
}

442
443
444
#[derive(Debug)]
enum ShardStatus {
    Ready,
445
    Failed(usize),
446
}
447

448
449
450
451
#[allow(clippy::too_many_arguments)]
fn shard_manager(
    model_id: String,
    revision: Option<String>,
452
    quantize: Option<Quantization>,
Nicolas Patry's avatar
Nicolas Patry committed
453
    speculate: Option<usize>,
454
    dtype: Option<Dtype>,
455
    trust_remote_code: bool,
456
457
458
459
460
461
462
463
464
465
    uds_path: String,
    rank: usize,
    world_size: usize,
    master_addr: String,
    master_port: usize,
    huggingface_hub_cache: Option<String>,
    weights_cache_override: Option<String>,
    disable_custom_kernels: bool,
    watermark_gamma: Option<f32>,
    watermark_delta: Option<f32>,
466
    cuda_graphs: Vec<usize>,
467
    cuda_memory_fraction: f32,
Nicolas Patry's avatar
Nicolas Patry committed
468
469
    rope_scaling: Option<RopeScaling>,
    rope_factor: Option<f32>,
470
471
    max_total_tokens: usize,
    max_batch_size: Option<usize>,
472
    otlp_endpoint: Option<String>,
473
    log_level: LevelFilter,
474
    status_sender: mpsc::Sender<ShardStatus>,
475
    shutdown: Arc<AtomicBool>,
476
477
    _shutdown_sender: mpsc::Sender<()>,
) {
478
479
480
    // Enter shard-manager tracing span
    let _span = tracing::span!(tracing::Level::INFO, "shard-manager", rank = rank).entered();

481
482
483
484
    // Get UDS path
    let uds_string = format!("{uds_path}-{rank}");
    let uds = Path::new(&uds_string);
    // Clean previous runs
485
486
487
    if uds.exists() {
        fs::remove_file(uds).unwrap();
    }
488
489

    // Process args
OlivierDehaene's avatar
OlivierDehaene committed
490
    let mut shard_args = vec![
491
492
493
494
495
        "serve".to_string(),
        model_id,
        "--uds-path".to_string(),
        uds_path,
        "--logger-level".to_string(),
496
        log_level.to_string().to_uppercase(),
497
498
499
        "--json-output".to_string(),
    ];

500
501
    // Activate trust remote code
    if trust_remote_code {
OlivierDehaene's avatar
OlivierDehaene committed
502
        shard_args.push("--trust-remote-code".to_string());
503
504
    }

505
506
    // Activate tensor parallelism
    if world_size > 1 {
OlivierDehaene's avatar
OlivierDehaene committed
507
        shard_args.push("--sharded".to_string());
508
509
    }

510
    if let Some(quantize) = quantize {
OlivierDehaene's avatar
OlivierDehaene committed
511
512
        shard_args.push("--quantize".to_string());
        shard_args.push(quantize.to_string())
513
    }
514

Nicolas Patry's avatar
Nicolas Patry committed
515
516
517
518
519
    if let Some(speculate) = speculate {
        shard_args.push("--speculate".to_string());
        shard_args.push(speculate.to_string())
    }

520
    if let Some(dtype) = dtype {
OlivierDehaene's avatar
OlivierDehaene committed
521
522
        shard_args.push("--dtype".to_string());
        shard_args.push(dtype.to_string())
523
524
    }

525
526
    // Model optional revision
    if let Some(revision) = revision {
OlivierDehaene's avatar
OlivierDehaene committed
527
528
        shard_args.push("--revision".to_string());
        shard_args.push(revision)
529
    }
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
530

Nicolas Patry's avatar
Nicolas Patry committed
531
532
533
534
535
536
    let rope = match (rope_scaling, rope_factor) {
        (None, None) => None,
        (Some(scaling), None) => Some((scaling, 1.0)),
        (Some(scaling), Some(factor)) => Some((scaling, factor)),
        (None, Some(factor)) => Some((RopeScaling::Linear, factor)),
    };
537

538
539
    // OpenTelemetry
    if let Some(otlp_endpoint) = otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
540
541
        shard_args.push("--otlp-endpoint".to_string());
        shard_args.push(otlp_endpoint);
542
543
544
    }

    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
545
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
546

547
548
549
    // Remove LOG_LEVEL if present
    envs.retain(|(name, _)| name != "LOG_LEVEL");

550
    // Torch Distributed Env vars
OlivierDehaene's avatar
OlivierDehaene committed
551
552
553
554
    envs.push(("RANK".into(), rank.to_string().into()));
    envs.push(("WORLD_SIZE".into(), world_size.to_string().into()));
    envs.push(("MASTER_ADDR".into(), master_addr.into()));
    envs.push(("MASTER_PORT".into(), master_port.to_string().into()));
555
    envs.push(("TORCH_NCCL_AVOID_RECORD_STREAMS".into(), "1".into()));
556

557
558
559
560
561
562
    // CUDA memory fraction
    envs.push((
        "CUDA_MEMORY_FRACTION".into(),
        cuda_memory_fraction.to_string().into(),
    ));

563
    // Safetensors load fast
OlivierDehaene's avatar
OlivierDehaene committed
564
    envs.push(("SAFETENSORS_FAST_GPU".into(), "1".into()));
565

566
567
568
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

569
570
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
571
    envs.push((
572
573
574
575
576
577
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));

    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
OlivierDehaene's avatar
OlivierDehaene committed
578
        envs.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
579
580
    };

Nicolas Patry's avatar
Nicolas Patry committed
581
582
583
584
585
586
587
588
589
    // Detect rope scaling
    // Sending as env instead of CLI args to not bloat everything
    // those only can be used by RoPE models, so passing information around
    // for all models will complexify code unnecessarily
    if let Some((scaling, factor)) = rope {
        envs.push(("ROPE_SCALING".into(), scaling.to_string().into()));
        envs.push(("ROPE_FACTOR".into(), factor.to_string().into()));
    }

590
591
592
593
594
595
596
597
    envs.push((
        "MAX_TOTAL_TOKENS".into(),
        max_total_tokens.to_string().into(),
    ));
    if let Some(max_batch_size) = max_batch_size {
        envs.push(("MAX_BATCH_SIZE".into(), max_batch_size.to_string().into()));
    }

598
599
600
    // If huggingface_hub_cache is some, pass it to the shard
    // Useful when running inside a docker container
    if let Some(huggingface_hub_cache) = huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
601
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
602
603
604
605
606
    };

    // If weights_cache_override is some, pass it to the shard
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
607
        envs.push((
608
609
610
611
612
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

613
    // Enable experimental support for cuda graphs
614
615
616
617
618
619
620
621
622
623
    if !cuda_graphs.is_empty() {
        envs.push((
            "CUDA_GRAPHS".into(),
            cuda_graphs
                .into_iter()
                .map(|c| c.to_string())
                .collect::<Vec<_>>()
                .join(",")
                .into(),
        ));
624
625
    }

626
627
    // If disable_custom_kernels is true, pass it to the shard as an env var
    if disable_custom_kernels {
OlivierDehaene's avatar
OlivierDehaene committed
628
        envs.push(("DISABLE_CUSTOM_KERNELS".into(), "True".into()))
629
630
631
632
    }

    // Watermark Gamma
    if let Some(watermark_gamma) = watermark_gamma {
OlivierDehaene's avatar
OlivierDehaene committed
633
        envs.push(("WATERMARK_GAMMA".into(), watermark_gamma.to_string().into()))
634
635
636
637
    }

    // Watermark Delta
    if let Some(watermark_delta) = watermark_delta {
OlivierDehaene's avatar
OlivierDehaene committed
638
        envs.push(("WATERMARK_DELTA".into(), watermark_delta.to_string().into()))
639
640
641
    }

    // Start process
642
    tracing::info!("Starting shard");
643
    let mut p = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
644
        .args(shard_args)
645
        .env_clear()
OlivierDehaene's avatar
OlivierDehaene committed
646
        .envs(envs)
647
648
649
650
651
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
652
653
        Ok(p) => p,
        Err(err) => {
654
655
656
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
657
658
            }
            {
659
                tracing::error!("{}", err);
660
            }
661

662
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
663
664
665
666
667
            return;
        }
    };

    // Redirect STDOUT to the console
668
    let shard_stdout_reader = BufReader::new(p.stdout.take().unwrap());
669
    let shard_stderr_reader = BufReader::new(p.stderr.take().unwrap());
670

671
    //stdout tracing thread
672
    thread::spawn(move || {
673
        log_lines(shard_stdout_reader.lines());
674
    });
675
676
677
    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
OlivierDehaene's avatar
OlivierDehaene committed
678
        for line in shard_stderr_reader.lines().map_while(Result::ok) {
679
680
681
            err_sender.send(line).unwrap_or(());
        }
    });
682
683
684
685
686
687

    let mut ready = false;
    let start_time = Instant::now();
    let mut wait_time = Instant::now();
    loop {
        // Process exited
688
        if let Some(exit_status) = p.try_wait().unwrap() {
689
690
691
692
            let mut err = String::new();
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }
693

694
            tracing::error!("Shard complete standard error output:\n{err}");
695

696
            if let Some(signal) = exit_status.signal() {
697
698
699
                tracing::error!("Shard process was signaled to shutdown with signal {signal}");
            }

700
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
701
702
703
704
            return;
        }

        // We received a shutdown signal
705
        if shutdown.load(Ordering::SeqCst) {
706
            terminate("shard", p, Duration::from_secs(90)).unwrap();
707
708
709
710
711
            return;
        }

        // Shard is ready
        if uds.exists() && !ready {
712
            tracing::info!("Shard ready in {:?}", start_time.elapsed());
713
714
715
            status_sender.send(ShardStatus::Ready).unwrap();
            ready = true;
        } else if !ready && wait_time.elapsed() > Duration::from_secs(10) {
716
            tracing::info!("Waiting for shard to be ready...");
717
718
719
720
721
722
            wait_time = Instant::now();
        }
        sleep(Duration::from_millis(100));
    }
}

723
fn shutdown_shards(shutdown: Arc<AtomicBool>, shutdown_receiver: &mpsc::Receiver<()>) {
724
725
726
    tracing::info!("Shutting down shards");
    // Update shutdown value to true
    // This will be picked up by the shard manager
727
    shutdown.store(true, Ordering::SeqCst);
728
729
730
731
732
733
734

    // Wait for shards to shutdown
    // This will block till all shutdown_sender are dropped
    let _ = shutdown_receiver.recv();
}

fn num_cuda_devices() -> Option<usize> {
735
736
737
738
    let devices = match env::var("CUDA_VISIBLE_DEVICES") {
        Ok(devices) => devices,
        Err(_) => env::var("NVIDIA_VISIBLE_DEVICES").ok()?,
    };
739
740
    let n_devices = devices.split(',').count();
    Some(n_devices)
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
}

#[derive(Deserialize)]
#[serde(rename_all = "UPPERCASE")]
enum PythonLogLevelEnum {
    Trace,
    Debug,
    Info,
    Success,
    Warning,
    Error,
    Critical,
}

#[derive(Deserialize)]
struct PythonLogLevel {
    name: PythonLogLevelEnum,
}

#[derive(Deserialize)]
struct PythonLogRecord {
    level: PythonLogLevel,
}

#[derive(Deserialize)]
struct PythonLogMessage {
    text: String,
    record: PythonLogRecord,
}

impl PythonLogMessage {
    fn trace(&self) {
        match self.record.level.name {
774
775
776
777
778
779
780
            PythonLogLevelEnum::Trace => tracing::trace!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Debug => tracing::debug!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Info => tracing::info!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Success => tracing::info!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Warning => tracing::warn!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Error => tracing::error!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Critical => tracing::error!("{}", self.text.trim_end()),
781
782
783
784
        }
    }
}

785
786
787
788
789
790
791
792
793
impl TryFrom<&String> for PythonLogMessage {
    type Error = serde_json::Error;

    fn try_from(value: &String) -> Result<Self, Self::Error> {
        serde_json::from_str::<Self>(value)
    }
}

fn log_lines<S: Sized + BufRead>(lines: Lines<S>) {
OlivierDehaene's avatar
OlivierDehaene committed
794
    for line in lines.map_while(Result::ok) {
795
796
797
798
799
800
801
        match PythonLogMessage::try_from(&line) {
            Ok(log) => log.trace(),
            Err(_) => tracing::debug!("{line}"),
        }
    }
}

802
803
804
805
fn find_num_shards(
    sharded: Option<bool>,
    num_shard: Option<usize>,
) -> Result<usize, LauncherError> {
806
807
808
809
    // get the number of shards given `sharded` and `num_shard`
    let num_shard = match (sharded, num_shard) {
        (Some(true), None) => {
            // try to default to the number of available GPUs
810
811
812
            tracing::info!("Parsing num_shard from CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES");
            let n_devices = num_cuda_devices()
                .expect("--num-shard and CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES are not set");
813
            if n_devices <= 1 {
814
815
816
                return Err(LauncherError::NotEnoughCUDADevices(format!(
                    "`sharded` is true but only found {n_devices} CUDA devices"
                )));
817
            }
818
            n_devices
819
        }
820
821
822
        (Some(true), Some(num_shard)) => {
            // we can't have only one shard while sharded
            if num_shard <= 1 {
823
824
825
                return Err(LauncherError::ArgumentValidation(
                    "`sharded` is true but `num_shard` <= 1".to_string(),
                ));
826
827
            }
            num_shard
828
        }
829
830
831
832
        (Some(false), Some(num_shard)) => num_shard,
        (Some(false), None) => 1,
        (None, None) => num_cuda_devices().unwrap_or(1),
        (None, Some(num_shard)) => num_shard,
833
    };
834
    if num_shard < 1 {
835
836
837
        return Err(LauncherError::ArgumentValidation(
            "`num_shard` cannot be < 1".to_string(),
        ));
838
    }
839
    Ok(num_shard)
840
}
841

842
#[derive(Debug, Error)]
843
enum LauncherError {
844
    #[error("Invalid argument: {0}")]
845
    ArgumentValidation(String),
846
    #[error("not enough cuda devices: {0}")]
847
    NotEnoughCUDADevices(String),
848
    #[error("Download error")]
849
    DownloadError,
850
    #[error("Shard cannot start")]
851
    ShardCannotStart,
852
    #[error("Shard disconnected")]
853
    ShardDisconnected,
854
    #[error("Shard failed")]
855
    ShardFailed,
856
    #[error("Webserver failed")]
857
    WebserverFailed,
858
    #[error("Webserver cannot start")]
859
860
    WebserverCannotStart,
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
861

862
fn download_convert_model(args: &Args, running: Arc<AtomicBool>) -> Result<(), LauncherError> {
863
864
865
    // Enter download tracing span
    let _span = tracing::span!(tracing::Level::INFO, "download").entered();

OlivierDehaene's avatar
OlivierDehaene committed
866
    let mut download_args = vec![
867
868
869
870
871
872
873
874
        "download-weights".to_string(),
        args.model_id.to_string(),
        "--extension".to_string(),
        ".safetensors".to_string(),
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];
875

876
877
    // Model optional revision
    if let Some(revision) = &args.revision {
OlivierDehaene's avatar
OlivierDehaene committed
878
879
        download_args.push("--revision".to_string());
        download_args.push(revision.to_string())
880
    }
881

882
883
884
885
886
    // Trust remote code for automatic peft fusion
    if args.trust_remote_code {
        download_args.push("--trust-remote-code".to_string());
    }

887
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
888
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
889

890
891
892
    // Remove LOG_LEVEL if present
    envs.retain(|(name, _)| name != "LOG_LEVEL");

893
894
895
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

896
    // If huggingface_hub_cache is set, pass it to the download process
897
898
    // Useful when running inside a docker container
    if let Some(ref huggingface_hub_cache) = args.huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
899
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
900
    };
901

902
903
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
904
    envs.push((
905
906
907
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));
908

909
910
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
OlivierDehaene's avatar
OlivierDehaene committed
911
        envs.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
912
    };
913

914
915
916
    // If args.weights_cache_override is some, pass it to the download process
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = &args.weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
917
        envs.push((
918
919
920
921
922
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

923
924
    // Start process
    tracing::info!("Starting download process.");
925
    let mut download_process = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
926
        .args(download_args)
927
        .env_clear()
OlivierDehaene's avatar
OlivierDehaene committed
928
        .envs(envs)
929
930
931
932
933
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
934
935
        Ok(p) => p,
        Err(err) => {
936
937
938
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
939
940
            } else {
                tracing::error!("{}", err);
941
            }
942

943
944
945
            return Err(LauncherError::DownloadError);
        }
    };
946

947
    let download_stdout = BufReader::new(download_process.stdout.take().unwrap());
948

949
    thread::spawn(move || {
950
951
952
953
954
955
956
957
        log_lines(download_stdout.lines());
    });

    let download_stderr = BufReader::new(download_process.stderr.take().unwrap());

    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
OlivierDehaene's avatar
OlivierDehaene committed
958
        for line in download_stderr.lines().map_while(Result::ok) {
959
960
            err_sender.send(line).unwrap_or(());
        }
961
    });
962

963
    loop {
964
965
966
967
        if let Some(status) = download_process.try_wait().unwrap() {
            if status.success() {
                tracing::info!("Successfully downloaded weights.");
                break;
968
            }
969
970

            let mut err = String::new();
971
972
973
974
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }

975
976
977
978
979
980
981
982
983
            if let Some(signal) = status.signal() {
                tracing::error!(
                    "Download process was signaled to shutdown with signal {signal}: {err}"
                );
            } else {
                tracing::error!("Download encountered an error: {err}");
            }

            return Err(LauncherError::DownloadError);
984
        }
985
        if !running.load(Ordering::SeqCst) {
OlivierDehaene's avatar
OlivierDehaene committed
986
            terminate("download", download_process, Duration::from_secs(10)).unwrap();
987
988
989
            return Ok(());
        }
        sleep(Duration::from_millis(100));
990
    }
991
992
    Ok(())
}
993

994
#[allow(clippy::too_many_arguments)]
995
996
997
fn spawn_shards(
    num_shard: usize,
    args: &Args,
998
    cuda_graphs: Vec<usize>,
999
    max_total_tokens: usize,
1000
    max_log_level: LevelFilter,
1001
    shutdown: Arc<AtomicBool>,
1002
1003
1004
1005
1006
1007
    shutdown_receiver: &mpsc::Receiver<()>,
    shutdown_sender: mpsc::Sender<()>,
    status_receiver: &mpsc::Receiver<ShardStatus>,
    status_sender: mpsc::Sender<ShardStatus>,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1008
1009
    // Start shard processes
    for rank in 0..num_shard {
1010
1011
1012
1013
1014
1015
        let model_id = args.model_id.clone();
        let revision = args.revision.clone();
        let uds_path = args.shard_uds_path.clone();
        let master_addr = args.master_addr.clone();
        let huggingface_hub_cache = args.huggingface_hub_cache.clone();
        let weights_cache_override = args.weights_cache_override.clone();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1016
1017
1018
        let status_sender = status_sender.clone();
        let shutdown = shutdown.clone();
        let shutdown_sender = shutdown_sender.clone();
1019
        let otlp_endpoint = args.otlp_endpoint.clone();
1020
        let quantize = args.quantize;
Nicolas Patry's avatar
Nicolas Patry committed
1021
        let speculate = args.speculate;
1022
        let dtype = args.dtype;
1023
        let trust_remote_code = args.trust_remote_code;
1024
1025
1026
1027
        let master_port = args.master_port;
        let disable_custom_kernels = args.disable_custom_kernels;
        let watermark_gamma = args.watermark_gamma;
        let watermark_delta = args.watermark_delta;
1028
        let cuda_graphs_clone = cuda_graphs.clone();
1029
        let cuda_memory_fraction = args.cuda_memory_fraction;
Nicolas Patry's avatar
Nicolas Patry committed
1030
1031
        let rope_scaling = args.rope_scaling;
        let rope_factor = args.rope_factor;
1032
        let max_batch_size = args.max_batch_size;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1033
1034
        thread::spawn(move || {
            shard_manager(
1035
                model_id,
1036
                revision,
1037
                quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1038
                speculate,
1039
                dtype,
1040
                trust_remote_code,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1041
1042
1043
1044
1045
                uds_path,
                rank,
                num_shard,
                master_addr,
                master_port,
1046
1047
                huggingface_hub_cache,
                weights_cache_override,
1048
                disable_custom_kernels,
1049
1050
                watermark_gamma,
                watermark_delta,
1051
                cuda_graphs_clone,
1052
                cuda_memory_fraction,
Nicolas Patry's avatar
Nicolas Patry committed
1053
1054
                rope_scaling,
                rope_factor,
1055
1056
                max_total_tokens,
                max_batch_size,
1057
                otlp_endpoint,
1058
                max_log_level,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
                status_sender,
                shutdown,
                shutdown_sender,
            )
        });
    }
    drop(shutdown_sender);

    // Wait for shard to start
    let mut shard_ready = 0;
    while running.load(Ordering::SeqCst) {
        match status_receiver.try_recv() {
            Ok(ShardStatus::Ready) => {
                shard_ready += 1;
                if shard_ready == num_shard {
                    break;
                }
            }
            Err(TryRecvError::Empty) => {
                sleep(Duration::from_millis(100));
            }
1080
            Ok(ShardStatus::Failed(rank)) => {
1081
                tracing::error!("Shard {rank} failed to start");
1082
                shutdown_shards(shutdown, shutdown_receiver);
1083
                return Err(LauncherError::ShardCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1084
1085
1086
            }
            Err(TryRecvError::Disconnected) => {
                tracing::error!("Shard status channel disconnected");
1087
                shutdown_shards(shutdown, shutdown_receiver);
1088
                return Err(LauncherError::ShardDisconnected);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1089
1090
1091
            }
        }
    }
1092
1093
    Ok(())
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1094

1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
fn compute_type(num_shard: usize) -> Option<String> {
    let output = Command::new("nvidia-smi")
        .args(["--query-gpu=gpu_name", "--format=csv"])
        .output()
        .ok()?;
    let output = String::from_utf8(output.stdout).ok()?;
    let fullname = output.split('\n').nth(1)?;
    let cardname = fullname.replace(' ', "-").to_lowercase();
    let compute_type = format!("{num_shard}-{cardname}");
    Some(compute_type)
}

1107
fn spawn_webserver(
1108
    num_shard: usize,
1109
    args: Args,
1110
1111
1112
    max_input_tokens: usize,
    max_total_tokens: usize,
    max_batch_prefill_tokens: u32,
1113
    shutdown: Arc<AtomicBool>,
1114
    shutdown_receiver: &mpsc::Receiver<()>,
1115
) -> Result<Child, LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1116
1117
1118
    // All shard started
    // Start webserver
    tracing::info!("Starting Webserver");
OlivierDehaene's avatar
OlivierDehaene committed
1119
    let mut router_args = vec![
1120
1121
        "--max-client-batch-size".to_string(),
        args.max_client_batch_size.to_string(),
1122
        "--max-concurrent-requests".to_string(),
1123
        args.max_concurrent_requests.to_string(),
1124
        "--max-best-of".to_string(),
1125
        args.max_best_of.to_string(),
1126
        "--max-stop-sequences".to_string(),
1127
        args.max_stop_sequences.to_string(),
Nicolas Patry's avatar
Nicolas Patry committed
1128
1129
        "--max-top-n-tokens".to_string(),
        args.max_top_n_tokens.to_string(),
1130
1131
        "--max-input-tokens".to_string(),
        max_input_tokens.to_string(),
1132
        "--max-total-tokens".to_string(),
1133
        max_total_tokens.to_string(),
1134
        "--max-batch-prefill-tokens".to_string(),
1135
        max_batch_prefill_tokens.to_string(),
1136
        "--waiting-served-ratio".to_string(),
1137
        args.waiting_served_ratio.to_string(),
1138
        "--max-waiting-tokens".to_string(),
1139
        args.max_waiting_tokens.to_string(),
1140
1141
        "--validation-workers".to_string(),
        args.validation_workers.to_string(),
1142
1143
        "--hostname".to_string(),
        args.hostname.to_string(),
1144
        "--port".to_string(),
1145
        args.port.to_string(),
1146
        "--master-shard-uds-path".to_string(),
1147
        format!("{}-0", args.shard_uds_path),
1148
        "--tokenizer-name".to_string(),
1149
        args.model_id,
1150
1151
    ];

drbh's avatar
drbh committed
1152
1153
1154
1155
1156
    // Grammar support
    if args.disable_grammar_support {
        router_args.push("--disable-grammar-support".to_string());
    }

1157
1158
1159
1160
1161
1162
    // Tokenizer config path
    if let Some(ref tokenizer_config_path) = args.tokenizer_config_path {
        router_args.push("--tokenizer-config-path".to_string());
        router_args.push(tokenizer_config_path.to_string());
    }

1163
1164
1165
1166
1167
1168
    // Model optional max batch total tokens
    if let Some(max_batch_total_tokens) = args.max_batch_total_tokens {
        router_args.push("--max-batch-total-tokens".to_string());
        router_args.push(max_batch_total_tokens.to_string());
    }

1169
1170
1171
1172
1173
1174
    // Router optional max batch size
    if let Some(max_batch_size) = args.max_batch_size {
        router_args.push("--max-batch-size".to_string());
        router_args.push(max_batch_size.to_string());
    }

1175
1176
    // Model optional revision
    if let Some(ref revision) = args.revision {
OlivierDehaene's avatar
OlivierDehaene committed
1177
1178
        router_args.push("--revision".to_string());
        router_args.push(revision.to_string())
1179
1180
    }

1181
    if args.json_output {
OlivierDehaene's avatar
OlivierDehaene committed
1182
        router_args.push("--json-output".to_string());
1183
1184
    }

1185
    // OpenTelemetry
1186
    if let Some(otlp_endpoint) = args.otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
1187
1188
        router_args.push("--otlp-endpoint".to_string());
        router_args.push(otlp_endpoint);
1189
1190
1191
1192
    }

    // CORS origins
    for origin in args.cors_allow_origin.into_iter() {
OlivierDehaene's avatar
OlivierDehaene committed
1193
1194
        router_args.push("--cors-allow-origin".to_string());
        router_args.push(origin);
1195
1196
    }

1197
1198
    // Ngrok
    if args.ngrok {
OlivierDehaene's avatar
OlivierDehaene committed
1199
1200
        router_args.push("--ngrok".to_string());
        router_args.push("--ngrok-authtoken".to_string());
1201
1202
1203
        router_args.push(args.ngrok_authtoken.unwrap());
        router_args.push("--ngrok-edge".to_string());
        router_args.push(args.ngrok_edge.unwrap());
1204
1205
    }

1206
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
1207
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
1208

1209
1210
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
OlivierDehaene's avatar
OlivierDehaene committed
1211
        envs.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
1212
    };
1213

1214
1215
1216
1217
1218
1219
1220
    // Parse Compute type
    if let Ok(compute_type) = env::var("COMPUTE_TYPE") {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    } else if let Some(compute_type) = compute_type(num_shard) {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    }

1221
    let mut webserver = match Command::new("text-generation-router")
OlivierDehaene's avatar
OlivierDehaene committed
1222
1223
        .args(router_args)
        .envs(envs)
1224
1225
1226
1227
1228
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1229
1230
        Ok(p) => p,
        Err(err) => {
1231
            tracing::error!("Failed to start webserver: {}", err);
1232
1233
1234
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-router not found in PATH");
                tracing::error!("Please install it with `make install-router`")
1235
1236
            } else {
                tracing::error!("{}", err);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1237
            }
1238

1239
            shutdown_shards(shutdown, shutdown_receiver);
1240
            return Err(LauncherError::WebserverCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1241
1242
1243
        }
    };

1244
1245
1246
    // Redirect STDOUT and STDERR to the console
    let webserver_stdout = webserver.stdout.take().unwrap();
    let webserver_stderr = webserver.stderr.take().unwrap();
1247
1248

    thread::spawn(move || {
1249
1250
        let stdout = BufReader::new(webserver_stdout);
        let stderr = BufReader::new(webserver_stderr);
1251
        for line in stdout.lines() {
1252
            println!("{}", line.unwrap());
1253
        }
1254
1255
        for line in stderr.lines() {
            println!("{}", line.unwrap());
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1256
        }
1257
1258
1259
    });
    Ok(webserver)
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1260

OlivierDehaene's avatar
OlivierDehaene committed
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
fn terminate(process_name: &str, mut process: Child, timeout: Duration) -> io::Result<ExitStatus> {
    tracing::info!("Terminating {process_name}");

    let terminate_time = Instant::now();
    signal::kill(Pid::from_raw(process.id() as i32), Signal::SIGTERM).unwrap();

    tracing::info!("Waiting for {process_name} to gracefully shutdown");
    while terminate_time.elapsed() < timeout {
        if let Some(status) = process.try_wait()? {
            tracing::info!("{process_name} terminated");
            return Ok(status);
        }
        sleep(Duration::from_millis(100));
    }
    tracing::info!("Killing {process_name}");

    process.kill()?;
    let exit_status = process.wait()?;

    tracing::info!("{process_name} killed");
    Ok(exit_status)
}

1284
1285
fn main() -> Result<(), LauncherError> {
    // Pattern match configuration
1286
    let args: Args = Args::parse();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1287

1288
    // Filter events with LOG_LEVEL
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
    let varname = "LOG_LEVEL";
    let env_filter = if let Ok(log_level) = std::env::var(varname) {
        // Override to avoid simple logs to be spammed with tokio level informations
        let log_level = match &log_level[..] {
            "warn" => "text_generation_launcher=warn,text_generation_router=warn",
            "info" => "text_generation_launcher=info,text_generation_router=info",
            "debug" => "text_generation_launcher=debug,text_generation_router=debug",
            log_level => log_level,
        };
        EnvFilter::builder()
            .with_default_directive(LevelFilter::INFO.into())
            .parse_lossy(log_level)
    } else {
        EnvFilter::new("info")
    };
    let max_log_level = env_filter.max_level_hint().unwrap_or(LevelFilter::INFO);
1305

1306
    if args.json_output {
1307
1308
1309
1310
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .json()
            .init();
1311
    } else {
1312
1313
1314
1315
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .compact()
            .init();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1316
1317
    }

1318
1319
1320
1321
1322
    if args.env {
        let env_runtime = env_runtime::Env::new();
        tracing::info!("{}", env_runtime);
    }

Nicolas Patry's avatar
Nicolas Patry committed
1323
    tracing::info!("{:#?}", args);
1324

1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
    let get_max_position_embeddings = || -> Result<usize, Box<dyn std::error::Error>> {
        let model_id = args.model_id.clone();
        let mut path = std::path::Path::new(&args.model_id).to_path_buf();
        let filename = if !path.exists() {
            // Assume it's a hub id
            let api = Api::new()?;
            let repo = if let Some(ref revision) = args.revision {
                api.repo(Repo::with_revision(
                    model_id,
                    RepoType::Model,
                    revision.to_string(),
                ))
            } else {
                api.model(model_id)
            };
            repo.get("config.json")?
        } else {
            path.push("config.json");
            path
        };

        let content = std::fs::read_to_string(filename)?;
1347
1348
        let config: RawConfig = serde_json::from_str(&content)?;
        let config: Config = config.into();
1349
1350
1351
1352

        // Quantization usually means you're even more RAM constrained.
        let max_default = 4096;

1353
1354
1355
1356
1357
1358
1359
1360
        if let Some(max_position_embeddings) = config.max_position_embeddings {
            if max_position_embeddings > max_default {
                let max = max_position_embeddings;
                if args.max_input_tokens.is_none()
                    && args.max_total_tokens.is_none()
                    && args.max_batch_prefill_tokens.is_none()
                {
                    tracing::info!("Model supports up to {max} but tgi will now set its default to {max_default} instead. This is to save VRAM by refusing large prompts in order to allow more users on the same hardware. You can increase that size using `--max-batch-prefill-tokens={} --max-total-tokens={max} --max-input-tokens={}`.", max + 50, max - 1);
1361
                }
1362
1363
1364
                Ok(max_default)
            } else {
                Ok(max_position_embeddings)
1365
            }
1366
1367
1368
1369
1370
        } else {
            Err(Box::new(LauncherError::ArgumentValidation(
                "no max defined".to_string(),
            )))
        }
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
    };
    let max_position_embeddings: usize = get_max_position_embeddings().unwrap_or(4096);

    let max_input_tokens = {
        match (args.max_input_tokens, args.max_input_length) {
            (Some(max_input_tokens), Some(max_input_length)) => {
                return Err(LauncherError::ArgumentValidation(
                    format!("Both `max_input_tokens` ({max_input_tokens}) and `max_input_length` ({max_input_length}) are set. Please define only `max_input_tokens` as `max_input_length is deprecated for naming consistency.",
                )));
            }
            (Some(max_input_tokens), None) | (None, Some(max_input_tokens)) => max_input_tokens,
            (None, None) => {
                let value = max_position_embeddings - 1;
                tracing::info!("Default `max_input_tokens` to {value}");
                value
            }
        }
    };
    let max_total_tokens = {
        match args.max_total_tokens {
            Some(max_total_tokens) => max_total_tokens,
            None => {
                let value = max_position_embeddings;
                tracing::info!("Default `max_total_tokens` to {value}");
                value
            }
        }
    };
    let max_batch_prefill_tokens = {
        match args.max_batch_prefill_tokens {
            Some(max_batch_prefill_tokens) => max_batch_prefill_tokens,
            None => {
                let value: u32 = if let Some(max_batch_size) = args.max_batch_size {
                    max_batch_size * max_input_tokens
                } else {
                    // Adding some edge in order to account for potential block_size alignement
                    // issue.
                    max_input_tokens + 50
                } as u32;
                tracing::info!("Default `max_batch_prefill_tokens` to {value}");
                value
            }
        }
    };

1416
    // Validate args
1417
    if max_input_tokens >= max_total_tokens {
1418
        return Err(LauncherError::ArgumentValidation(
1419
            "`max_input_tokens must be < `max_total_tokens`".to_string(),
1420
1421
        ));
    }
1422
    if max_input_tokens as u32 > max_batch_prefill_tokens {
1423
        return Err(LauncherError::ArgumentValidation(format!(
1424
1425
            "`max_batch_prefill_tokens` must be >= `max_input_tokens`. Given: {} and {}",
            max_batch_prefill_tokens, max_input_tokens
1426
1427
        )));
    }
1428

1429
    let cuda_graphs = match (&args.cuda_graphs, &args.quantize) {
Nicolas Patry's avatar
Nicolas Patry committed
1430
        (Some(cuda_graphs), _) => cuda_graphs.iter().cloned().filter(|&c| c > 0).collect(),
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
        #[allow(deprecated)]
        (
            None,
            Some(
                Quantization::Bitsandbytes
                | Quantization::BitsandbytesNF4
                | Quantization::BitsandbytesFP4,
            ),
        ) => {
            tracing::info!("Bitsandbytes doesn't work with cuda graphs, deactivating them");
            vec![]
        }
        _ => {
            let cuda_graphs = vec![1, 2, 4, 8, 16, 32];
            tracing::info!("Using default cuda graphs {cuda_graphs:?}");
            cuda_graphs
        }
    };

1450
1451
1452
1453
1454
    if args.validation_workers == 0 {
        return Err(LauncherError::ArgumentValidation(
            "`validation_workers` must be > 0".to_string(),
        ));
    }
1455
1456
1457
1458
1459
1460
    if args.trust_remote_code {
        tracing::warn!(
            "`trust_remote_code` is set. Trusting that model `{}` do not contain malicious code.",
            args.model_id
        );
    }
1461
1462

    let num_shard = find_num_shards(args.sharded, args.num_shard)?;
1463
1464
    if num_shard > 1 {
        tracing::info!("Sharding model on {num_shard} processes");
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1465
1466
    }

1467
    if let Some(ref max_batch_total_tokens) = args.max_batch_total_tokens {
1468
        if max_batch_prefill_tokens > *max_batch_total_tokens {
1469
1470
            return Err(LauncherError::ArgumentValidation(format!(
                "`max_batch_prefill_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
1471
                max_batch_prefill_tokens, max_batch_total_tokens
1472
1473
            )));
        }
1474
        if max_total_tokens as u32 > *max_batch_total_tokens {
1475
1476
            return Err(LauncherError::ArgumentValidation(format!(
                "`max_total_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
1477
                max_total_tokens, max_batch_total_tokens
1478
1479
1480
1481
            )));
        }
    }

1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
    if args.ngrok {
        if args.ngrok_authtoken.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-authtoken` must be set when using ngrok tunneling".to_string(),
            ));
        }

        if args.ngrok_edge.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-edge` must be set when using ngrok tunneling".to_string(),
            ));
        }
    }

1496
1497
1498
1499
1500
1501
1502
    // Signal handler
    let running = Arc::new(AtomicBool::new(true));
    let r = running.clone();
    ctrlc::set_handler(move || {
        r.store(false, Ordering::SeqCst);
    })
    .expect("Error setting Ctrl-C handler");
1503

1504
    // Download and convert model weights
1505
    download_convert_model(&args, running.clone())?;
1506

OlivierDehaene's avatar
OlivierDehaene committed
1507
1508
1509
1510
1511
    if !running.load(Ordering::SeqCst) {
        // Launcher was asked to stop
        return Ok(());
    }

1512
    // Shared shutdown bool
1513
    let shutdown = Arc::new(AtomicBool::new(false));
1514
1515
1516
    // Shared shutdown channel
    // When shutting down, the main thread will wait for all senders to be dropped
    let (shutdown_sender, shutdown_receiver) = mpsc::channel();
1517

1518
1519
    // Shared channel to track shard status
    let (status_sender, status_receiver) = mpsc::channel();
1520

1521
1522
1523
    spawn_shards(
        num_shard,
        &args,
1524
        cuda_graphs,
1525
        max_total_tokens,
1526
        max_log_level,
1527
1528
1529
1530
1531
1532
1533
        shutdown.clone(),
        &shutdown_receiver,
        shutdown_sender,
        &status_receiver,
        status_sender,
        running.clone(),
    )?;
1534

1535
1536
1537
1538
1539
    // We might have received a termination signal
    if !running.load(Ordering::SeqCst) {
        shutdown_shards(shutdown, &shutdown_receiver);
        return Ok(());
    }
1540

1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
    let mut webserver = spawn_webserver(
        num_shard,
        args,
        max_input_tokens,
        max_total_tokens,
        max_batch_prefill_tokens,
        shutdown.clone(),
        &shutdown_receiver,
    )
    .map_err(|err| {
        shutdown_shards(shutdown.clone(), &shutdown_receiver);
        err
    })?;
1554
1555
1556
1557
1558

    // Default exit code
    let mut exit_code = Ok(());

    while running.load(Ordering::SeqCst) {
1559
        if let Ok(ShardStatus::Failed(rank)) = status_receiver.try_recv() {
OlivierDehaene's avatar
OlivierDehaene committed
1560
            tracing::error!("Shard {rank} crashed");
1561
1562
1563
1564
            exit_code = Err(LauncherError::ShardFailed);
            break;
        };

1565
        match webserver.try_wait().unwrap() {
1566
1567
1568
1569
1570
1571
1572
1573
1574
            Some(_) => {
                tracing::error!("Webserver Crashed");
                shutdown_shards(shutdown, &shutdown_receiver);
                return Err(LauncherError::WebserverFailed);
            }
            None => {
                sleep(Duration::from_millis(100));
            }
        };
1575
    }
1576
1577

    // Graceful termination
OlivierDehaene's avatar
OlivierDehaene committed
1578
    terminate("webserver", webserver, Duration::from_secs(90)).unwrap();
1579
1580
1581
    shutdown_shards(shutdown, &shutdown_receiver);

    exit_code
1582
}